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Abstract

We develop a theory of fluctuations for Brownian systems with weak long-range in-
teractions. For these systems, there exists a critical point separating a homogeneous
phase from an inhomogeneous phase. Starting from the stochastic Smoluchowski equa-
tion governing the evolution of the fluctuating density field of the Brownian particles, we
determine the expression of the correlation function of the density fluctuations around a
spatially homogeneous equilibrium distribution. In the stable regime, we find that the
temporal correlation function of the Fourier components of the density fluctuations de-
cays exponentially rapidly with the same rate as the one characterizing the damping of a
perturbation governed by the deterministic mean field Smoluchowski equation (without
noise). On the other hand, the amplitude of the spatial correlation function in Fourier
space diverges at the critical point T = Tc (or at the instability threshold k = km) imply-
ing that the mean field approximation breaks down close to the critical point and that the
phase transition from the homogeneous phase to the inhomogeneous phase occurs sooner.
By contrast, the correlations of the velocity fluctuations remain finite at the critical point
(or at the instability threshold). We give explicit examples for the Brownian Mean Field
(BMF) model and for Brownian particles interacting via the gravitational potential and
via the attractive Yukawa potential. We also introduce a stochastic model of chemotaxis
for bacterial populations generalizing the deterministic mean field Keller-Segel model by
taking into account fluctuations and memory effects.

1 Introduction

In a recent series of papers [1, 2, 3, 4, 5], we have considered some theoretical aspects of the
dynamics and thermodynamics of systems with weak long-range interactions [6, 7]. In these
systems, the interaction potential u(r) decays with a rate slower than 1/rd at large distances,
where d is the dimension of space (these potentials are sometimes called “non-integrable”).
As a result, any particle feels a potential dominated by interactions with far away particles
(i.e. the interaction is not restricted to nearest neighbours) and the energy is non-additive.
This can lead to striking properties (absent in systems with short-range interactions) such as
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inequivalence of statistical ensembles and negative specific heats in the microcanonical ensem-
ble. On the other hand, the usual thermodynamic limit N → +∞ with N/V fixed is not
relevant for these systems and must be reconsidered. If we write the potential of interaction as
u(|r−r′|) = kũ(|r−r′|) where k is the coupling constant, then the appropriate thermodynamic
limit for weak long-range interactions corresponds to N → +∞ in such a way that the coupling
constant k ∼ 1/N → 0 and the volume V ∼ 1. In that limit, we have an extensive scaling of
the energy E ∼ N and entropy S ∼ N (while the temperature T ∼ 1), but the system remains
fundamentally non-additive. Other equivalent combinations of the parameters are possible to
define the thermodynamic limit as discussed in [1, 5] and in various contributions of [7]. For
systems with weak long-range interactions, it is often claimed that the mean field approxima-
tion is a very good approximation and that it becomes exact in the proper thermodynamic
limit N → +∞. In fact, this is true only if we are far from a critical point. Close to a critical
point, the fluctuations become large and cannot be ignored. In that case, the two-body cor-
relation function does not factor out in a product of two one-body distribution functions and
the mean field approximation breaks down. It is therefore highly desirable to derive stochastic
kinetic equations that go beyond the mean field approximation and that take full account of
fluctuations. This is the main object of the present paper.

In our previous studies, we have distinguished two types of systems: Hamiltonian and Brow-
nian. Hamiltonian systems with long-range interactions are isolated and evolve at fixed energy.
The dynamics of the particles is described by N coupled deterministic Newton equations. Since
the energy is conserved, the relevant statistical ensemble is the microcanonical ensemble. The
evolution of the N -body distribution function is governed by the Liouville equation and the
statistical equilibrium state is described by the microcanonical distribution. Examples of such
systems are provided by stellar systems [8, 9, 10, 11, 12], two-dimensional vortices [13, 14, 15, 16]
and the Hamiltonian Mean Field (HMF) model [17, 18]; see also the important list of refer-
ences in these papers. Brownian systems with long-range interactions, on the other hand, are
dissipative and evolve at fixed temperature. The particles are subject to their mutual long-
range interactions but they experience, in addition, a friction force and a stochastic force which
mimic the interaction with a thermal bath (that is due to short-range interactions). Therefore,
the dynamics of the particles is described by N coupled stochastic Langevin equations. The
temperature is defined through the Einstein relation as the ratio between the diffusion coeffi-
cient and the friction coefficient, and it measures the strength of the stochastic force. Since the
temperature is fixed, the relevant statistical ensemble is the canonical ensemble. The evolution
of the N -body distribution function is governed by the Fokker-Planck equation and the sta-
tistical equilibrium state is described by the canonical distribution. Examples of such systems
are provided by self-gravitating Brownian particles [19, 20], bacterial populations experiencing
chemotaxis [21, 22, 23, 24] and the Brownian Mean Field (BMF) model [18, 25].

Systems with long-range interactions have a very peculiar dynamics and thermodynamics
[6, 7]. When the interaction is attractive, there exists a critical point separating a spatially
homogeneous (gaseous) phase from a spatially inhomogeneous (clustered) phase. In the micro-
canonical ensemble (MCE), the “clustered” phase appears below a critical energy Ec and in the
canonical ensemble (CE), it appears below a critical temperature Tc. The homogeneous phase
may still exist for E < Ec or T < Tc but is dynamically and thermodynamically unstable.
One fundamental illustration of this type of phase transitions corresponds to the famous Jeans
instability in astrophysics [26, 9]. For the Jeans problem 1, the critical temperature Tc = +∞

1As is well-known, the standard Jeans analysis assumes that an infinite and homogeneous self-gravitating
system is a steady state of the hydrodynamical equations (the so-called Euler-Poisson system), which is not
correct. This inconsistency in the stability analysis is referred to as the Jeans swindle [9]. However, the Jeans
treatment can be justified in cosmology [27] if we take into account the expansion of the universe because this
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so that the system is always in the “clustered” phase: this corresponds to the universe that
we know, filled of galaxies. A spatially homogeneous distribution of matter is always unsta-
ble to sufficiently large wavelengths, above the Jeans length k−1

J = (4πGnm2β)−1/2, and this
leads to gravitational collapse and clustering. If we formally consider a screened Newtonian
interaction (attractive Yukawa potential) with screening length k−1

0 , we find that the phase
transition occurs at a finite critical temperature Tc = 4πGnm2/k2

0 separating a homogeneous
phase from a clustered phase [1]. For T > Tc the homogeneous phase is stable and for T < Tc

it becomes unstable to wavenumbers k < km ≡ k0(Tc/T − 1)1/2. Alternatively, we can consider
a spatially inhomogeneous self-gravitating gas in a spherical box of radius R. In that case,
there exists a critical energy Ec = −0.335GM2/R in MCE (discovered by Antonov [28, 29] for
stellar systems) and a critical temperature Tc = GMm/(2.52kBR) in CE (discovered by Emden
[30] for isothermal stars and recently emphasized by the author for molecular clouds in contact
with a thermal bath [31] and for self-gravitating Brownian particles [19]) below which the sys-
tem passes from a slightly inhomogeneous gaseous phase to a highly inhomogeneous condensed
phase 2. Interestingly, the analogue of these “gravitational phase transitions” also takes place
in the context of the chemotaxis of bacterial populations in biology [32, 33]. In these systems,
an infinite and uniform distribution of cells is a steady state of the equations of motion (the so-
called Keller-Segel model and its generalizations) so there is no “Jeans swindle”. Furthermore,
the screened Yukawa potential enters naturally in the problem and the screening length has a
clear physical interpretation as it takes into account the degradation of the secreted chemical.
Another illustration of this type of phase transitions is given by the study of toy models like
the Hamiltonian Mean Field (HMF) and the Brownian Mean Field (BMF) models [17, 18].
For these systems, there exists a critical energy Ec = kM2/(8π) and a critical temperature
Tc = kM/(4π) separating a spatially homogeneous (non-magnetized) phase from a spatially
inhomogeneous (magnetized) phase. The magnetization plays the role of the order parameter
and the phase transition is second order in that case [17, 18]. We expect the above-mentioned
types of phase transitions, and their generalizations [34, 35, 36, 37, 38, 12, 1], to occur for a
large class of mean field systems with different potentials of interaction.

The critical point separating the homogeneous phase from the inhomogeneous phase is often
called a spinodal point. The instability threshold of the homogeneous phase can be obtained
from different classical methods: (i) by studying the sign of the second order variations of the
thermodynamical potential (entropy in MCE or free energy in CE) and determining when the
spatially uniform distribution becomes an unstable saddle point (see, e.g., Sec. 4.4. of Paper I
or Appendix C of [24]) (ii) by studying the bifurcation (from homogeneous to inhomogeneous)
of the solutions of the meanfield integrodifferential equation (I-19) determining the statistical
equilibrium state (see, e.g., Sec. 2.3 of Paper I and Appendix C of [24]) (iii) by studying
the linear and nonlinear dynamical stability of the homogeneous state with respect to kinetic
equations: Vlasov, Euler, Landau, Kramers, Smoluchowski... (see, e.g., Paper II and [33, 24]).
In the homogeneous phase, the one-body distribution function is trivial (it is spatially uniform
with a Maxwellian velocity distribution) and the state of the system is usually characterized by
the two-body distribution function. For weak long-range interactions, the two-body correlation
function h(|r1 − r2|) can be obtained from the equilibrium BBGKY-hierarchy at the order
O(1/N) by neglecting the three-body correlation function that is of order O(1/N2) [1]. This
is similar to the Debye-Hückel approximation in plasma physics. It is found however that, for

creates a sort of “neutralizing background” in the comoving frame expanding with the system allowing for
infinite and homogeneous steady states.

2In order to have a well-defined condensed phase, one has to introduce a small-scale regularization of the
gravitational potential. More fundamentally, we can invoke quantum mechanics (Pauli exclusion principle) and
consider the case of self-gravitating fermions (e.g. white dwarfs, neutron stars and fermion balls) [12].
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large but fixed N , the Fourier transform of the correlation function diverges at the critical
point (or at the instability threshold) so that the mean field approximation breaks down close
to the critical point. This implies that the phase transition should take place strictly before the
critical point (or strictly before the instability threshold) predicted by mean field theory. In
[1, 18], we have reached this conclusion from the study of the equilibrium BBGKY hierarchy.
In the present work, we would like to complement our previous studies by developing a theory
of fluctuations starting directly from the stochastic kinetic equation governing the evolution
of the fluctuating density field. In this paper, we restrict ourselves to the case of Brownian
systems.

