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Abstract
Diazoxide has been identified over the past 50 years to have a number of physiological effects,
including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to
treat these conditions. More recently, another important mode of action emerged: diazoxide has
powerful protective properties against cardiac ischemia. The heart has intrinsic protective
mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics
ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to
identify the many effectors of diazoxide and discuss how they may contribute diazoxide’s
cardioprotective properties. Particular emphasis is placed on the concentration ranges in which
diazoxide affects its different targets and how this compares with the concentrations commonly
used to study cardioprotection. It is concluded that diazoxide may have several potential effectors
that may potentially contribute to cardioprotection, including KATP channels in the pancreas,
smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also
affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is
possible that the success of diazoxide lies in this promiscuity and that the compound acts to
rebalance multiple physiological processes during cardiac ischemia.
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Introduction
Diazoxide (CAS Number: 364-98-7; 7-chloro-3-methyl-2H-1,2,4-benzothiadiazine 1,1-
dioxide; Figure 1) has a molecular weight of 230.7 and a molecular formula of
C8H7ClN2O2S. It is a white powder insoluble in water, but soluble in organic solvents (e.g.
10 mg/ml in DMSO). The dogma has arisen in recent years (particularly in the
cardioprotection literature) that diazoxide is an agent with a unique molecular target. This is
not the case and the purpose of this literature review is to highlight the multiplicity of
diazoxide effectors to assist in a better understanding of mechanisms involved in the
established cardioprotective effects of this compound.
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History
In the early 1960’s, a study was designed to examine possible non-diuretic mechanisms by
which benzothiadiazines lower blood pressure - diazoxide was found to directly cause
vasodilation of blood vessels independent of diuretic actions (Rubin, et al., 1962). Early
reports, however, also demonstrated that some hypotensive drugs such as diazoxide led to
elevated blood glucose levels (hyperglycemia) (Okun, et al., 1964; F. Wolff, 1964). The
following years saw a large rise in publications, mostly related to the hypotensive and
hyperglycemic effects of diazoxide (Figure 1). Other actions, including effects on renal
excretory function, also started to emerge (Johnson, 1971; Rubin, et al., 1968). Nevertheless,
the compound became accepted for its oral use in the management of intractable
hypoglycemia and intravenously in the management of hypertensive emergencies. The
publication rate waned in the mid-1980’s. Following the identification of diazoxide
molecular effectors in pancreatic β-cells (Henquin & Meissner, 1982; Trube, et al., 1986)
and vascular smooth muscle cells (Standen, et al., 1989), a secondary rise in diazoxide-
related publications occurred (Figure 1), which was further stimulated by the mid-1990’s
findings that diazoxide has powerful cardioprotective properties (Garlid, et al., 1997; Nakai
& Ichihara, 1994).

Clinical use
In tablet form (e.g. Proglycem, FDA approved in 1976) diazoxide is prescribed orally
(usually 2 to 3 times daily) for the management of symptomatic hypoglycemia. Side effects
include shortness of breath, swelling in extremities, tachycardia, chest pain, blurred vision,
bruising or bleeding, unusual weakness; and decreased frequency of urination. Intravenously
(e.g. Hyperstat) diazoxide is indicated as a peripheral vasodilator for short-term use in the
emergency reduction of blood pressure in severe, nonmalignant and malignant hypertension
in hospitalized adults; and in acute severe hypertension in hospitalized children, when
prompt and urgent decrease of diastolic pressure is required. Diazoxide is also used to treat
hypoglycemia that results from congenital hyperinsulinism of infancy (HI) (Hussain, et al.,
2004). The mechanisms of diazoxide’s clinical action relate predominantly to opening of
pancreatic and smooth muscle KATP channels, as will be discussed in subsequent sections.

