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Abstract 

The human gut is populated by an array of bacterial species, which develop 

important metabolic and immune functions, with a marked effect on the nutritional and 

health status of the host. Dietary component also play beneficial roles beyond basic 

nutrition, leading to the development of the functional food concept and nutraceuticals. 5 

Prebiotics, polyunsaturated fatty acids (PUFAs) and phytochemicals are the most well 

characterized dietary bioactive compounds. The beneficial effects of prebiotics mainly 

relay on their influence on the gut microbiota composition and their ability to generate 

fermentation products (short-chain fatty acids) with diverse biological roles. PUFASs 

include the ω-3 and ω-6 fatty acids, whose balance may influence diverse aspects of 10 

immunity and metabolism. Moreover, interactions between PUFAs and components of 

the gut microbiota may also influence their biological roles. Phytochemicals are 

bioactive non-nutrient plant compounds, which have raised interest because of their 

potential effects as antioxidants, antiestrogenics, anti-inflammatory, 

immunomodulatory, and anticarcinogenics. However, the bioavailability and effects of 15 

polyphenols greatly depend on their transformation by components of the gut 

microbiota. Phytochemicals and their metabolic products may also inhibit pathogenic 

bacteria while stimulate the growth of beneficial bacteria, exerting prebiotic-like effects. 

Therefore, the intestinal microbiota is both a target for nutritional intervention and a 

factor influencing the biological activity of other food compounds acquired orally. This 20 

review focuses on the reciprocal interactions between the gut microbiota and functional 

food components, and the consequences of these interactions on human health. 

Keywords: gut mirobiota; functional foods; nutraceuticals; prebiotics; 

polyunsaturated fatty acids; phytochemicals 
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Introduction  

The intestinal tract harbours a complex bacterial community (microbiota), integrated 

by more than 800 different bacterial species, which have an enormous impact on the 

nutritional and health status of the host. The metabolic activity developed by the gut 

microbiota contributes to the digestion of dietary compounds, salvage of energy, supply 5 

of (micro)nutrients and transformation of xenobiotics. Overall, a balanced gut 

microbiota composition confers benefits to the host, while microbial imbalances are 

associated with metabolic and immune-mediated disorders (1, 2). The composition of 

the gut microbiota is influenced by endogenous and environmental factors (diet, 

antibiotic intake, xenobiotics, etc.). Of these factors, the diet is considered a major 10 

driver for changes in gut bacterial diversity that may affect its functional relationships 

with the host (3). In fact, the microbiome of the adult-type and infant-type microbiota 

has distinct gene contents to accommodate nutrient acquisition strategies to different 

diets (4).  

The primary role of diet is providing sufficient nutrients to meet the basic nutritional 15 

requirements for maintenance and growth, while giving the consumer a feeling of 

satisfaction and well-being. In addition, some food components exert beneficial health 

effects beyond basic nutrition, leading to the concept of functional foods and 

nutraceuticals (5). Functional foods are those foods that provide benefits beyond basic 

nutrition when consumed as part of the regular diet. Nutraceuticals are extracts 20 

containing the biologically active food components supplied in other than a food form. 

Dietary components with biological effects are susceptible to be metabolized by 

intestinal bacteria during the gastrointestinal passage, prior being absorbed. The colon 

has the highest bacterial load and constitutes an active site of metabolism rather than a 

simple excretion route (6). The metabolic activity of the gut microbiota on bioactive 25 
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food components can modify the host exposure to these components and their potential 

health effects. Furthermore, some functional food components influence the growth 

and/or metabolic activity of the gut microbiota and, thereby, its composition and 

functions (7, 8). Therefore, the intestinal microbiota is both a target for nutritional 

intervention to improving health and a factor influencing the biological activity of other 5 

food compounds acquired orally. This review focuses on the reciprocal interactions 

between the gut microbiota and functional food components, and the consequences of 

these interactions on human health (Figure 1). 

 

Gut microbial ecology 10 

The human gut is populated by a vast number of bacterial species (more than 800) 

that reach the highest concentrations in the colon (up to 1012 cells per gram of faeces). 