The paper is organized as follows. In Sec. 2, we consider a gas of Brownian particles in
interaction in an overdamped limit where inertial effects are neglected. In Sec. 2.1, using a
BBGKY-like hierarchy, we give the deterministic kinetic equation (5) satisfied by the smooth
density profile and the Smoluchowski equation (8) resulting from a mean field approximation.
In Sec. 2.2, we give the stochastic kinetic equation (17) satisfied by the exact density dis-
tribution (expressed in terms of δ-functions) and, averaging over the noise, we recover the
equation obtained from the BBGKY-like hierarchy. In Sec. 2.3, we give the stochastic kinetic
equation (27) satisfied by the coarse-grained density distribution obtained by averaging the
exact density distribution over a small spatio-temporal window (thus keeping track of fluctu-
ations). In Appendix B, we provide another derivation of this equation by using the general
theory of fluctuations exposed by Landau & Lifshitz [39]. In Sec. 2.4, we derive generalized
stochastic Cahn-Hilliard equations in the limit of short-range interactions. In Sec. 2.5, starting
from the stochastic Smoluchowski equation (44)-(45), we develop a theory of fluctuations for
Brownian particles with weak long-range interactions. Specifically, we study the correlations
〈δρ̂k(t)δρ̂k′(t+ τ)〉 of the Fourier transform of the density fluctuations and show that it behaves
like A(k)eσ(k)τ . In the stable regime, the decay rate σ(k) < 0 of the temporal correlations
coincides with the decay rate of the perturbations δρ̂k(t) ∼ eσ(k)t governed by the determin-
istic mean field Smoluchowski equation (without noise). On the other hand, for T < Tc, the
amplitude of the correlation function A(k) diverges as we approach the instability threshold
k → km, suggesting that the instability takes place sooner than predicted by mean field theory
(for T > Tc, considering the “dangerous” mode k = k∗, the correlation function diverges as
we approach the critical point T → T+

c ). These results clearly demonstrate that fluctuations
cannot be ignored close to a critical point. In Sec. 3, we generalize our results to the case of
an inertial model of particles in interaction including a friction force and a stochastic force.
The overdamped model is recovered in a strong friction limit. Again, the correlations of the
density fluctuations diverge as we approach the instability threshold but, in sharp contrast, the
correlations of the velocity fluctuations remain finite at this threshold. In Sec. 3.4, we derive a
generalized Smoluchowski equation taking into account memory effects and make contact with
the Cattaneo model and the telegraph equation. In Sec. 3.5, we derive a stochastic model
of chemotaxis generalizing the deterministic mean field Keller-Segel model by keeping track of
fluctuations. Finally, in Sec. 4, we extend our study in phase space taking full account of the
inertia of the particles. We derive a stochastic Kramers equation and make the connection with
the diffusive and hydrodynamic models of the previous sections.
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2 The overdamped case

2.1 The smooth density distribution

We consider an overdamped system of N Brownian particles in interaction whose dynamics is
governed by the coupled stochastic equations (see Paper II):

dri
dt

= −µm2∇iU +
√

2D∗Ri(t), (1)

where µ = 1/(mξ) is the mobility (ξ denotes the friction coefficient), U(r1, ..., rN) =
∑

i<j u(|ri−
rj|) is the potential of interaction, D∗ is the diffusion coefficient and Ri(t) is a white noise such

that 〈Ri(t)〉 = 0 and 〈Rα
i (t)R

β
j (t

′)〉 = δijδαβδ(t − t′) where i = 1, ..., N refer to the particles
and α = 1, ..., d to the coordinates of space. We assume that the particles interact via a
binary potential u(|ri − rj|) depending only on the absolute distance between the particles.
As discussed in the Introduction, this stochastic model can describe self-gravitating Brownian
particles [19, 20], bacterial populations experiencing chemotaxis [22, 23, 24] (see also Sec. 3.5)
or toy models like the BMF model [18]. The N -body distribution PN(r1, ..., rN , t) is solution
of the Fokker-Planck equation

∂PN

∂t
=

N
∑

i=1

∂

∂ri
·
(

D∗

∂PN

∂ri
+ µm2PN

∂U

∂ri

)

. (2)

The stationary solution of this equation is the Gibbs canonical distribution

PN =
1

Z
e−βm2U , (3)

provided that the inverse temperature β = 1/(kBT ) is related to the mobility and the diffusion
coefficient through the Einstein relation

β =
µ

D∗

. (4)

From the Fokker-Planck equation (2), we can construct a BBGKY-like hierarchy [2]. The exact
first equation of the hierarchy is

∂P1

∂t
=

∂

∂r1
·
[

D∗

∂P1

∂r1
+ µm2(N − 1)

∫

∂u12

∂r1
P2dr2

]

. (5)

The two-body distribution function can be written as

P2(r1, r2, t) = P1(r1, t)P1(r2, t) + P ′
2(r1, r2, t), (6)

where P ′
2(r1, r2, t) is the correlation function. Let us consider a weak long-range potential of

interaction u(r12) = kũ(r12) in a proper thermodynamic limit N → +∞ in such a way that
k ∼ 1/N and V ∼ 1. Using scaling arguments, it can be shown that P ′

2 = O(1/N) except close
to a critical point (see [1, 5] for details). Therefore, if we are far from a critical point and if N
is sufficiently large, we can make the mean field approximation P2(r1, r2, t) ≃ P1(r1, t)P1(r2, t)
and we obtain

∂P1

∂t
=

∂

∂r1
·
[

D∗

∂P1

∂r1
+ µm2NP1(r, t)

∫

∂u12

∂r1
P1(r2, t)dr2

]

. (7)
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Introducing the smooth density distribution ρ(r, t) = NmP1(r, t), this equation can be rewritten
as

∂ρ

∂t
(r, t) = D∗∆ρ(r, t) + µm∇ ·

(

ρ(r, t)∇
∫

ρ(r′, t)u(r− r′)dr′
)

. (8)

It can be put in the form of a mean field Smoluchowski equation

∂ρ

∂t
= D∗∆ρ+ µm∇ · (ρ∇Φ), (9)

where Φ(r, t) is a smooth potential produced by the particles themselves

Φ(r, t) =

∫

ρ(r′, t)u(r− r′) dr′. (10)

If we introduce the mean field Boltzmann free energy functional

F = E − TS =
1

2

∫

ρΦ dr+ kBT

∫

ρ

m
ln

ρ

m
dr, (11)

we can rewrite the mean field Smoluchowski equation (9) in the form

∂ρ

∂t
= ∇ ·

[

1

ξ
ρ(r, t)∇δF

δρ

]

. (12)

This equation satisfies an H-theorem appropriate to the canonical ensemble

Ḟ =

∫

δF

δρ

∂ρ

∂t
dr =

∫

δF

δρ
∇ ·
[

1

ξ
ρ∇δF

δρ

]

dr = −
∫

1

ξ
ρ

(

∇δF

δρ

)2

dr ≤ 0. (13)

The steady solution of the mean field Smoluchowski equation (9) or (12) corresponds to a
uniform µ = δF/δρ leading to the mean field Boltzmann distribution

ρ = Ae−βmΦ, (14)

where Φ(r) is given by Eq. (10). Finally, we note that the mean field Smoluchowski equation
(8) can be written in Fourier space as

∂ρ̂

∂t
(k, t) = −D∗k

2ρ̂(k, t)− (2π)dµm

∫

k · k′ρ̂(k− k′, t)û(k′)ρ̂(k′, t)dk′. (15)

For weak long-range potentials of interaction, the mean field approximation usually provides
a good and useful description of the system as a first approach 3. We must, however, recall
its domain of validity: (i) first, it assumes that the number of particles in the system is large
(mathematically speaking it is valid in the limit N → +∞). Therefore, we can expect deviations
from mean field theory due to finite N effects. These deviations will become manifest for

3It is often advocated that long-range potentials of interaction exhibit lack of temperedness and stability.
Some potentials, like the cosine potential in the HMF model are well-behaved. By contrast, the gravitational
potential is singular and, strictly speaking, there is no statistical equilibrium state (no global maximum of
entropy in MCE and no global minimum of free energy in CE). However, there exist long-lived metastable
states (local maxima of entropy or local minima of free energy) that can be adequately described by the mean
field approximation [12]. The formation of a Dirac peak in CE, which can be viewed as the “equilibrium state”
of the system, can also be described by the mean field Smoluchowski-Poisson system [40]. By contrast, the
formation of binary stars in MCE requires going beyond the mean field approximation.

6



sufficiently large times (see discussion at the end of Sec. 2.3). (ii) Close to a critical point
T → Tc, the correlation function diverges (see [1] and Secs. 2.5 and 2.6). Typically, we expect
a scaling of the form P ′

2 ∼ N−1(T − Tc)
−1 so that the limits N → +∞ and T → Tc do not

commute (see Sec. 2.7 in [18]). Therefore, even for large N , the mean field approximation
is expected to break down close to a critical point because P ′

2 is not necessarily small (the
mean field approximation is valid for N ≫ (T −Tc)

−1, which requires larger and larger particle
numbers as T → Tc). In the two cases (i) and (ii) mentioned above, we must take fluctuations
into account and consider stochastic kinetic equations as discussed in the sequel.

2.2 The exact density distribution

The exact density distribution of the particles is expressed as a sum of Dirac distributions in
the form

ρd(r, t) = m
N
∑

i=1

δ(r− ri(t)). (16)

It was shown by Dean [41] (see also [42, 43, 44]) that the exact density field satisfies a stochastic
equation of the form

∂ρd
∂t

(r, t) = D∗∆ρd(r, t) + µm∇ ·
(

ρd(r, t)∇
∫

ρd(r
′, t)u(r− r′)dr′

)

+∇ ·
(

√

2D∗mρd(r, t)R(r, t)
)

, (17)

where R(r, t) is a Gaussian random field such that 〈R(r, t)〉 = 0 and 〈Rα(r, t)Rβ(r′, t′)〉 =
δαβδ(r− r′)δ(t− t′). Note that the noise is multiplicative [41]. Introducing the exact potential

Φd(r, t) =

∫

ρd(r
′, t)u(r− r′) dr′, (18)

the stochastic equation (17) can be rewritten as

∂ρd
∂t

= D∗∆ρd + µm∇ · (ρd∇Φd) +∇ · (
√

2D∗mρdR). (19)

For D∗ = 0 and µ 6= 0, we get the exact deterministic equation

∂ρd
∂t

= µm∇ · (ρd∇Φd). (20)

If we introduce the discrete Boltzmann free energy functional

Fd = Ed − TSd =
1

2

∫

ρdΦd dr+ kBT

∫

ρd
m

ln
ρd
m

dr, (21)

we can rewrite the stochastic equation (19) in the form

∂ρd
∂t

= ∇ ·
[

1

ξ
ρd(r, t)∇

δFd

δρd

]

+∇ ·
(
√

2kBTρd
ξ

R

)

. (22)

This equation can be viewed as a Langevin equation for the field ρd(r, t). From this equation,
it can be shown that the probability of the density distribution W [ρd, t] is governed by the
Fokker-Planck equation

∂W [ρd, t]

∂t
= −

∫

δ

δρd(r, t)

{

∇ · ρd(r, t)∇
[

D∗

δ

δρd
+ µ

δFd

δρd

]

W [ρd, t]

}

dr. (23)
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At equilibrium, we get the Boltzmann distribution W [ρd] ∝ e−β(Fd[ρd]−µ
R

ρddr) [42, 41, 43, 44].
If we average Eq. (17) over the noise, we find that the evolution of the smooth density field

ρ(r, t) = 〈ρd〉 is governed by an equation of the form

∂ρ

∂t
(r, t) = D∗∆ρ(r, t) + µm∇ ·

∫

〈ρd(r, t)ρd(r′, t)〉∇u(r− r′)dr′. (24)

Using the identity (see Appendix A):

〈ρd(r, t)ρd(r′, t)〉 = Nm2P1(r, t)δ(r− r′) +N(N − 1)m2P2(r, r
′, t), (25)

and assuming that∇u(0) = 0, we find that Eq. (24) coincides with the exact equation (5) of the
BBGKY-like hierarchy giving the evolution of the one-body distribution function. Furthermore,
if we make the mean field approximation 〈ρd(r, t)ρd(r′, t)〉 ≃ ρ(r, t)ρ(r′, t), we recover the mean
field Smoluchowski equation (9).