Diazoxide is cardioprotective against ischemic insults
During the treatment of patients with hypotension, early studies suggested an increase in
myocardial injury with diazoxide (e.g. chest pain and ST elevation) (Kanada, et al., 1976;
O’Brien, et al., 1975). These effects may have been related to the hypotensive action of the
drug. Most controlled animal studies to date, however, as well as in vitro studies with human
cardiac tissues, suggest that diazoxide has cardioprotective properties (Garlid, et al., 1997;
Nakai & Ichihara, 1994; Y. Wang, et al., 1999). Intrinsic adaptive physiological processes
within the myocardium render the heart more resistant to potentially lethal ischemic injury.
One of the protective phenomena is ischemic preconditioning (IPC) - the most powerful
means of delaying myocardial injury that has been identified to date (Yellon & Downey,
2003). Diazoxide is powerfully anti-ischemic and/or recapitulates the cardioprotective
effects of IPC. A full review of these studies is beyond the scope of this review and some of
these studies are highlighted in Table 1. The cardioprotective effects are observed in a
variety of species (rat, rabbit, dog and human), with ex vivo and in vivo methods and over a
concentration range of ～10–100 µM (or 1–10 mg/kg intravenously). Most studies utilize a
single dose of diazoxide. In one study, the EC25 for diazoxide’s protective effect (measured
as an increased the time to onset of contracture) in isolated rat hearts subjected to 30 min
global ischemia was reported to be ～10 µM (Garlid, et al., 1997). The K1/2 is likely to be
higher. In another study, the optimal protective concentration in isolated rat hearts subjected
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to ischemia/reperfusion was reported to be 80 µM (Y. Wang, et al., 1999). With
instrumented dogs, 80 µM (but not 8 µM) diazoxide was reported to provide partial
protection against the development of a post-ischemic infarct (Sanada, et al., 2001). The
protective effect of diazoxide is equivalent to that of ischemic preconditioning (IPC) and
diazoxide is often used as a pharmacological means to induce preconditioning. Moreover,
both the IPC- and diazoxide-induced protection is minimized by tolbutamide, HMR-1883 or
glibenclamide (sulfonylurea compounds that block various types of KATP channels
(Escande, 1989; Faivre & Findlay, 1989; Gogelein, et al., 1998; Quayle, et al., 1995; Trube,
et al., 1986)) or 5HD (often used as a mitochondrial KATP blocker, but which also has other
off-target effects; see later) (Birincioglu, et al., 1999), suggesting a causative link between
the diazoxide effector(s) and mechanism(s) involved in IPC. The purpose of this mini-
review is to highlight the multiplicity of diazoxide effectors.

Diazoxide activates pancreatic β-cell KATP channels
Diazoxide has long been recognized to be hyperglycemic by inhibiting insulin release from
pancreatic β-cells (Loubatieres, et al., 1966; Okun, et al., 1964; F. W. Wolff, et al., 1963).
The mechanism was found to be an increased membrane K+ permeability (measured with
Rb+ flux assays), leading to membrane hyperpolarization, inhibition of Ca2+ influx
(Henquin & Meissner, 1982) and diminished insulin secretory release. Shortly after the
discovery of cardiac KATP channels (Noma, 1983; Trube & Hescheler, 1984), similar
channels in the pancreatic β-cell were found to be responsible for the diazoxide-induced
increase of K+ permeability (Trube, et al., 1986). The diazoxide-sensitivity of the pancreatic
β-cell KATP channel is high (K1/2 of 7–20 µM; Table 2), which is in the same concentration
range as the drug’s cardioprotective benefit (Table 1). Pancreatic β-cell KATP channels are
unlikely to be involved in diazoxide’s cardioprotective effects when using ex vivo
preparations (e.g. isolated hearts). In patients, however, or when using diazoxide with in
vivo experimental approaches, the possibility must be considered that diazoxide may elevate
blood glucose levels, which in turn may influence the ischemic outcome. Provision of
glucose, together with insulin and potassium (GIK), has clear beneficial effects during
ischemia (Opie, 1975) but the benefit of increasing glucose levels alone is questionable
(LaDisa, et al., 2004; Spath, et al., 1976).

Diazoxide activates smooth muscle KATP channels
The hypotensive properties of diazoxide have been described over 50 years ago (Rubin, et
al., 1962). As is the case for other KATP channel openers (Gross, et al., 1989; Quayle, et al.,
1997; S. Sakamoto, et al., 1989), the vasodilatory effects of diazoxide in vascular smooth
muscle is due to opening of vascular KATP (or KNDP) channels (Standen, et al., 1989), which
leads to local relaxation in smooth muscle due to an increased membrane K+ permeability,
subsequent inhibition of excitability, lowered cytosolic Ca2+ and relaxation. Patch clamp
data demonstrated that the diazoxide sensitivity of smooth muscle KATP/KNDP channels is in
the same concentration range as that of pancreatic β-cell KATP channels (Table 2). KATP
channels have a pronounced role in controlling coronary blood flow and the coronary
reserve, particularly in the resistance arterioles (Akai, et al., 1995; Sato, et al., 1994). At
2.5mg/kg (within the cardioprotective concentration range; Table 1) intravenous diazoxide
causes a 180% increase in coronary flow in anesthetized dogs (Scott & Cowley, 1969). In
some studies diazoxide was noted to improve coronary flow, which is associated with
cardioprotection, in perfused hearts (Feng, et al., 2002; Garlid, et al., 1997; Suzuki, et al.,
2003), despite the fact that the coronary flow reserve is low in crystalloid-perfused hearts
(Deng, et al., 1995; Masuda, et al., 1994). In a study with barbiturate-anesthetized dogs,
administration of diazoxide (2.5mg/kg) prior to 30 min of regional ischemia and 1h
reperfusion almost doubled the transmural myocardial perfusion in the ischemic region
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(measured with labeled microspheres) (Alcindor, et al., 2004). Thus, improved cardiac
perfusion (local or global) may possibly account for at least some of the cardioprotective
effects of diazoxide.