The gut colonization process starts immediately after birth and the development and 

establishment of the infant’s microbiota highly depend on environmental factors. The 

infant’s microbiota initially shows low diversity and instability, but evolves into a more 15 

stable adult-type microbiota over the first 24 months of life (9). In general, 

Bifidobacterium populations are dominant in the first months of life, especially in 

breast-fed infants (up to 90% of the total faecal bacteria) due to the bifidogenic effect of 

breast milk, while a more-diverse microbiota is found in formula-fed infants, weaning 

children and adults (10). Metagenomic analyses show that in adults and weaned 20 

children the major constituents of the colonic microbiota are Bacteroides, followed by 

several genera belonging to the division Firmicutes, such as Eubacterium, 

Ruminococcus and Clostridium, and the genus Bifidobacterium. By contrast, in infants 

the genus Bifidobacterium is predominant and also a few genera from the family 

Enterobacteriaceae, such as Escherichia, Raoultella, and Klebsiella (4). The 25 
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composition of this bacterial ecosystem is dynamic and susceptible to changes driven by 

dietary factors and diverse disease conditions (11, 12).  

 

Roles of the gut microbiota in host physiology and health 

The gut microbiota develops a number of protective, immune and metabolic 5 

functions, which altogether have an enormous impact on the nutritional and health 

status of the host. The indigenous gut microbiota and transient bacteria (food-associated 

and probiotics) are known to influence the development and regulation of the host’s 

defences, of immune and non-immune nature, via interaction with the epithelium and 

the gut-associated lymphoid tissue (13). The intestinal epithelium constitutes a physical 10 

barrier that regulates the transcellular and paracellular transit of exogenous substances 

and impairs the entry of most of luminal antigens; this barrier is strengthened by the 

mucus layer integrated by glycoproteins (mucins) and the synthesis of antimicrobial 

peptides and other secretions (bile, acids, enzymes, etc.). The commensal microbiota 

constitutes part of this primary line of defence, and participates in regulation of 15 

paracellular permeability, mucin gene expression by goblet cells and secretion of 

antimicrobial peptides (defensins and angiogenins) by intestinal Paneth cells. Moreover, 

the intestinal microbiota is essential to the postnatal development of the immune 

system, influencing the content of lamina propria T cells, immunoglobulin A producing 

B cells, intraepithelial T cells and serum immunoglobulin levels (14). Based on these 20 

protective and immunomodulatory roles, some probiotic strains are acknowledged for 

their beneficial effects on the treatment of acute diarrhoea, prevention of antibiotic 

associated-diarrhoea, eradication of Helicobacter pylori infection together with 

antibiotics and in prevention of atopic eczema in humans (13, 15).  



 6 

The intestinal microbiota also affects the host metabolism, providing additional 

enzymes and regulating the expression of genes involved in the utilization of 

carbohydrates and lipids, and in drugs bioconversion (16-18). The number of genes of 

the collective genome (microbiome) of the microbiota exceeds by far those of the 

human genome, encoding additional metabolic features (17, 19). Genomic and 5 

physiologic studies have demonstrated that the gut microbiota provides enzymes 

specialized in the utilization of non-digestible carbohydrates and host-derived 

glycoconjugates (e.g. mucin), deconjugation and dehydroxylation of bile acids, 

cholesterol reduction, biosynthesis of vitamins (K and B group) and isoprenoids and 

metabolism of amino acids and xenobiotics (4, 16, 17).  10 

The microbiome is particularly enriched in genes involved in carbohydrate 

metabolism and uptake, indicating that complex polysaccharides are the primary energy 

source for the colonic microbiota (4). The genome sequence of Bifidobacterium longum 

also has a large number of predicted proteins (more than 8%) related to the catabolism 

of oligo- and poly-saccharides released from non-digestible plant polymers (20). Some 15 

of the most abundant bacterial enzymes involved in the degradation of complex 

polysaccharides and xenobiotics are β-glycosidases and β-glucuronidases, which may 

play both beneficial and harmful roles (21). Glycosidase activities present in the human 

colonic microbiota act on plant glucosides contributing to nutrient utilization and, in 

some cases, to the generation of biologically active aglycones with other health benefits 20 

(e.g. from isoflavones). The utilization of complex dietary polysaccharides by the 

microbiota seems to contribute to harvest energy from the diet, which may represent 