2.3 The coarse-grained density distribution

Equation (5) (or equivalently Eq. (24)) for the ensemble averaged density field ρ(r, t) is a
deterministic equation since we have averaged over the noise. In contrast, Eq. (17) for the
exact density field ρd(r, t) is a stochastic equation taking into account fluctuations. However,
it is not very useful in practice since the field ρd(r, t) is a sum of Dirac distributions, not a
regular function. Therefore, it is easier to directly solve the stochastic equations (1) rather than
the equivalent Eq. (17). Following [44], we can keep track of fluctuations while avoiding the
problem of δ-functions by defining a “coarse-grained” density field ρ(r, t) obtained by averaging
the exact density field on a spatio-temporal window of finite resolution. The “coarse-grained”
density field satisfies a stochastic equation of the form

∂ρ

∂t
(r, t) = D∗∆ρ(r, t) + µm∇ ·

(
∫

ρ(2)(r, r′, t)∇u(r− r′)dr′
)

+∇ ·
(

√

2D∗mρ(r, t)R(r, t)
)

. (26)

where ρ(2)(r, r′, t) is a two-body correlation function. For a weak long-range potential of interac-
tion and for a sufficiently small spatio-temporal window, we propose to make the approximation
ρ(2)(r, r′, t) ≃ ρ(r, t)ρ(r′, t). In that case, we obtain a stochastic equation of the form

∂ρ

∂t
(r, t) = D∗∆ρ(r, t) + µm∇ ·

(

ρ(r, t)

∫

ρ(r′, t)∇u(r− r′)dr′
)

+∇ ·
(

√

2D∗mρ(r, t)R(r, t)
)

. (27)

Introducing the smooth potential

Φ(r, t) =

∫

ρ(r′, t)u(r− r′) dr′, (28)

the stochastic equation (27) can be rewritten

∂ρ

∂t
= D∗∆ρ+ µm∇ · (ρ∇Φ) +∇ · (

√

2D∗mρ R). (29)

This will be called the stochastic Smoluchowski equation for the smoothed-out density field
ρ(r, t). This equation is intermediate between Eqs. (8) and (17). It keeps track of fluctuations
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while dealing with a continuous density field instead of a sum of δ-functions. This equation
will be central in the rest of the paper. We will see that it can reproduce the equilibrium
density correlation function (70) that was obtained in Paper I from the equilibrium BBGKY-
like hierarchy [1]. Therefore, it represents an improvement with respect to the mean field
Smoluchowski equation (8). We stress that this equation is physically distinct from Eq. (17).
In Appendix B, we propose an alternative derivation of Eq. (29) by using the general theory
of fluctuations exposed by Landau & Lifshitz [39].

If we introduce the coarse-grained Boltzmann free energy functional

Fc.g. = Ec.g. − TSc.g. =
1

2

∫

ρΦ dr+ kBT

∫

ρ

m
ln

ρ

m
dr, (30)

we can write the stochastic equation (29) in the form

∂ρ

∂t
= ∇ ·

[

1

ξ
ρ(r, t)∇δFc.g.

δρ

]

+∇ ·
(
√

2kBTρ

ξ
R

)

. (31)

This equation can be viewed as a Langevin equation for the field ρ(r, t). The evolution of
the probability of the density distribution W [ρ, t] is governed by a Fokker-Planck equation of
the form (23) where Fd and ρd are replaced by Fc.g. and ρ. At equilibrium, we have W [ρ] ∝
e−β(Fc.g.[ρ]−µ

R

ρdr). For N → +∞, the equilibrium distribution W [ρ] is strongly peaked around
the global minimum of Fc.g.[ρ] at fixed mass. However, the system can remain trapped in a
metastable state (local minimum of Fc.g.[ρ]) for a very long time. Let us be more precise. If
we ignore the noise term, Eq. (31) reduces to Eq. (12). In that case, the system tends to a
steady state that is a minimum (global or local) of the free energy functional Fc.g.[ρ] at fixed
mass (maxima or saddle points of free energy are linearly dynamically unstable with respect
to mean field Fokker-Planck equations [24]). If the free energy admits several local minima,
the selection of the steady state will depend on a notion of basin of attraction. Without noise,
the system remains on a minimum of free energy forever. Now, in the presence of noise, the
fluctuations can induce a dynamical phase transition from one minimum to the other. Thus,
accounting correctly for fluctuations is very important when there exists metastable states. The
probability of transition scales as e−∆F/kBT where ∆F is the barrier of free energy between two
minima. Therefore, in an infinite time, the system will explore all the minima and will spend
most time in the global minimum for which ∆F is the largest. Now, for systems with long-range
interactions, the barrier of free energy ∆F scales as N so that the probability of escape from
a local minimum is very small and behaves as e−N . Therefore, even if the global minimum is
in principle the most probable state, metastable states are highly robust in practice since their
lifetime scales like eN . They are thus fully relevant for N ≫ 1 [47]. These interesting features
(basin of attraction, dynamical phase transitions, metastability,...) would be interesting to
study in more detail in the case of systems with long-range interactions. Some results in this
direction have been reported in [45, 46, 47] in the gravitational case.

2.4 Generalized Cahn-Hilliard equations

Let us assume that u(|r− r′|) is a short-range potential of interaction and that the preceding
equation (29) remains valid (to simplify the notations, we drop the bar on the coarse-grained
fields). Setting q = r′ − r and writing

Φ(r, t) =

∫

u(q)ρ(r+ q, t)dq, (32)

9



we can Taylor expand ρ(r+ q, t) to second order in q so that

ρ(r+ q, t) = ρ(r, t) +
∑

i

∂ρ

∂xi
qi +

1

2

∑

i,j

∂2ρ

∂xi∂xj
qiqj . (33)

Substituting this expansion in Eq. (32), we obtain [48]:

Φ(r, t) = −aρ(r, t)− b

2
∆ρ(r, t), (34)

with a = −Sd

∫ +∞

0
u(q)qd−1dq and b = −1

d
Sd

∫ +∞

0
u(q)qd+1dq. Note that l = (b/a)1/2 has the

dimension of a length corresponding to the range of the interaction. Substituting Eq. (34) in
Eq. (30), we can put the free energy in the form

Fc.g.[ρ] =

∫
[

1

2
(∇ρ)2 + V (ρ)

]

dr, (35)

where V is the effective potential

V (ρ) = −a

b
ρ2 +

2kBT

mb
ρ ln ρ+ V0. (36)

In that case, Eq. (31) can be rewritten

∂ρ

∂t
= −A∇ · [ρ∇ (∆ρ− V ′(ρ))] +∇ ·

(
√

2kBTρ

ξ
R

)

, (37)

with A = b/(2ξ). Substituting Eq. (36) in Eq. (37) we explicitly obtain

ξ
∂ρ

∂t
=

kBT

m
∆ρ− a

2
∆ρ2 − b

2
∇ · (ρ∇(∆ρ)) +∇ ·

(

√

2kBTξρR
)

. (38)

Without the noise term, the steady state of Eq. (31), (37) or (38) corresponds to a uniform
µ = δF/δρ leading to

∆ρ = V ′(ρ)− µ = −2a

b
ρ+

2kBT

mb
ln ρ+

2kBT

mb
− µ. (39)

In particular, at T = 0, Eq. (38) reduces to

ξ
∂ρ

∂t
= −a

2
∆ρ2 − b

2
∇ · (ρ∇(∆ρ)), (40)

and its steady state is solution of the Helmholtz equation

∆ρ+
2a

b
ρ = −µ. (41)

Morphologically, Eq. (31) with Eq. (35), or equivalently Eq. (37), is similar to the stochastic
Cahn-Hilliard equation [49] for model B (conserved dynamics):

ξ
∂ρ

∂t
= ∆

δF

δρ
+
√

2ξkBT∇ ·R, F [ρ] =

∫
[

1

2
(∇ρ)2 + V (ρ)

]

dr, (42)

or explicitly

ξ
∂ρ

∂t
= −∆(∆ρ− V ′(ρ)) +

√

2ξkBT∇ ·R. (43)

There are, however, crucial differences between Eqs. (37) and (43). First, the presence of the
density ρ(r, t) in the deterministic current and in the noise term. Secondly, in the usual Cahn-
Hilliard problem, the potential has a double-well shape of the typical form V (ρ) = (1 − ρ2)2

leading to a phase separation while, in the present case, the potential (36) is of a different
nature.
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2.5 Theory of fluctuations

Let us return to the stochastic Smoluchowski equation (31) satisfied by the coarse-grained
density distribution that we write in the form (for convenience, we drop the bars on the coarse-
grained fields):

∂ρ

∂t
= ∇ ·

[

1

ξ

(

kBT

m
∇ρ+ ρ∇Φ

)]

+∇ ·
(
√

2kBTρ

ξ
R

)

, (44)

Φ(r, t) =

∫

ρ(r′, t)u(r− r′) dr′. (45)

We wish to study the fluctuations of the density around an infinite and homogeneous equilibrium
distribution. To that purpose, we consider small perturbations δρ(r, t) and δΦ(r, t) around the
steady state ρ(r) = ρ, Φ(r) = Φ with Φ = ρ

∫

u(x)dx. The linearized equations for the
perturbations are

ξ
∂δρ

∂t
=

kBT

m
∆δρ+ ρ∆δΦ +

√

2kBTξρ∇ ·R, (46)

δΦ(r, t) =

∫

δρ(r′, t)u(r− r′) dr′. (47)

We now decompose the perturbations in Fourier modes in the form

δρ(r, t) =

∫

δρ̂(k, ω)ei(k·r−ωt)dkdω, (48)

and similar expressions for δΦ(r, t) and R(r, t). Taking the Fourier transform of Eqs. (46) and
(47), we obtain the algebraic equations

− iξωδρ̂kω = −kBT

m
k2δρ̂kω − ρk2δΦ̂kω +

√

2kBTξρ∇ · R̂kω, (49)

δΦ̂kω = (2π)dû(k)δρ̂kω, (50)

where we have used the fact that the integral in Eq. (47) is a convolution. Solving for δρ̂kω, we
obtain

[

kBT

m
k2 + (2π)dû(k)k2ρ− iξω

]

δρ̂kω =
√

2kBTξρ ikµR̂µ
kω, (51)

where the correlations of the Fourier transform of the noise are given by

〈R̂µ
kωR̂

ν
k′ω′〉 = 1

(2π)d+1
δµνδ(k+ k′)δ(ω + ω′). (52)

Without noise (R = 0), Eq. (51) gives the dispersion relation (see Paper II) associated with
the mean field Smoluchowski equation (9), i.e.:

Z(k, ω) ≡ kBT

m
k2 + (2π)dû(k)k2ρ− iξω = 0. (53)
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The function Z(k, ω) plays a role similar to the dielectric function in plasma physics. The
perturbation evolves exponentially rapidly like δρ̂k(t) ∝ eσ(k)t with a rate given by σ(k) =
−ω2

0(k)/ξ where

ω2
0(k) ≡

kBT

m
k2 + (2π)dû(k)k2ρ. (54)

Thus, we find that the spatially homogeneous phase is stable with respect to the mean field
Smoluchowski equation (9) if ω2

0(k) > 0, i.e.

1 + (2π)dβρmû(k) > 0, (55)

for all modes k and unstable (to some modes) otherwise. If û > 0, the homogeneous phase is
always stable. Otherwise, a necessary condition of instability is that

kBT < kBTc ≡ (2π)dρm|û(k)|max. (56)

If this condition is fulfilled, the range of unstable wavenumbers is determined by

(2π)d|û(k)| > kBT

ρm
. (57)

Some explicit examples of potentials of interaction, and the corresponding conditions of insta-
bility, are given in Paper I and in [33].