10% of the daily energy supply (22). Fermentation of dietary polysaccharides leads to 

the generation of short-chain fatty acids (SCFAs) (e.g. acetate, butyrate and propionate) 

and other gases (e.g. carbon dioxide and hydrogen). The principal SCFAs (acetate, 25 
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propionate and butyrate) are metabolized by the colonic epithelium (butyrate), liver 

(propionate) and muscle (acetate) and exert different functions. Butyrate is utilized by 

enterocytes and generally regarded as a healthy metabolite, since it positively influences 

cell growth and differentiation, and exerts anti-inflammatory effects (23). Acetate and 

propionate can access the portal circulation and oppositely impact lipid metabolism. 5 

While acetate seems to contribute to lipid and cholesterol synthesis in the liver, 

propionate can inhibit the effects of acetate. Unlikely β-glycosidases, β-glucuronidases 

usually liberate toxins and mutagens that have been glucuronated in the liver and 

excreted into the gut with the bile. This can lead to the accumulation high local 

concentrations of carcinogenic compounds within the gut, thus increasing the risk of 10 

carcinogenesis. Furthermore, reuptake of the deconjugated compound from the gut and 

re-glucuronidation in the liver lead to an enterohepatic circulation of xenobiotic 

compounds, which increases their retention time in the body. In the colonic microbiota, 

bacterial β-glucosidases seem to be more widespread than β-glucuronidases. Studies 

carried out in 40 bacterial strains, which are representative of dominant bacteria in 15 

human faeces, show that more than half of the low G+C% Gram-positive Firmicutes 

have β-glucosidase activity, while β -glucuronidase activity is only present in some 

Firmicutes, within the clostridial clusters XIVa and IV (21). Most of the 

Bifidobacterium spp. and Bacteroides thetaiotaomicron have β-glucosidase activity. 

Moreover, the level of exposure to glycosides in the colon, which is dependent on the 20 

type of diet consumed, could affect the induction of enzyme activity levels in some 

members of the gut microbiota and, therefore, influence their functions (21). Specific 

glycosidases (xylanases, arabinofuranosidases and xylosidases) required for complete 

degradation of complex polysaccharides present in plant cell walls, such as arabinans 

and arabinoxylans, are also encoded by the total faecal microbiota and by strains of the 25 
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main bacterial genera (Bifidobacterium and Bacteroides) (24, 25). Bifidobacterium 

longum subsp. infantis ATCC 15697, an isolate from the infant gut, is also equipped 

with genes and enzymes allowing the preferential consumption of small mass 

oligosaccharides, which represent 63.9% of the total human milk oligosaccharides 

available (26, 27). In addition, genes coding for an endo-alpha-N-5 

acetylgalactosaminidase and a 1,2-alpha-L-fucosidase, which hydrolyse high-molecular 

weight mucin, are present in several Bifidobacterium bifidum strains (28). 

Gut bacterial enzymes are also involved in the metabolism of cholesterol and bile 

acids. Cholesterol can be reduced to coprostanol by the commensal microbiota, 

increasing its secretion in faeces. Bile acids are synthesized from cholesterol in the liver 10 

mostly as the primary bile acids, cholic acid and chenodeoxycholic acid. Intestinal 

bacteria are also able to convert these acids into various types of secondary bile acids by 

catalysing their deconjugation and dehydroxylation, thereby limiting the solubilization 

and absorption of dietary lipids throughout the intestine (29). However, these activities 

can also lead to the generation of secondary bile acids, some of which (deoxycholic acid 15 

and lithocholic acid) are considered possible carcinogens. Bacteroides intestinalis and 

secondarily Bacteroides fragilis and E. coli are potentially involved in the generation of 

secondary bile acids in the colon (30).  

The metabolic activity of the microbiota can also contribute to the supply of amino 

acids required by humans. In the presence of fermentable carbohydrate substrates (e.g. 20 

non-starch polysaccharides, resistant starch and oligosaccharides), colonic bacteria grow 

and actively synthesize protein, which can be a soured of amino acids for the host (31). 

Although it is difficult to quantify the protein synthesis and turnover within the large 

intestine, at lest from 1 to 20% of circulating plasma lysine and threonine in adult 

human subjects is derived form the intestinal microbiota, as estimated by using labelled 25 
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amino acids (16). Nevertheless, the metabolic activities of the microbiota involved in 

the degradation of food related nitrogen compounds (e.g. nitrocompounds, sulphur-

containing compounds and amino acids) can lead to the generation of potentially 

carcinogenetic substances (32). 

The commensal microbiota also regulates the expression of genes involved in the 5 

processing and absorption of dietary carbohydrates and complex lipids by the host, 

which altogether lead to body weight gain and increased fat storage. Gut colonization by 

commensal bacteria increases the expression of an intestinal monosaccharide transporter 

and key enzymes (acetyl-CoA carboxylase and fatty acid synthase) of de novo fatty acid 

biosynthetic pathways (33, 34). The colonization of germ-free mice also reduces the 10 

levels of circulating fasting-induced adipose factor (Fiaf) and the skeletal muscle and 

liver levels of phosphorylated AMP-activated protein kinase, contributing to fat storage 

(35). Furthermore, comparisons between germ-free and colonized rat demonstrated that 

the intestinal microbiota affect levels of xenobiotic-metabolizing enzymes in large 

intestine and liver, including glutathione transferases, gastrointestinal glutathione 15 

peroxidase, epoxide hydrolases, N-acetyltransferases, and cytochrome P450 activities, 

which might affect the host ability to detoxify different compounds (36, 37). 

Therefore, the intestinal tract is inhabited by a complex microbiota that develops 

strategies to regulate nutrient acquisition and utilization in symbiosis with the host and 

in response to the diet. The biochemical activity this complex ecosystem generates 20 

healthy as well as potentially harmful compounds from the diet and their balance is 

essential to maintain a healthy status. This could be achieved by diverse nutritional 

strategies, including the administration of probiotic bacteria and other functional food 

components, whose roles and interactions with the microbiota are reviewed in the 

following sections.  25 
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Prebiotics and gut microbiota 

Prebiotics are nondigestible food ingredients, mostly oligosaccharides, which 

beneficially affect the host by stimulating growth, activity or both of specific intestinal 

bacteria (38). The criteria that have to fulfil a prebiotic include, (1) resistance to gastric 5 

acidity and mammalian enzymes; (2) susceptibility to be fermented by gut microbiota; 

and (3) ability to stimulate the growth and/or activity of beneficial intestinal bacteria. 

The possible beneficial effects of prebiotics include the control intestinal transit time 

and bowel habits, and reduction of risk of atherosclerosis, osteoporosis, obesity, type-2 

diabetes, cancer, infections and allergies, although their effectiveness in humans is still 10 

controversial (38). The biological effects of prebiotics mainly depend on their influence 

on the gut microbiota composition and derived metabolites; although some roles could 

be due to their own structure and direct action (e.g. inhibition of pathogen adhesion by 

homology with bacterial receptors).  

Galacto-oligosaccharides (GOS) and inulin-derivatives (e.g. fructo-oligosaccharides 15 

[FOS]) are the prebiotics most commonly commercialized in Europe. GOS are non-

digestible oligosaccharides derived from lactose that are found naturally in human milk 

and consist of chains of galactose monomers. These prebiotics provide beneficial effects 

in the gastrointestinal tract by stimulating growth of specific members of the intestinal 

microbiota (e.g. bifidobacteria). GOS alone or combined with FOS are mainly added to 20 

infant formula to promote the prevalence of a microbiota composition similar to that 

resulting from breast-feeding during both milk-feeding and the weaning period. This 

dietary strategy may increase the total amount of faecal bifidobacteria and favour a 

Bifidobacterium species composition resembling that of breast-fed infants (39, 40). 

Moreover, GOS may structurally mimic the pathogen binding sites that coat the surface 25 
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of gastrointestinal epithelial cells and thereby may inhibit enteric pathogen adhesion and 

infection (41).  