Let us now determine the correlations of the fluctuations around a stable equilibrium ho-
mogeneous distribution in the presence of noise. If we take the noise into account (R 6= 0), the
Fourier transform of the density fluctuations is given by

δρ̂kω =

√
2kBTξρ ikµR̂µ

kω

Z(k, ω)
. (58)

Therefore, the correlations of the fluctuations in Fourier space are

〈δρ̂kωδρ̂k′ω′〉 = −2kBTξρk
µk

′ν〈R̂µ
kωR̂

ν
k′ω′〉

Z(k, ω)Z(k′, ω′)
. (59)

Using Eq. (52), we get

〈δρ̂kωδρ̂k′ω′〉 = 1

(2π)d+1

2kBTξρk
2

|Z(k, ω)|2 δ(k + k′)δ(ω + ω′), (60)

or, more explicitly,

〈δρ̂kωδρ̂k′ω′〉 = 1

(2π)d+1

2kBTξρk
2

[

kBT
m

k2 + (2π)dû(k)k2ρ
]2

+ ξ2ω2
δ(k+ k′)δ(ω + ω′). (61)

The temporal correlation function of the Fourier components of the density fluctuations is given
by

〈δρ̂k(t)δρ̂k′(t + τ)〉 =
∫

〈δρ̂kωδρ̂k′ω′〉eiωteiω′(t+τ)dωdω′. (62)

Using Eq. (61), the integral on ω′ is trivial and yields

〈δρ̂k(t)δρ̂k′(t + τ)〉 = 1

(2π)d+1
2kBTξρk

2δ(k + k′)

∫ +∞

−∞

dω
eiωτ

|Z(k, ω)|2 . (63)

12



The integral on ω can be performed by using the Cauchy residue theorem. The poles of the
integrand are the zeros of the functions Z(k, ω) and Z(k, ω)∗, i.e. they are solutions of the
dispersion relation (53) and its complex conjugate. If ω2

0(k) > 0, which is required for the
stability of the homogeneous phase, the integrand has a single pole in the upper-half plane at
ω = iω2

0(k)/ξ and the residue is e−ω2
0(k)τ/ξ/[2iξω2

0(k)]. Therefore, we obtain

〈δρ̂k(t)δρ̂k′(t + τ)〉 = 1

(2π)d
kBTρk

2

ω2
0(k)

δ(k+ k′)e−ω2
0
(k)τ/ξ, (64)

or, more explicitly,

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = 1

(2π)d
kBTρ

kBT
m

+ (2π)dû(k)ρ
δ(k+ k′)e

−
h

kBT

m
k2+(2π)dû(k)k2ρ

i

τ/ξ
. (65)

This formula is one of the most important results of this paper. We shall come back to its
physical interpretation in Sec. 2.6. The equal time correlation function (corresponding to
τ = 0) is given by

〈δρ̂kδρ̂k′〉 =
1

(2π)d
ρm

1 + (2π)dβρmû(k)
δ(k+ k′). (66)

In the absence of any interaction between the particles (u = 0), we get

〈δρ̂kδρ̂k′〉 =
1

(2π)d
ρmδ(k+ k′), (67)

which corresponds to the standard result [39]:

〈(δρ)2〉 = mρ

∆V
. (68)

On the other hand, using Eq. (66) and the identity (see Appendix A):

〈δρ̂kδρ̂k′〉 =
1

(2π)d
ρm
[

1 + (2π)dnĥ(k)
]

δ(k+ k′), (69)

we find that the Fourier transform of the correlation function is

ĥeq(k) =
−βm2û(k)

1 + (2π)dβnm2û(k)
. (70)

This is precisely the result (I-54) obtained in Paper I by analysing the second equation of the
equilibrium BBGKY-like hierarchy and neglecting the three-body correlation function. There-
fore, the stochastic Smoluchowski equation (44)-(45) is able to reproduce the equilibrium two-
body correlation function. On the other hand, from Eqs. (65) and (69), the Fourier transform
of the equilibrium temporal correlation function is

ĥ(k, t, t+ τ) = ĥeq(k)e
−

h

kBT

m
k2+(2π)dû(k)k2ρ

i

τ/ξ
. (71)

This can be compared to the out-of-equilibrium temporal evolution of the equal-time spatial
correlation function ĥ(k, t) given by Eq. (II-165) of Paper II. Note that the condition of stability
(55) is implied by Eq. (65), Eq. (71), Eq. (II-165) and Eq. (66). This completes the discussion
given in Sec. 4.2 of Paper I.
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2.6 Specific examples

The physical content of formula (64) is very instructive. First, we note that the temporal cor-
relation function of the Fourier components of the density fluctuations decreases exponentially
rapidly with a decay rate σ(k) = −ω2

0(k)/ξ that coincides with the decay rate of a perturbation
of the density governed by the deterministic mean field Smoluchowski equation (9), i.e. without
noise 4. According to this temporal factor, or according to the mean field theory based on the
Smoluchowski equation (9), the modes satisfying the inequality ω2

0(k) ≥ 0 should be stable.
For T ≤ Tc, the threshold of instability corresponds to the wavenumber(s) k = km where km is
defined by ω2

0(km) = 0. Now, we note that the amplitude of the fluctuations in formula (64)
behaves like ω2

0(k)
−1, so that it diverges as we approach the instability threshold k → km. On

the other hand, if we denote by k∗
m the value of the critical wavenumber at T = Tc satisfying

1 + (2π)dβcρmû(k∗
m) = 0 and if we consider the mode k = k∗

m in Eq. (65), we get for T ≥ Tc:

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = 1

(2π)d
Tρm

T − Tc

δ(k+ k′)e−kB(T−Tc)(k∗m)2τ/(ξm). (72)

This formula clearly shows that the correlation function diverges at the critical point T = Tc for
the “dangerous”mode k = k∗

m. These results imply that the mean field approximation breaks
down close to the critical point (or close to the instability threshold) and that the instability
triggering the phase transition can occur sooner than what is predicted by mean field theory
(i.e. from the stability analysis of the mean field Smoluchowski equation). Some results in this
direction have been reported in [45, 46, 47] in the gravitational case.

Let us consider specific examples for illustration (we use the notations of Paper I). For
the BMF model (the Brownian version of the HMF model) [18], there exists a critical tem-
perature Tc = kM/(4π). Considering the linear dynamical stability of a spatially homoge-
neous distribution with respect to the mean field Smoluchowski equation (196), we find that
ω2
0(n) = Tn2+2πûnρn

2 where ûn is given by Eq. (198). The modes n 6= ±1 decay exponentially
rapidly as e−Tn2t/ξ so they are always stable. By contrast, the modes n = ±1 evolve in time
like e−(T−Tc)t/ξ. For T > Tc, the perturbation is damped and for T < Tc the perturbation has
exponential growth. In that case, the homogeneous phase is unstable to the n = ±1 modes (see
Appendix C). According to formula (64), the correlation function of the density fluctuations
can be written for the stable modes n 6= ±1:

〈δρ̂n(t)δρ̂m(t+ τ)〉 = M

4π2n2
e−Tn2τ/ξδn,−m, (73)

and for the “dangerous modes” n = ±1:

〈δρ̂±1(t)δρ̂m(t+ τ)〉 = M

4π2

T

T − Tc

e−(T−Tc)τ/ξδm,∓1. (74)

This simple toy model, where the potential of interaction is restricted to one Fourier mode,
is very interesting for pedagogical purposes because it clearly illustrates the discussion given
above. Considering the temporal factor in Eq. (74), we see that the correlations decay for T >
Tc with the rate given by mean field theory. However, as we approach the critical temperature
from above (T → T+

c ), the amplitude of the fluctuations diverges like (T −Tc)
−1 implying that

4Similarly, in Sec. 2.9 of Paper II, we noted that, for Hamiltonian systems with long-range interactions,
the Fourier modes of the temporal correlation function of the force decay exponentially rapidly with a decay
rate that coincides with the decay rate of a perturbation of the distribution function governed by the Vlasov
equation.
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the mean field approximation breaks down 5 and that the phase transition should occur for T
strictly above Tc. We had also reached this conclusion in [18] from the study of the equilibrium
BBGKY-like hierarchy.

Let us now consider the attractive Yukawa potential [1]. A detailed stability analysis of
the homogeneous phase with respect to the mean field Smoluchowski equation (and general-
izations) has been performed in [33]. There exists a critical temperature kBTc = SdGρm/k2

0

depending on the screening length k−1
0 . Furthermore, in the linear regime, the perturbation

evolves exponentially rapidly as δρ̂k(t) ∝ eσ(k)t with a rate

σ(k) = −ω2
0(k)

ξ
=

kBT

mξ

k2

k2 + k2
0

[k2
0(Tc/T − 1)− k2]. (75)

For T > Tc, the homogeneous phase is always stable and for T < Tc it is unstable to wavenum-
bers k < km(T ) ≡ k0(Tc/T − 1)1/2. Taking into account the fluctuations, formula (64) shows
that the correlation function of the density fluctuations is

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = ρm

(2π)d
k2 + k2

0

k2 + k2
0(1− Tc/T )

δ(k+ k′)e
−

kBT

m
k2

k2+k2
0

[k2+k20(1−Tc/T )] τ
ξ . (76)

Considering the mode k = k∗
m = 0, we see that the correlation function diverges like (1−Tc/T )

−1

as we approach the critical temperature T → T+
c . On the other hand, for T < Tc, we see that

the amplitude diverges like (k2 − k2
m)

−1 as we approach the critical wavenumber k → k+
m(T ).

This is particularly true for the gravitational interaction (k0 = 0) for which Eq. (76) reduces
to

〈δρ̂k(t)δρ̂k′(t + τ)〉 = ρm

(2π)d
k2

k2 − k2
J

δ(k+ k′)e−
kBT

m
(k2−k2

J
) τ
ξ , (77)

where kJ = (SdGmβρ)1/2 is the Jeans wavenumber. According to the standard Jeans analysis
[26], the homogeneous phase is stable against perturbations with wavenumbers k > kJ and it
becomes unstable for k ≤ kJ . However, the divergence of the correlation function as k → k+

J

suggests that the gravitational instability will take place sooner, i.e. for smaller wavelengths
than the Jeans length. This conclusion was previously reached by Monaghan [45] on the basis
of a hydrodynamical model of self-gravitating system incorporating viscosity and fluctuations.

3 The inertial model

In this section, we generalise the previous results to the case of a stochastic model taking into
account inertial effects. This corresponds to the damped Euler equations with a long-range
potential of interaction and a stochastic forcing. This generalization allows us to study the
correlations of the fluctuations of the velocity field and their behaviour close to the critical
point. The stochastic Smoluchowski equation (44)-(45) is recovered in a strong friction limit
ξ → +∞ by neglecting the inertial term (l.h.s.) in Eq. (79). The stochastic damped Euler
equations can find applications in certain biological models of chemotaxis where inertial effects
are relevant [50, 51, 23] (see also Sec. 3.5).

3.1 The density correlations

We consider the stochastic damped Euler equations

∂ρ

∂t
+∇ · (ρu) = 0, (78)

5This implies that the limits N → +∞ (mean field) and T → Tc do not commute.
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ρ

[

∂u

∂t
+ (u · ∇)u

]

= −kBT

m
∇ρ− ρ∇Φ− ξρu−

√

2kBTξρR(r, t), (79)

Φ(r, t) =

∫

u(r− r′)ρ(r′, t) dr′, (80)

where the quantities have their usual meaning. Without the stochastic term (R = 0), we recover
the damped Euler equations introduced in [52] (see also [20, 23, 33, 24]). With the stochastic
term, we obtain a more general model taking into account fluctuations. The form of the noise is
justified in Appendix B using the general theory of fluctuations of Landau & Lifshitz [39]. For
ξ = 0, we get the usual Euler equations and for ξ → +∞, neglecting the inertial term (l.h.s.) in
Eq. (79) and substituting the resulting expression ξρu ≃ −(kBT/m)∇ρ−ρ∇Φ−

√
2kBTξρR in

the continuity equation (78), we recover the stochastic Smoluchowski equation (44)-(45). Note
that Eq. (79) can be written in terms of the free energy (11) as

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −ρ∇δF

δρ
− ξρu−

√

2kBTξρR(r, t). (81)

Considering small perturbations around a uniform distribution with ρ(r) = ρ, Φ(r) = Φ
and u = 0, we find that the linearized equations for the perturbations are

∂δρ

∂t
+ ρ∇ · u = 0, (82)

ρ
∂u

∂t
= −kBT

m
∇δρ− ρ∇δΦ− ξρu−

√

2kBTξρR(r, t), (83)

δΦ(r, t) =

∫

u(r− r′)δρ(r′, t) dr′. (84)

They can be combined to give

∂2δρ

∂t2
+ ξ

∂δρ

∂t
=

kBT

m
∆δρ+ ρ∆δΦ +

√

2kBTξρ∇ ·R. (85)

If we decompose the perturbations in Fourier modes of the form ei(k·r−ωt), we obtain the system
of algebraic equations

− iωδρ̂kω + iρk · ûkω = 0, (86)

− iωρûkω = −kBT

m
ikδρ̂kω − ikρδΦ̂kω − ξρûkω −

√

2kBTξρ R̂kω, (87)

δΦ̂kω = (2π)dû(k)δρ̂kω. (88)

Solving for the density perturbation, we get

[

kBT

m
k2 + (2π)dû(k)ρk2 − ω(ω + iξ)

]

δρ̂kω =
√

2kBTξρ ikµR̂µ
kω. (89)
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Without noise (R = 0), Eq. (89) gives the dispersion relation associated with the mean field
damped Euler equation [20], i.e.

Z(k, ω) ≡ kBT

m
k2 + (2π)dû(k)ρk2 − ω(ω + iξ) = 0. (90)

Using the definition (54), the dispersion relation can be rewritten

ω2 + iξω − ω2
0(k) = 0, (91)

with solutions

ω(k) =
−iξ ±

√

−ξ2 + 4ω2
0(k)

2
≡ −i

ξ

2
± Ω(k). (92)

The perturbation evolves in time as e−iω(k)t. If ω2
0(k) < 0, the perturbation grows exponentially

rapidly in time with a rate [−ξ +
√

ξ2 + 4|ω2
0|]/2. If ω2

0(k) > ξ2/4, the perturbation decays

exponentially rapidly in time with a rate −ξ/2 and oscillates with a pulsation
√

4ω2
0 − ξ2/2.

If 0 < ω2
0(k) < ξ2/4, the perturbation decays exponentially rapidly in time with a rate [−ξ +

√

ξ2 − 4ω2
0]/2 without oscillating. Therefore, according to mean field theory, the system is

stable iff ω2
0(k) > 0 for all k. This returns the condition (55) studied in Sec. 2.5. For T < Tc,

the onset of instability corresponds to the wavenumber(s) km such that ω0(km) = 0.
We now consider stable modes (ω2

0(k) > 0) and study the correlations of the density fluc-
tuations in the presence of noise. Repeating the steps of Sec. 2.5 going from Eq. (58) to Eq.
(63), the density correlation function can be written

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = 1

(2π)d+1
2kBTξρk

2I(k, τ)δ(k+ k′), (93)

where I(k, τ) is the integral

I =

∫ +∞

−∞

f(ω)eiωτdω, f(ω) =
1

|Z(k, ω)|2 . (94)

We can evaluate the integral with the Cauchy residue theorem. The poles of f(ω) are the zeros
of the functions Z(k, ω) and Z(k, ω)∗, i.e. they are solutions of the dispersion relation (91) and
its complex conjugate. If ω2

0(k) > 0, the function f(ω) has two simple poles in the upper-half
plane at ω = iξ/2 + Ω and ω = iξ/2 − Ω. The residues of f(ω)eiωτ at ω = iξ/2 + Ω and at
ω = iξ/2− Ω are

e−
ξ

2
τeiΩτ

iξ(iξ + 2Ω)(2Ω)
,

e−
ξ

2
τe−iΩτ

(iξ − 2Ω)iξ(−2Ω)
. (95)

Using the Cauchy residue theorem, and recalling that

Ω2 = ω2
0 −

1

4
ξ2, (96)

we obtain after simplification

I =
π

ξω2
0

e−
ξ

2
τ

[

cos(Ωτ) +
ξ

2Ω
sin(Ωτ)

]

, (97)
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where Ω can be complex. In conclusion, the density correlation function for the inertial model
is

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = 1

(2π)d
kBTρk

2

ω2
0(k)

e−
ξ

2
τ

[

cos(Ωτ) +
ξ

2Ω
sin(Ωτ)

]

δ(k + k′). (98)

The interpretation of this formula is similar to the one given in Sec. 2.6. In particular, we see
that the amplitude of the fluctuations diverges when k → km, corresponding to ω2

0(k) → 0.
Thus, instability should set in slightly before we reach the range of unstable wavenumbers
(57). In particular, the amplitude diverges at the critical point T → T+

c for the “dangerous”
wavenumber k∗

m. For ξ → 0 (Euler), we can make the approximation Ω ≃ ω0, and we obtain

〈δρ̂k(t)δρ̂k′(t+ τ)〉 = 1

(2π)d
kBTρk

2

ω2
0(k)

e−
ξ

2
τ cos(ω0τ)δ(k + k′). (99)

For ξ → +∞ (Smoluchowski), we can make the approximations

Ω ≃ ξ

2
i

(

1− 2ω2
0

ξ2

)

, e−
ξ

2
τ cos(Ωτ) ≃ 1

2
e−

ω2
0
ξ
τ , e−

ξ

2
τ sin(Ωτ) ≃ − 1

2i
e−

ω2
0
ξ
τ , (100)

and we recover the result of Eq. (64) obtained in the overdamped limit.

3.2 The velocity correlations

Let us now turn to the correlations of the velocity fluctuations. From Eq. (87), the Fourier
components of the velocity fluctuations satisfy the relation

ρ(ξ − iω)ûkω = −ω2
0

k2
ikδρ̂kω −

√

2kBTξρ R̂kω. (101)

Therefore, the velocity correlations can be expressed as

ρ2(ξ − iω)(ξ − iω′) 〈ûµ
kωû

ν
k′ω′〉 = − ω4

0

k2k′2
kµk

′ν 〈δρ̂kωδρ̂k′ω′〉+ 2kBTξρ〈R̂µ
kωR̂

ν
k′ω′〉

+
ω2
0

k2
ikµ
√

2kBTξρ〈δρ̂kωR̂ν
k′ω′〉+ ω

′2
0

k′2
ik

′ν
√

2kBTξρ〈δρ̂k′ω′R̂µ
kω〉. (102)

Using the relation

δρ̂kω =
i
√
2kBTξρk

αR̂α
kω

Z(k, ω)
, (103)

and Eq. (52), we get

ρ2(ξ2 + ω2) 〈ûµ
kωû

ν
k′ω′〉 = −2kBTξρ

ω4
0

k4

kµkν

|Z(k, ω)|2k
αkβ〈R̂α

kωR̂
β
k′ω′〉+ 2kBTξρ〈R̂µ

kωR̂
ν
k′ω′〉

−2kBTξρ
ω2
0

k2

kµkα

Z(k, ω)
〈R̂α

kωR̂
ν
k′ω′〉 − 2kBTξρ

ω2
0

k2

kνkα

Z(k, ω)∗
〈R̂α

k′ωR̂
µ
kω〉, (104)

or, more explicitly,

ρ2(ξ2 + ω2) 〈ûµ
kωû

ν
k′ω′〉 = 1

(2π)d+1
2kBTξρδ(k+ k′)δ(ω + ω′)

×
{

−ω4
0

k2

kµkν

|Z(k, ω)|2 + δµν − ω2
0

k2

kµkν

Z(k, ω)
− ω2

0

k2

kµkν

Z(k, ω)∗

}

. (105)
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Finally, using the identity

1

Z(k, ω)
+

1

Z(k, ω)∗
=

2Re(Z)

|Z(k, ω)|2 =
2(ω2

0 − ω2)

|Z(k, ω)|2 , (106)

the foregoing relation can be rewritten

〈ûµ
kωû

ν
k′ω′〉 = 1

(2π)d+1

2kBTξ

ρ

1

ξ2 + ω2
δ(k+ k′)δ(ω + ω′)

×
{

−3ω4
0

k2

kµkν

|Z(k, ω)|2 +
2ω2

0ω
2

k2

kµkν

|Z(k, ω)|2 + δµν
}

. (107)

Taking the inverse Fourier transform in ω-space of this relation, we find that the temporal
correlations of the velocity fluctuations are given by

〈ûµ
k(t)û

ν
k′(t+ τ)〉 = 1

(2π)d+1

2kBTξ

ρ
δ(k+ k′)

{

−3ω4
0

kµkν

k2
K + 2ω2

0

kµkν

k2
K ′ +K ′′δµν

}

, (108)

where we have introduced the integrals

K =

∫ +∞

−∞

dω
eiωτ

(ξ2 + ω2)|Z(k, ω)|2 , K ′ =

∫ +∞

−∞

dω
ω2eiωτ

(ξ2 + ω2)|Z(k, ω)|2 , (109)

K ′′ =

∫ +∞

−∞

dω
eiωτ

ξ2 + ω2
. (110)

These integrals are easily calculated with the Cauchy residue theorem. After simplification, we
obtain

〈ûµ
k(t)û

ν
k′(t+ τ)〉 = 1

(2π)d
kBT

ρ
δ(k + k′)

{

ω2
0

kµkν

k2

1

ω2
0 + 2ξ2

e−
ξ

2
τ

[(

2ξ2

ω2
0

− 1

)

cos(Ωτ)

− ξ

Ω

(

7

2
+

ξ2

ω2
0

)

sin(Ωτ)−
(

3 +
2ξ2

ω2
0

)

e−
ξ

2
τ

]

+ e−ξτδµν
}

. (111)

We note that, at variance with the density correlation function (98), the velocity correlation
function does not diverge when k → km. Indeed, for ω

2
0 = 0, we have

〈ûµ
k(t)û

ν
k′(t + τ)〉 = 1

(2π)d
kBT

ρ
e−ξτδ(k+ k′)δµν . (112)

On the other hand, taking τ = 0 in Eq. (111), we obtain the equal time velocity correlation
function

〈ûµ
k(t)û

ν
k′(t)〉 =

1

(2π)d
kBT

ρ
δ(k+ k′)

(

δµν − 4ω2
0

ω2
0 + 2ξ2

kµkν

k2

)

. (113)

Contracting the indices, we get

〈ûk(t) · ûk′(t)〉 =
1

(2π)d
kBT

ρ
δ(k+ k′)

2dξ2 − (4− d)ω2
0

ω2
0 + 2ξ2

. (114)

For ξ → 0 (Euler), Eq. (111) can be simplified into

〈ûµ
k(t)û

ν
k′(t + τ)〉 = 1

(2π)d
kBT

ρ
δ(k+ k′)

{

−kµkν

k2
e−

ξ
2
τ
[

cos(ω0τ) + 3e−
ξ
2
τ
]

+ e−ξτδµν
}

. (115)
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Alternatively, for ξ → +∞ (Smoluchowski), we get

〈ûµ
k(t)û

ν
k′(t+ τ)〉 = − 1

(2π)d
3kBT

ρ
δ(k+ k′)

ω2
0

ξ2
kµkν

k2
e−

ω2
0
ξ
τ . (116)

This result can be obtained directly from the study of the stochastic Smoluchowski equation in
Sec. 2.5 by defining the velocity field

ξρu ≡ −kBT

m
∇ρ− ρ∇Φ−

√

2kBTξρR. (117)

Note that the velocity correlations in Eq. (116) tend to zero when k → km contrary to Eq.
(112). This shows that the limits ξ → +∞ and k → km do not commute.

3.3 Specific examples

Let us discuss specific examples by restricting ourselves, for brevity, to the overdamped limit
(116). For the stochastic BMF model, we get for the stable modes n 6= ±1:

〈ûn(t)ûm(t+ τ)〉 = −3T 2n2

Mξ2
δm,−ne

−Tn2τ/ξ, (118)

and for the “dangerous” modes n = ±1:

〈û±1(t)ûm(t+ τ)〉 = − 3T

Mξ2
δm,∓1(T − Tc)e

−(T−Tc)τ/ξ. (119)

The velocity correlations tend to zero when T → T+
c . For the attractive Yukawa potential, we

get

〈ûµ
k(t)û

ν
k′(t+ τ)〉 = − 3(kBT )

2

(2π)dξ2ρm

k2 + k2
0(1− Tc/T )

k2 + k2
0

kµkνe
−

kBT

m
k2

k2+k2
0

[k2+k2
0
(1−Tc/T )] τ

ξ δ(k+ k′).

(120)

For T ≤ Tc, the amplitude tends to zero as we approach the critical wavenumber k → k+
m(T ).

For the gravitational interaction (k0 = 0), Eq. (120) reduces to

〈ûµ
k(t)û

ν
k′(t+ τ)〉 = − 3(kBT )

2

(2π)dξ2ρm
(k2 − k2

J)
kµkν

k2
e−

kBT

m
(k2−k2

J
) τ
ξ δ(k+ k′). (121)

The amplitude goes to zero as k → k+
J . The fact that the velocity correlation function does

not diverge when k → k+
J was previously observed by Monaghan [45] with his hydrodynamic

model.