Inulin and its hydrolytic product (oligofructose) are fructans that are linked by β-(2-

1) linkages and differentiated by the number of fructose monomers. Inulin has a high 

number (10-60) and oligofructose derivatives have a low (3-7) number of fructose 5 

monomers. They naturally occur at high concentrations in plant-foods such as onion, 

asparagus, wheat, artichoke, etc. (42), and exhibit different functional attributes (43), 

including modulation of the gut microbiota, prevention of pathogens adhesion and 

colonization, induction of anti-inflammatory effects, reduction of food intake, 

modulation of bowel habits and regulation of alterations in lipid and glucose 10 

metabolism. Most of these effects are derived from their structural resistance to 

mammalian digestive enzymes and their ability to stimulate the growth of beneficial 

bacteria (e.g. bifidobacteria and lactobacilli) in the colon and to increase the generation 

of SCFAs with diverse biological roles (38, 44-47). The effects of these prebiotics on 

immune functions may be due to the induced changes on the gut microbiota and/or to 15 

the effects of the generated SCFAs via binding to SCFA receptors on leucocytes (48). 

Studies using long-chain inulin have evidenced beneficial effects on bowel 

inflammation reducing the production of pro-inflammatory biomarkers, along with an 

increase in intestinal bifidobacteria and lactobacilli (49-53). SCFA may also regulate 

intestinal fat absorption since butyrate, for instance, impairs lipid transport in vitro in 20 

Caco-2 cells (54-55). In addition, inulin and inulin-type fructans, are considered dietary 

soluble fiber, and directly modulate bowel habits slowing gatric emptying and intestine 

transit time, delaying absorption of glucose and improving alterations in glucose 

metabolism (56).  
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Furthermore, dietary fibre including some non-starch polysaccharides, such as 

cellulose, dextrins, chitins, pectins, beta-glucans, and waxes, and lignin can modulate 

the transit time through the gut providing similar beneficial effects as those of inulin-

type fructans. These compounds are found in many foods such as cereal, nuts, etc. They 

are also partially susceptible to bacterial fermentation and may induce changes in 5 

bacterial populations, particularly in number of bifidobacteria and lactobacilli. These 

dietary soluble fibers have been shown to exert additional beneficial effects, for instance 

improving gut barrier function in vitro (57) and in vivo (58-60), which could be partially 

a consequence of their effect on the microbiota composition.   

 10 

Polyunsaturated fatty acids (PUFAs) and gut microbiota 

PUFA are fatty acids that contain more than one double bond, which are separated 

from each other by a single methylene group. The ω-3 fatty acids (linolenic, 

ecosapentaenoic and docosahexaenoic acids) and ω-6 fatty acids (linoleic and 

arachidonic acids) are the best characterized so far. The biological effects of the ω-3  15 

and ω-6 fatty acids are largely mediated by their mutual interactions. The possible 

underying mechanisms by which PUFA exert their beneficial effects on health are 

diverse, involving the formation of prostacyclins and thromboxanes, pro-inflammatory 

cyokine production (tumor necrosis factor alpha and interleukin-1), modulation of the 

hypothalamic-pituitary-adrenal anti-inflammatory responses, and induction of the 20 

release of acetylcholine (61). Thus, diets rich in PUFAs have been shown to positively 

influence immune function, blood pressure, cholesterol and triglycerides levels, and 

cardiovascular function in animals and humans (62-65).  

The adult microbiome is not particularly enriched in genes involved in fatty acid 

metabolism (4); however, some interactions of PUFAs with the indigenous microbiota 25 
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and some probiotics have been reported, which might affect the biological roles of both. 

In vitro studies on the effects of PUFAs (linoleic, gamma-linolenic, arachidonic, alpha-

linolenic and docosahexaenoic acids) on the growth and adhesion of different 

Lactobacillus strains (Lactobacillus rhamnosus GG, Lactobacillus casei Shirota and 

Lactobacillus delbrueckii subsp bulgaricus) have shown different results depending on 5 

the strain. High concentrations of PUFA (10-40 μg/ml) inhibited growth and adhesion 

to mucus of all tested bacterial strains, whilst low concentrations of gamma-linolenic 

acid and arachidonic acid (5 μg/ml) promoted growth and mucus adhesion of L. casei 