3.4 Stochastic model with memory

The stochastic damped Euler equations (78)-(79) can be rewritten

∂ρ

∂t
+∇ · (ρu) = 0, (122)

∂

∂t
(ρu) +∇(ρu⊗ u) = −kBT

m
∇ρ− ρ∇Φ− ξρu−

√

2kBTξρR(r, t). (123)
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If we neglect the inertial term (l.h.s.) in Eq. (123) and substitute the resulting expression for
ρu in Eq. (122), we obtain the stochastic Smoluchowski equation (44). This is valid in a strong
friction limit ξ → +∞. We can obtain a more general model taking into account some memory
effects. If we neglect only the nonlinear term ∇(ρu⊗ u) in Eq. (123), we get

∂

∂t
(ρu) = −kBT

m
∇ρ− ρ∇Φ− ξρu−

√

2kBTξρR(r, t). (124)

Taking the time derivative of Eq. (122) and substituting Eq. (124) in the resulting expression,
we obtain a simplified stochastic model keeping track of memory effects

∂2ρ

∂t2
+ ξ

∂ρ

∂t
= ∇ ·

(

kBT

m
∇ρ+ ρ∇Φ

)

+∇ ·
(

√

2kBTξρR
)

. (125)

In terms of the free energy (11), we have

∂2ρ

∂t2
+ ξ

∂ρ

∂t
= ∇ ·

(

ρ∇δF

δρ

)

+∇ ·
(

√

2kBTξρR
)

. (126)

This equation, which is second order in time, is analogous to the telegraph equation which
generalizes the diffusion equation by introducing memory effects. We note that in the linear
regime |u| ≪ 1 considered in Sec. 3, the nonlinear term ∇(ρu⊗u) in Eq. (123) is negligible so
that Eq. (125) can be justified rigorously from the damped Euler equations in this regime. This
implies that the theory of fluctuations that we have developed in Sec. 3 directly applies to the
stochastic equation (125). In particular, the linearization of Eq. (125) around a homogeneous
distribution returns Eq. (85). However, the stochastic Smoluchowski equation with memory
(125) may also be relevant in the nonlinear regime as a heuristic equation. Indeed, although we
have neglected the nonlinear term ∇(ρu⊗u) in Eq. (123), we have kept the full nonlinearities
in the right hand side. Therefore, Eq. (125) is a semi-linear model intermediate between the
fully nonlinear hydrodynamical model (122)-(123) and the linearized hydrodynamical model
(85).

Finally, we note that Eq. (126) can be viewed as a form of stochastic Cattaneo model. The
deterministic Smoluchowski equation can be written as a continuity equation ∂tρ = −∇·J where
the current J = −(1/ξ)ρ∇µ is proportional to the gradient of a chemical potential µ = δF/δρ
[24]. This is similar to Fick’s law for the diffusion of particles or to Fourier’s law for the
diffusion of heat. In the context of heat conduction, Cattaneo [53] has proposed a modification
of Fourier’s law in order to describe heat conduction with finite speed. He assumed that the
current is not instantaneously equal to the gradient ∇µ but relaxes to it with a time constant
1/τ . In the present situation, this would lead to a model of the form

∂ρ

∂t
+∇ · J = 0, (127)

τ
∂J

∂t
+ J = −1

ξ
ρ∇δF

δρ
−
√

2kBTρ

ξ
R, (128)

where we have included the stochastic term for completeness. These equations are equivalent
to the semi-linear model formed by Eqs. (122) and (124) if we set J = ρu and τ = 1/ξ. For
τ = 0, we recover the stochastic Smoluchowski equation (31). More generally, taking the time
derivative of Eq. (127) and using Eq. (128), we obtain

τ
∂2ρ

∂t2
+

∂ρ

∂t
= ∇ ·

(

1

ξ
ρ∇δF

δρ

)

+∇ ·
(
√

2kBTρ

ξ
R

)

, (129)

which coincides with Eq. (126) provided that we take τ = 1/ξ.
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3.5 Application to chemotaxis

In this section, we briefly mention the application of the preceding results to the problem of
chemotaxis in biology [54]. A more detailed discussion is given in a specific paper [55] with
complements and amplification. The standard Keller-Segel (KS) model [21] of chemotaxis can
be viewed as a form of mean field Smoluchowski equation [24]. It describes the diffusion of
bacteria (or other chemotactic species) in the concentration gradient of a chemical produced by
the particles themselves. As we have seen in this paper, the correlation function diverges close
to a critical point. In that case, the mean field approximation breaks down and the fluctuations
must be taken into account. Fluctuations also play an important role when the particle number
N is small and when there exist metastable states (local minima of free energy). In that case,
fluctuations can trigger dynamical phase transitions from one state to the other (see Sec. 2.3).
For these different reasons, it is important to derive a chemotactic model going beyond the
mean field approximation and taking into account fluctuations.

We start from a microscopic model of chemotaxis where the dynamics of the particles is
governed by N coupled stochastic equations of the form

dri
dt

= χ∇cd(ri(t), t) +
√

2D∗Ri(t), (130)

∂cd
∂t

= −kcd +Dc∆cd + h

N
∑

i=1

δ(r− ri(t)), (131)

where ri(t), with i = 1, ..., N , denote the positions of the particles and cd(r, t) is the exact field
of secreted chemical. In these equations, χ and D∗ represent the mobility and the diffusion
coefficient of the organisms and k, h and Dc represent the degradation rate, the production
rate and the diffusion coefficient of the secreted chemical. By extending Dean’s approach (and
the results of Sec. 2.3) to the case of chemotactic species, we obtain a stochastic Keller-Segel
model of chemotaxis:

∂ρ

∂t
(r, t) = D∗∆ρ(r, t)− χ∇ · (ρ(r, t)∇c(r, t)) +∇ ·

(

√

2D∗ρ(r, t)R(r, t)
)

, (132)

∂c

∂t
(r, t) = −kc(r, t) +Dc∆c(r, t) + hρ(r, t), (133)

generalizing the deterministic mean field Keller-Segel model. This model fully takes into account
the effect of fluctuations 6. On the other hand, there exists situations in biology where inertial
effects must be taken into account [50]. In that case, parabolic models like the Keller-Segel
model must be replaced by hyperbolic models similar to hydrodynamic equations [50, 51, 23].
By extending the results of Sec. 3, we obtain a hydrodynamic model of chemotaxis taking into
account inertial effects and fluctuations in the form:

∂ρ

∂t
+∇ · (ρu) = 0, (134)

6Note added: Until now, fluctuations have been ignored by people working on chemotaxis. Therefore, our
paper is the first attempt to include fluctuations in the Keller-Segel model. However, after submission of this
paper [arXiv:0803.0263], a paper by Tailleur & Cates [arXiv:0803.1069] came out on a related subject. These
authors also consider the effect of fluctuations in the motion of bacteria. They derive transport coefficients
from microscopic models but do not take into account the long-range interaction between bacteria due to
chemotaxis. Alternatively, in our approach, the coefficients D∗ and χ appearing in the Langevin equations
are phenomenological coefficients but chemotaxis is fully taken into account. Therefore, these two independent
studies are complementary to each other.
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∂

∂t
(ρu) +∇(ρu⊗ u) = −ξD∗∇ρ+ ρ∇c− ξρu−

√

2D∗ξ2ρR(r, t), (135)

coupled to the field equation (133). In the strong friction limit ξ → +∞ where the inertial
term in Eq. (135) can be neglected, it returns the stochastic KS model (132) with χ = 1/ξ. On
the other hand, if we only neglect the term ∇(ρu⊗ u) in Eq. (135) like in Sec. 3.4, we obtain
a stochastic equation of the form

χ
∂2ρ

∂t2
+

∂ρ

∂t
= ∇ · (D∗∇ρ− χρ∇c) +∇ ·

(

√

2D∗ρR
)

, (136)

It can be viewed as a stochastic Cattaneo model of chemotaxis (or a stochastic telegraph
equation).

4 The stochastic Kramers equation

In this section, we generalize the results of Secs. 2.1-2.3 in phase space. This is the rigorous
way to take into account inertial effects and fluctuations in the problem. The motion of the
Brownian particles is described by N coupled stochastic Langevin equations of the form (see
Paper I):

dri
dt

= vi, (137)

dvi

dt
= −ξvi −m∇iU(r1, ..., rN) +

√
2DRi(t). (138)

The friction coefficient ξ and the diffusion coefficient D are related to each other by the Einstein
relation ξ = Dβm where β = 1/(kBT ) is the inverse temperature [1]. In the strong friction
limit ξ → +∞, we can neglect the inertial term in Eq. (138) and we obtain the overdamped
equations (1) of Sec. 2.1 with µ = 1/(ξm) and D∗ = D/ξ2.

Extending Dean’s approach [41] in phase space, we find that the exact distribution function
fd(r,v, t) = m

∑N
i=1 δ(r−ri(t))δ(v−vi(t)) expressed in terms of δ-functions satisfies a stochastic

equation of the form

∂fd
∂t

+ v · ∂fd
∂r

−∇Φd ·
∂fd
∂v

=
∂

∂v
·
(

D
∂fd
∂v

+ ξfdv

)

+
∂

∂v
· (
√

2DmfdQ(r,v, t)), (139)

whereQ(r,v, t) is a Gaussian random field such that 〈Q(r,v, t)〉 = 0 and 〈Qα(r,v, t)Qβ(r
′,v′, t′)〉

= δαβδ(r− r′)δ(v−v′)δ(t− t′) and Φd(r, t) is defined by Eq. (18). If we average over the noise,
we obtain

∂f

∂t
+ v · ∂f

∂r
− ∂

∂v
·
∫

dr′dv′[∇u(r− r′)]〈fd(r,v, t)fd(r′,v′, t)〉 = ∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

. (140)

Using f = NmP1 and the identity

〈fd(r,v, t)fd(r′,v′, t)〉 = Nm2P1(r,v, t)δ(r− r′)δ(v− v′) +N(N − 1)m2P2(r,v, r
′,v′, t),(141)

we find that Eq. (140) is equivalent to Eq. (II-139) obtained from the BBGKY-like hierarchy.
If we implement a mean field approximation 〈fd(r,v, t)fd(r′,v′, t)〉 ≃ f(r,v, t)f(r′,v′, t), we
obtain the mean field Kramers equation [2]:

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

, (142)
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where Φ(r, t) is defined by Eq. (10). Finally, we can heuristically propose a stochastic kinetic
equation for the evolution of the coarse-grained distribution function f(r,v, t) obtained by
averaging fd(r,v, t) over a small spatio-temporal window. This leads to the stochastic Kramers
equation

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
=

∂

∂v
·
(

D
∂f

∂v
+ ξfv

)

+
∂

∂v
· (
√

2DmfQ(r,v, t)), (143)

where Φ(r, t) is defined by Eq. (28). This equation keeps track of fluctuations but applies
to a continuous distribution function instead of a sum of Dirac distributions. An altnernative
derivation of this equation is proposed in Appendix B using the general theory of fluctuations
of Landau & Lifshitz [39].

Let us now try to make the link with the parabolic and hydrodynamic models considered in
Secs. 2 and 3. Taking the hydrodynamic moments on the stochastic Kramers equation (139)
and proceeding as in [52, 20], we obtain

∂ρ

∂t
+∇ · (ρu) = 0, (144)

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= −∂Pij

∂xj
− ρ

∂Φ

∂xi
− ξρui −

∫

√

2DmfQidv, (145)

where ρ(r, t) =
∫

fdv is the density, u(r, t) = (1/ρ)
∫

fvdv is the local velocity, w = v −
u(r, t) is the relative velocity and Pij =

∫

fwiwjdv is the pressure tensor. Defining g(r, t) =
∫ √

2DmfQdv, it is clear that g is a Gaussian noise and that its correlation function is

〈gi(r, t)gj(r′, t′)〉 = 2Dm

∫

√

f(r,v, t)f(r′,v′, t′)〈Qi(r,v, t)Qj(r
′,v′, t′)〉dvdv′

= 2Dmδijδ(r− r′)δ(t− t′)

∫

f(r,v, t)dv = 2Dmδijδ(r− r′)δ(t− t′)ρ(r, t). (146)

Therefore, the equation for the momentum (145) can be rewritten

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= −∂Pij

∂xj
− ρ

∂Φ

∂xi
− ξρui −

√

2DmρRi(r, t). (147)

This equation is not closed since the pressure tensor depends on the next order moment of
the velocity. If, following [52, 20], we make a local thermodynamic equilibrium (L.T.E.) ap-
proximation fLTE(r,v, t) ≃ (βm/2π)d/2ρ(r, t)e−βmw2/2 to compute the pressure tensor, we find
that Pij ≃ (kBT/m)ρδij . In that case, Eqs. (144) and (147) yield the stochastic damped Euler
equations (78)-(79). We recall, however, that there is no rigorous justification for this local ther-
modynamic equilibrium approximation. Therefore, it does not appear possible to rigorously
derive the damped Euler equations (78)-(79) from the Kramers equation (143). Alternatively,
if we consider the strong friction limit ξ → +∞ for fixed β, leading to D = ξ/(βm) → +∞, the
first term in the r.h.s. of Eq. (139) implies that f(r,v, t) ≃ (βm/2π)d/2ρ(r, t)e−βmv2/2+O(1/ξ),
u = O(1/ξ) and Pij = (kBT/m)ρδij +O(1/ξ). To leading order in 1/ξ, Eq. (147) becomes

ρu ≃ −1

ξ

(

kBT

m
∇ρ+ ρ∇Φ +

√

2DmρR(r, t)

)

. (148)

Inserting Eq. (148) in the continuity equation (144) and defining µ = 1/(ξm) and D∗ = D/ξ2 =
kBT/(ξm), we obtain the stochastic Smoluchowski equation (29). This equation can thus be
derived from Eq. (143) in the limit ξ → +∞.
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5 Conclusion

In this paper, we have developed a theory of fluctuations for a system of Brownian particles
with weak long-range interactions. Starting from the stochastic Smoluchowski equation (44)-
(45), justified in Appendix B from the Landau & Lifshitz general theory, we have obtained
a simple formula (65) for the temporal correlation function of the Fourier components of the
density fluctuations at equilibrium (for an infinite and homogeneous distribution). This formula
shows that the correlations decay in time with the same damping rate as the one obtained from
the study of the normal modes of the deterministic Smoluchowski equation (9), without noise.
Furthermore, the amplitude of the correlation function diverges at the critical point Tc (or
at the instability threshold k = km) leading to a failure of the mean field approximation in
that case. As a result, the limits N → +∞ and T → Tc do not commute and the instability
occurs strictly before the critical point as discussed in [45, 46, 47] for gravitational systems. In
future works, we shall extend this theory of fluctuations to more general models. Indeed, the
method developed in this paper can be generalized to any type of kinetic equations including
fluctuations. In particular, the structure of formula (63) where Z(k, ω) is a sort of “dielectric
function” obtained from the linearized kinetic equation without noise, has a general scope.

A Correlation functions

Considering the correlation function of the exact density field (16), and introducing the one
and two-body distributions, we find that

〈ρd(r)ρd(r′)〉 = 〈m2
∑

i,j

δ(r− ri)δ(r
′ − rj)〉 = 〈m2

N
∑

i=1

δ(r− ri)δ(r
′ − r)〉

+〈m2
∑

i 6=j

δ(r− ri)δ(r
′ − rj)〉 = Nm2P1(r)δ(r− r′) +N(N − 1)m2P2(r, r

′). (149)

Denoting by ρ(r) = 〈ρ(r)〉 = NmP1(r) the equilibrium averaged distribution and introducing
the fluctuations δρ(r) = ρd(r)− ρ(r), we get

〈δρ(r)δρ(r′)〉 = 〈ρd(r)ρd(r′)〉 − ρ(r)ρ(r′). (150)

Starting from the identity (149) and introducing the correlation function h(r, r′) through the
defining relation P2(r, r

′) = P1(r)P1(r
′)[1 + h(r, r′) + 1/N ], we obtain at the order O(1/N):

〈δρ(r)δρ(r′)〉 = mρ(r)δ(r− r′) + ρ(r)ρ(r′)h(r, r′). (151)

For a spatially homogeneous equilibrium distribution where ρ(r) = ρ = mn and h(r, r′) =
h(|r− r′|), the Fourier transform of the density fluctuations is

〈δρ̂kδρ̂k′〉 = 1

(2π)d
ρm
[

1 + (2π)dnĥ(k)
]

δ(k + k′). (152)

The equilibrium correlation function can be obtained from the equilibrium BBGKY-like
hierarchy using a Debye-Hückel-type of approximation or from field theoretical methods using
the Landau approximation. Starting from the Gibbs canonical distribution in configuration
space (I-44), which is the steady state of the N -body Smoluchowski equation (2), we can obtain
[1] the equilibrium BBGKY-like hierarchy (I-45). The first two equations of this hierarchy are

∂P1

∂r1
= −(N − 1)βm2

∫

∂u12

∂r1
P2 dr2, (153)
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∂P2

∂r1
= −βm2P2

∂u12

∂r1
− (N − 2)βm2

∫

∂u13

∂r1
P3 dr3. (154)

Introducing the decomposition (I-14) in Eq. (153), we first obtain

∂P1

∂r1
= −(N − 1)βm2

∫

∂u12

∂r1
P1(r1)P1(r2)dr2 − (N − 1)βm2

∫

∂u12

∂r1
P ′
2(r1, r2)dr2. (155)

Then, introducing the decomposition (I-14)-(I-15) in Eq. (154), and using Eq. (155) to simplify
some terms, we get

∂P ′
2

∂r1
= −βm2P1(r1)P1(r2)

∂u12

∂r1
− βm2P ′

2(r1, r2)
∂u12

∂r1

+βm2

∫

∂u13

∂r1
P1(r1)P1(r2)P1(r3)dr3 − (N − 2)βm2

∫

∂u13

∂r1
P ′
2(r1, r2)P1(r3)dr3

+βm2

∫

∂u13

∂r1
P ′
2(r1, r3)P1(r2)dr3 − (N − 2)βm2

∫

∂u13

∂r1
P ′
2(r2, r3)P1(r1)dr3

−(N − 2)βm2

∫

∂u13

∂r1
P ′
3(r1, r2, r3)dr3. (156)

At the order 1/N in the thermodynamic limit defined in Paper I where P1, β, m, |r| are O(1),
P ′
2, u are O(1/N) and P ′

3 are O(1/N2), the foregoing equations reduce to 7:

∂P1

∂r1
= −(N − 1)βm2

∫

∂u12

∂r1
P1(r1)P1(r2)dr2 −Nβm2

∫

∂u12

∂r1
P ′
2(r1, r2)dr2, (157)

∂P ′
2

∂r1
= −βm2P1(r1)P1(r2)

∂u12

∂r1
+ βm2

∫

∂u13

∂r1
P1(r1)P1(r2)P1(r3)dr3

−Nβm2

∫

∂u13

∂r1
P ′
2(r1, r2)P1(r3)dr3 −Nβm2

∫

∂u13

∂r1
P ′
2(r2, r3)P1(r1)dr3. (158)

Now, introducing P ′
2(1, 2) = P1(1)P1(2)[h(1, 2)+

1
N
] in Eq. (158), using Eq. (157), and neglect-

ing terms of order O(1/N2) or smaller, we find that the correlation function satisfies

h(r1, r2) = −βm2u12 −Nβm2

∫

u13h(r2, r3)P1(r3)dr3, (159)

where P1(r) is given by the zeroth order Eqs. (I-20) and (I-21). We emphasize that this relation,
which was not given in Paper I, is valid for a possibly spatially inhomogeneous equilibrium state.
For a homogeneous distribution, we recover Eq. (I-51) which can be solved in Fourier space
yielding Eq. (70).

It is very instructive to recover these results in a different manner using methods of field
theory [56]. The equilibrium probability of the density distribution governed by the stochastic
Smoluchowski equation (29) is W [ρ] = 1

Z
e−β(F [ρ]−µ

R

ρdr) with Z =
∫

Dρ e−β(F [ρ]−µ
R

ρdr) (to sim-
plify the notations, we drop the bars on the coarse-grained fields). To compute the correlation
function G(r, r′) = 〈δρ(r)δρ(r′)〉, it proves convenient to introduce an auxiliary field µ(r) and
write

W [ρ] =
1

Z
e−β(F [ρ]−

R

µ(r)ρdr). (160)

7Note that some terms of order 1/N were missing in Paper I because we made the approximation N −1 ≃ N
everywhere which is incorrect.
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The equilibrium corresponds to µ(r) = µ. In the Landau (mean field) approximation, the free
energy F = −kBT lnZ is given by F ≃ F [ρ] −

∫

µ(r)ρdr where ρ(r) is the most probable
distribution of W [ρ]. The maximum of W [ρ] satisfies the condition µ(r) = δF/δρ(r). Using
the expression (30) of the free energy, we obtain

µ(r) =

∫

u(r− r′)ρ(r′)dr′ +
kBT

m
ln ρ(r). (161)

At equilibrium, taking µ(r) = µ, we recover the mean field Boltzmann distribution (14). On
the other hand, taking the functional derivative of Eq. (161) with respect to µ(r′) and using the
fundamental identity G(r, r′) = kBTδρ(r)/δµ(r

′) [56], we find that the equilibrium correlation
function is solution of

δ(r− r′) = β

∫

u(r− r′′)G(r′, r′′)dr′′ +
1

mρ(r)
G(r, r′). (162)

Finally, substituting Eq. (151) in Eq. (162) and simplifying some terms, we recover Eq. (159).
Noting that the partition function of the N -body problem can be written

Z =

∫

e−βm2Udr1...drN =

∫

Dρ(r)eS[ρ]e−βE[ρ] =

∫

Dρ(r)e−βF [ρ], (163)

where the sum runs over the macrostates ρ(r) with mass
∫

ρ(r)dr = M and eS[ρ] denotes the
number of microstates associated with the macrostates ρ(r), we see the link between the two
previously exposed methods.

B Application of the Landau-Lifshitz general theory of

fluctuations

In this Appendix, we derive the stochastic Smoluchowski equation (44)-(45) by using the general
theory of fluctuations exposed in Landau & Lifshitz (see [39], Chap. XVII). We write the
equation for the density in the conservative form

∂ρ

∂t
= −∇ · J, (164)

where J is the current:

J = −1

ξ

(

kBT

m
∇ρ+ ρ∇Φ

)

− g(r, t). (165)

The first term is the deterministic Smoluchowski current (see, e.g., [2]) and the second term
is a stochastic term that takes into account fluctuations. The problem at hand consists in
characterizing the stochastic term g(r, t). In order to use the general theory of fluctuations
[39], we divide the fluid volume in small elements ∆V and take the average of each quantity
in each element. The continuum limit ∆V → 0 will be performed in the final expressions.
Equations (164) and (165) correspond to the equations

ẋa = −
∑

b

γabXb + ya, (166)

of the general theory [39] provided that we make the identifications ẋa → −Jα and ya → gα.
The Xa can be obtained from the expression of the rate of production of entropy. In fact, since
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we are working in the canonical ensemble, the proper thermodynamical potential is the free
energy F = E− TS or, equivalently, the Massieu function J = S−E/T which is the Legendre
transform of the entropy. It can be written explicitly

J = −kB

∫

ρ

m
ln

ρ

m
dr− 1

2T

∫

ρΦ dr. (167)

Taking the time derivative of this expression, using Eq. (164), and integrating by parts, we
obtain the expression

J̇ = −
∫

1

Tρ

(

kBT

m
∇ρ+ ρ∇Φ

)

· J dr. (168)

Note that for g = 0 (no noise) we recover the appropriate form of the H-theorem valid in the
canonical ensemble [2, 20]:

J̇ =

∫

1

Tρξ

(

kBT

m
∇ρ+ ρ∇Φ

)2

dr ≥ 0. (169)

If we replace the integral in Eq. (168) by a summation on ∆V , we obtain

J̇ = −
∑ 1

Tρ

(

kBT

m
∇ρ+ ρ∇Φ

)

· J∆V. (170)

According to the general theory [39], we must also have

J̇ = −kB
∑

a

Xaẋa. (171)

Comparing Eq. (170) with the general expression (171), we find that the Xa are given by

Xa → − 1

kBTρ

(

kBT

m

∂ρ

∂xα

+ ρ
∂Φ

∂xα

)

∆V. (172)

It is now easy to find the expression of the coefficients γab that appear in Eq. (166). Comparing
Eqs. (165), (166) and (172), we find that

γab = 0 (if a 6= b); γaa =
kBTρ

ξ∆V
. (173)

Now, the general theory of fluctuations [39] gives

〈ya(t1)yb(t2)〉 = (γab + γba)δ(t1 − t2). (174)

Therefore, the correlation function of the stochastic field g(r, t) satisfies

〈gα(r, t)gβ(r′, t′)〉 = 0 (if r 6= r′), (175)

〈gα(r, t)gβ(r, t′)〉 =
2kBTρ

ξ∆V
δαβδ(t− t′). (176)

Taking the limit ∆V → 0, we can condense the above formulae under the form

〈gα(r, t)gβ(r′, t′)〉 =
2kBTρ

ξ
δαβδ(t− t′)δ(r− r′). (177)
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We thus recover the expression of the stochastic term appearing in Eq. (44) by a method
different from Dean [41].