Shirota (66). PUFAs supplemented into the growth medium can also be utilized by 

Lactobacillus strains, generating different products (67). Interconversions were detected 10 

in octadecanoic acids (18:1), their methylenated derivatives (19:cyc), conjugated 

linoleic acid and eicosapentaenoic acid proportions. These results suggest that 

Lactobacillus may have a potential as regulators of PUFA absorption in vivo.  The 

administration of PUFAs has also positively influenced the adhesion of Lactobacillus to 

the jejunal mucosa of gnotobiotic piglets, indicating that the intake of these fatty acids 15 

may influence the intestinal levels of this bacterial group (68). In fish fed diets 

containing PUFAs, lactic acid bacteria dominated among the Gram-positive bacteria 

within the epithelial mucosa, suggesting that dietary fatty acids affect the attachment 

sites for the gastrointestinal microbiota, possibly by modifying the fatty acid 

composition of the intestine wall. In a small clinical trial, the administration of an infant 20 

formula supplemented with Bifidobacterium Bb-12 or Lactobacillus GG to infants with 

atopic eczema (n=15) exerted some effects on plasma lipids (69). Of neutral lipids, 

alpha-linolenic acid (18:3 n-3) proportions were reduced by the probiotic 

supplementation and, in relation to phospholipids, only Bifidobacterium Bb-12 

supplementation increased the proportion of alpha-linolenic acid. Therefore, the 25 
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evidence suggests that some physiological effects of probiotics could be associated with 

the interactions between probiotics and dietary PUFA, although further studies are 

needed to confirm this hypothesis in vivo.  

 

Phytochemicals and gut microbiota 5 

Phytochemicals are defined as bioactive non-nutrient plant compounds present in 

fruits, vegetables, grains, and other plant foods, whose ingestion has been linked to 

reductions in risk of major chronic diseases (70). The different compounds included in 

this group can be classified according to common structural features into carotenoids, 

phenolics, alkaloids and nitrogen-containing and organosulfur compounds. Phenolics, 10 

flavonoids and phytoestrogens have raised particular interest because of their potential 

effects as antioxidants (71), antiestrogenics (72), anti-inflammatory and 

immunomodulatory (73-77), cardioprotectives and anticarcinogenics (70, 71, 78) 

compounds (Table 1). 

The bioavailability and effects of polyphenols greatly depend on their 15 

transformation by specific components of the gut microbiota via esterase, glucosidase, 

demethylation, dehydroxylation and decarboxylation activities (6). Many dietary 

polyphenols are glycosides that are transformed into aglycones by commensal bacterial 

glycohydrolases, thereby modifying their bioavailability and affecting positive or 

negatively their activities and/or functional effects on the mammalian tissues (79, 80). 20 

Polyphenols are commonly present in plant foods as a bound form, most often 

conjugated as glycosides, and most of them are metabolized by gut microbiota resulting 

in formation of aglycones (81, 82). The microbiota metabolites of polyphenols are 

better absorbed in the intestine, and their entero-hepatic circulation ensures that the 
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residence time in plasma for the metabolites is extended compared to that of their parent 

compounds, and finally are excreted via urine.  

The gut microbiota has proved to be essential for the production of active isoflavone 

metabolites with oestrogen-like activity; additionally, the metabolites produced exhibit 

different anti-inflammatory properties (73). Similarly, the flavonoid quercetin generated 5 

by gut microbial enzymes exerts a higher effect in the down-regulation of the 

inflammatory responses than the glycosylated form present in vegetables (quercitrin or 

3-rhamnosylquercetin) (83). This effect is exerted by inhibiting cytokine and inducible 

nitric oxide synthase expression through inhibition of the NF-kappaB pathway both in 

vitro and in vivo (83). In contrast, the ellagitanin punicalagin that is the most potent 10 

antioxidant found in pomegranate juice is extensively metabolized to hydroxy-6H-

dibenzopyran-6-one derivatives, which did not show significant antioxidant activity 

compared to punicalagin (84).  

Phytochemicals and their derived products can also affect the intestinal ecology as a 

significant part of them are not fully absorbed and are metabolised in the liver, excreted 15 

through the bile as glucuronides and accumulated in the ileal and colorectal lumen (85). 