We can repeat the same arguments for the inertial model (78)-(80). We write Eq. (79) in
the form

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −kBT

m
∇ρ− ρ∇Φ− ξρu− g′(r, t), (178)

where g′(r, t) is the noise term to be determined. Comparing Eq. (178) with Eq. (166), we
have the correspondances ẋa → −ξρuα−g′α and ya → −g′α. The Massieu function J = S−E/T
for the inertial model is [20]:

J = −kB

∫

ρ

m
ln

ρ

m
dr− 1

2T

∫

ρΦ dr− 1

2T

∫

ρu2 dr. (179)

Taking the time derivative of this expression and using Eqs. (78)-(80), we obtain after some
elementary calculations (see, e.g., Appendix G of [24]) the expression

J̇ =
1

T

∫

u · (ξρu+ g′) dr. (180)

For g′ = 0 (no noise), we recover the appropriate form of the H-theorem valid in the canonical
ensemble for the mean field damped Euler equation [20]:

J̇ =
1

T

∫

ξρu2 dr ≥ 0. (181)

The discrete expression of Eq. (180) is

J̇ =
1

T

∑

u · (ξρu+ g′)∆V. (182)

Comparing Eq. (182) with the general expression (171), we find that the Xa are given by

Xa →
∆V

kBT
uα. (183)

Then, comparing Eqs. (178), (166) and (183), we find that

γab = 0 (if a 6= b); γaa =
kBTξρ

∆V
. (184)

Finally, using Eq. (174), we obtain the correlation function

〈g′α(r, t)g′β(r′, t′)〉 = 2kBTξρδαβδ(t− t′)δ(r− r′), (185)

which coincides with the expression given in Eq. (79).
Let us finally briefly consider the kinetic model of Sec. 4. It can be written in the form

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
= − ∂

∂v
· J, (186)

with the current

J = −D

(

∂f

∂v
+ βmfv

)

− g(r,v, t). (187)
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The corresponding free energy (Massieu function) J = S − E/T is explicitly given by [2]:

J = −kB

∫

f

m
ln

f

m
drdv− 1

T

∫

f
v2

2
drdv− 1

2T

∫

ρΦ dr. (188)

It production rate is

J̇ = −kB

∫

1

mf

(

∂f

∂v
+ βmfv

)

· J drdv. (189)

For g = 0 (no noise), we recover the appropriate form of the H-theorem valid in the canonical
ensemble for the mean field Kramers equation [2, 20]:

J̇ = kB

∫

D

mf

(

∂f

∂v
+ βmfv

)2

drdv ≥ 0. (190)

On the other hand, repeating the general procedure developed previously, we find that

Xa → − 1

mf

(

∂f

∂vα
+ βmfvα

)

∆V, (191)

γab = 0 (if a 6= b); γaa =
Dmf

∆V , (192)

where ∆V is the elementary volume in phase space. Passing to the limit ∆V → 0, this leads
to a correlation function of the form

〈gα(r,v, t)gβ(r′,v′, t′)〉 = 2Dmfδαβδ(t− t′)δ(r− r′)δ(v − v′), (193)

which coincides with the expression given in Eq. (139).

C Dispersion relation for the inertial BMF model

In this Appendix, we complement the discussion of Sec. 3.1 by studying the dispersion relation
associated with the damped Euler equations (78)-(80) without noise (R = 0) for the inertial
BMF model [18]. These equations can be written as

∂ρ

∂t
+

∂

∂θ
(ρu) = 0, (194)

ρ

(

∂u

∂t
+ u

∂u

∂θ

)

= −T
∂ρ

∂θ
− kρ

2π

∫ 2π

0

sin(θ − θ′)ρ(θ′, t)dθ′ − ξρu. (195)

For ξ = 0, they reduce to the Euler equations (see Eq. (67) of [18]) and for ξ → +∞, we can
neglect the inertial term in Eq. (195) and we obtain the mean field Smoluchowski equation (see
Eq. (234) of [18]):

ξ
∂ρ

∂t
= T

∂2ρ

∂θ2
+

k

2π

∂

∂θ

{

ρ

∫ 2π

0

sin(θ − θ′)ρ(θ′, t)dθ′
}

. (196)
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Figure 1: Evolution of the dangerous modes n = ±1 for the BMF model with ξ = 0 (Euler).
For T > Tc, the homogeneous phase is stable and the perturbation oscillates with pulsation ω.
For T < Tc, the homogeneous phase is unstable and the perturbation increases exponentially
rapidly with a growth rate γ > 0.

Considering the linear dynamical stability of a homogeneous distribution with respect to the
damped Euler equations (194)-(195), and decomposing the perturbation in normal modes δf ∼
ei(nθ−ωt), the dispersion relation (90) can be written

ω(ω + iξ) = Tn2 + 2πûnρn
2, (197)

where

ûn = − k

4π
(δn,1 + δn,−1). (198)

Let us first consider the case ξ = 0 (Euler). For n 6= ±1, the dispersion relation becomes
ω2 = Tn2 so that the perturbation oscillates with a pulsation ω =

√
T |n|. For n = ±1, the

dispersion relation becomes ω2 = T − Tc where Tc = kM/(4π) is the critical temperature of
the BMF model [18]. For T > Tc, the perturbation oscillates with a pulsation ω =

√
T − Tc

and for T < Tc, the perturbation grows exponentially with a gowth rate γ =
√
Tc − T . In that

case, the homogeneous phase is unstable (see Fig. 1).
Let us now consider the overdamped case ξ → +∞ (Smoluchowski). For n 6= ±1, the

dispersion relation becomes iξω = Tn2 so that the perturbation decays exponentially with a
rate γ = −Tn2/ξ. For n = ±1, the dispersion relation becomes iξω = T − Tc. For T > Tc, the
perturbation decays with a decay rate γ = −(T −Tc)/ξ and for T < Tc, the perturbation grows
exponentially with a rate γ = (Tc−T )/ξ. In that case, the homogeneous phase is unstable (see
Fig. 2).

In the general case, setting σ = −iω so that the perturbations behave as δf ∼ eσt, the
dispersion relation (197) can be rewritten

σ2 + ξσ + Tn2 + 2πûnρn
2 = 0. (199)

For n 6= ±1, it reduces to σ2 + ξσ + Tn2 = 0. The solutions of this equation are σ± =
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Figure 2: Evolution of the dangerous modes n = ±1 for the BMF model with ξ → +∞
(Smoluchowski). For T > Tc, the homogeneous phase is stable and the perturbation decays
with a rate γ < 0. For T < Tc, the homogeneous phase is unstable and the perturbation grows
with a rate γ > 0.
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Figure 3: Evolution of the dangerous modes n = ±1 for the inertial BMF model described by
the damped Euler equations. A homogeneous distribution is unstable for T < Tc and stable
for T > Tc. For T < Tc, the perturbation grows with a rate γ > 0. For Tc < T < T∗,
the perturbation decays with a rate γ < 0 without oscillating. For T > T∗, the perturbation
undergoes damped oscillations with a decay rate ξ/2 and a pulsation ω.
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(−ξ ±
√
∆n)/2 where ∆n = ξ2 − 4Tn2. Let us introduce the wavenumber

n∗ =

(

ξ2

4T

)1/2

. (200)

For ∆n < 0, corresponding to n2 > n2
∗, the perturbation presents damped oscillations with a

pulsation and decay rate

ω =
√
T (n2 − n2

∗)
1/2, γ = −ξ/2. (201)

For ∆n > 0, corresponding to n2 < n2
∗ (since we have assumed n 6= ±1, this regime is accessible

iff |n∗| ≥ 2 i.e. T ≤ ξ2/16), the perturbation has a pure exponential decay with a damping rate

γ = −ξ

2
+
√
T (n2

∗ − n2)1/2. (202)

The modes n 6= ±1 are always stable, whatever the temperature. For the “dangerous” modes
n = ±1, the dispersion relation becomes σ2 + ξσ + T − Tc = 0. The solutions are σ± =
(−ξ ±

√
∆1)/2 where ∆1 = ξ2 − 4(T − Tc). Let us introduce the temperature

T∗ = Tc +
ξ2

4
. (203)

For ∆1 < 0, corresponding to T > T∗, the perturbation undergoes damped oscillations with a
pulsation and decay rate

ω =
√

T − T∗, γ = −ξ/2. (204)

For 0 < ∆1 < ξ2, corresponding to Tc < T < T∗, the perturbation has a pure exponential decay
with a damping rate

γ = −ξ

2
+
√

T∗ − T . (205)

For ∆1 > ξ2, corresponding to T < Tc, the perturbation grows exponentially rapidly with a
growth rate

γ = −ξ

2
+
√

T∗ − T . (206)

Therefore, for T < Tc, the homogeneous phase is unstable to the modes n = ±1. The growth
rate is maximum for T = 0 with value γ∗ = γ(0) = −ξ/2+

√
T∗. The dependence of the growth

rate, damping rate and pulsation as a function of the temperature are plotted in Fig. 3. This
figure should be compared with Fig. 1 of [33] obtained for the gravitational potential (in this
analogy, the critical temperature Tc plays the same role as the Jeans wavenumber k2

J).
It can be useful to introduce a dimensionless number

F =
ξ2/4

Tc

=
ξ2

2kρ
=

πξ2

kM
, (207)

which measures the efficiency of the friction force (a similar number has been introduced in
[20, 33]). It can be written as F ∼ (ξtD)

2 where tD ∼ 1/
√
kρ is a typical dynamical time (see

Sec. 2.2. of [5]). Thus, F is the ratio of the dynamical time on the friction time τ ∼ 1/ξ. In
terms of this parameter, the temperature (203) marking the appearance of oscillations can be
written T∗ = Tc(1 + F ).
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[37] F. Bouchet, J. Barré, J. Stat. Phys. 118, 1073 (2005).

[38] M. Costeniuc, R. Ellis, H. Touchette, B. Turkington, Phys. Rev. E 73, 026105 (2006).

[39] L. Landau, E. Lifshitz Fluid Mechanics (Pergamon, London 1959).

[40] C. Sire & P.H. Chavanis, Phys. Rev. E 69, 066109 (2004).

[41] D.S. Dean, J. Phys. A: Math. Gen. 29, L613 (1996).

[42] K. Kawasaki, Physica A 208, 35 (1994).

[43] U. Marconi, P. Tarazona, J. Chem. Phys. 110, 8023 (1999).

[44] A.J. Archer, M. Rauscher, J. Phys. A: Math. Gen. 37, 9325 (2004).

[45] J.J. Monaghan, MNRAS 184, 25 (1978).

[46] J. Katz, I. Okamoto, MNRAS 317, 163 (2000).

[47] P.H. Chavanis, A&A 432, 117 (2005).
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