For example, the intake of flavonol-rich foods has been shown to modify the 

composition of the gut microbiota, exerting prebiotic-like effects (86). Unabsorbed 

dietary phenolics and their metabolites have been shown to exert antimicrobial or 

bacteriostatic activities (87). These metabolites selectively inhibit pathogen growth and 20 

stimulate the growth of commensal bacteria, including also some recognized probiotics 

(87, 88), thus influencing the microbiota composition. Plant phenolic compounds from 

olives (89), tea (87), wine (88) and berries (90, 91) have demonstrated antimicrobial 

properties. Tea phenolics have shown to inhibited the growth of Bacteroides spp., 

Clostridium spp. (C. perfringens and C. difficile), Escherichia coli and Salmonella 25 



 16 

typhimurium (87). The level of inhibition was related to the chemical structure of the 

compound and bacterial species. In this sense, caffeic acid generally exerted a more 

significant inhibitory effect on pathogen growth than epicatechin, catechin, 3-O-

methylgallic acid, and gallic acid. Another in vitro study showed that (+)-catechin 

increased the counts of Clostridium coccoides-Eubacterium rectale group and 5 

Escherichia coli, but inhibited those of Clostridium histolyticum (86). The effects of (-)-

epicatechin were less pronounced increasing the growth of Clostridium coccoides-

Eubacterium rectale group (86). Interestingly, the growth of beneficial bacteria 

(Bifidobacterium spp and Lactobacillus spp) was relatively unaffected or favoured (86, 

87). Resveratrol, a potent antioxidant found in wine, favoured the increase of 10 

Bifidobacterium and Lactobacillus counts (88) and abolished the expression of 

virulence factors of Proteus mirabilis to invade human urothelial cells (92). 

Anthocyanins from berries also have proved to inhibit the growth of pathogenic 

Staphylococcus spp, Salmonella spp, Helicobacter pylori and Bacillus cereus (90, 91). 

Phenolics, and flavonoids may also reduce the adhesion ability of L. rhamnosus to 15 

intestinal epithelial cells (93). Tea catechins have also been shown to modify mucin 

content of the ileum which could modulate bacterial adhesion and colonization (94). 

Therefore, polyphenols appear to have potential to confer health benefits via modulation 

the gut microecology. However, the effects of interplay between polyphenols and 

specific gut microbiota functions remain largely uncharacterized.  20 

 

Conclusions and future perspectives 

The gut microbiota exerts an enormous impact on the nutritional and health status of 

the host via modulation of the immune and metabolic functions. The microbiome 

provides additional enzymatic activities involved in the transformation of dietary 25 
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compounds. Food bioactive compounds also exert significant effects on the intestinal 

environment, modulating the gut microbiota composition and probably its functional 

effects on mammalian tissues. This evidence is changing the way the biological roles of 

functional food components are being investigated since their metabolites and effects 

may depend on the gut microbiota and even change from one individual to another. 5 

Advances on the knowledge of the interactions between bioactive food compounds and 

specific intestinal bacteria could contribute to a better understanding of both positive 

and negative interactions in vivo and to the identification of new functional 

microorganisms inhabiting our intestinal tract.  

 10 
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Table 1. Phytochemicals and physiological function 

Phytochemical  Compound Physiological function Reference 

Phenolics Hydroxy- 
cinnamic acids p-coumaric acid Bacteriostatic or antimicrobial activities 87 

  caffeic acid Bacteriostatic or antimicrobial activities 86 

Flavonoids Flavonols quercetin,  
3-rhamnosyl quercetin 

down-regulation of inflammatory response(s), modulation 
of proliferative response(s) 

83, 77 

  kaempferol Anti-inflammatory, modulation of proliferative 
response(s) 

77 

  resveratrol Prebiotic effect, and abolition of the expression of 
virulence factors, modulation of proliferative response(s) 

88, 77 

 Flavones apigenin, luteolin Inhibition of LPS-induced  73 

 Flavanols catechins Antimicrobial properties, Modulation of mucins 87-91, 94 

 Flavanones hesperitin, naringenin Anti-inflammatory 77 

 Isoflavonoids genistein, daidzein Antiadhesive properties 93 

  equol (der. from daidzein) Oestrogen effects 72 

 Anthocyanidins cyanidin Antimicrobial properties 90, 91 

  hydroxyl-6H-dibenzopyran-6-one 
(der. from ellagitanin) Poor antioxidant capacity 84 

 



 32 

Figure legends 

 

Figure 1. Interactions between functional food components and the gut microbiota. 
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