Does diazoxide activate ‘cardiac’ sarcolemmal KATP channels?
Before addressing this question, it would be instructive to examine the mechanism by which
diazoxide opens KATP channels. KATP channels are heterooctamers of four Kir6.1 and/or
Kir6.2 subunits in complex with SURx subunits (Nichols, 2006). Two genes (ABCC8 and
ABCC9) respectively give rise to SUR1 and SUR2 subunits, each of which may be
alternatively spliced. The most commonly described splice variants studied are SUR1,
SUR2A and SUR2B (Nichols, 2006). When comparing the effects of diazoxide on Kir6.2/
SUR1, Kir6.2/SUR2A or Kir6.2/SUR2B channels, it was found that the effects of diazoxide
depend on the cytosolic ADP levels (Matsuoka, et al., 2000). Each of the subunit
combinations were activated by diazoxide, but the activation of Kir6.2/SUR2A was only
observed at elevated ADP levels. Thus, under basal conditions and when intracellular ADP
levels are low, diazoxide potently activates SUR1-containing channels (such as the
pancreatic β-cell KATP channel) or channels with SUR2B (smooth muscle KATP channel),
which would explain the drug’s history of acting on these channels. The inability of
diazoxide to activate Kir6.2/SUR2A (the prototypic cardiac KATP channel combination
(Babenko, et al., 1998)) under basal conditions has also been observed by others (Garlid, et
al., 1993), which led to the erroneous consensus that cardiac KATP channels are insensitive
to diazoxide. At an elevated cytosolic ADP level of 100 µM, the SUR2A/Kir6.2 channel
attains the same diazoxide sensitivity as the Kir6.2/SUR1 channel. Moreover, cardiac KATP
channels are readily activated by diazoxide in the presence of a creatine kinase inhibitor
(which elevates cytosolic ADP) (D’Hahan, et al., 1999). Since cytosolic ADP levels are
substantially elevated during early ischemia (Ramani, et al., 1996), the possibility must be
considered that cardiac KATP channels are de facto effectors of diazoxide during the
ischemic period and that they may participate in the drug’s cardioprotective actions. Indeed,
diazoxide leads to more pronounced shortening of the action potential during the first 10
min of ischemia in an isolated rat heart (Garlid, et al., 1997; Suzuki, et al., 2003) and KATP
channels open more readily during metabolic inhibition in myocytes pre-incubated with
diazoxide (Rodrigo, et al., 2004). Moreover, the preconditioning-like protection of diazoxide
is prevented by HMR-1883 (Birincioglu, et al., 1999; Suzuki, et al., 2003; Tanno, et al.,
2001), a blocker with putative selectivity for ‘the cardiac sarcolemmal KATP channel’
(Gogelein, et al., 1998) (but see (H. X. Zhang, et al., 2011)). Also, the ability of diazoxide to
improve post-ischemic functional recovery is lost in Kir6.2 deficient mice (Suzuki, et al.,
2003; Wojtovich, et al., 2013), which lack sarcolemmal KATP channels (Suzuki, et al.,
2001). These arguments provide strong evidence that sarcolemmal KATP channels are
diazoxide effectors. Apart from the fact that diazoxide may affect Kir6.2/SUR2A channels
(under ischemic conditions), recent progress has questioned the contention that ‘the’ cardiac
KATP channel is necessarily comprised of these two subunits. There is a report of a novel
diazoxide-sensitive 22 pS conductance KATP channel in rat ventricular myocytes (Wu, et al.,
2007). KATP channels in rodent atria (Baron, et al., 1999; Flagg, et al., 2008), human
ventricle (Fedorov, et al., 2011) and the rodent cardiac conduction system (Bao, et al., 2011)
all have a high sensitivity to diazoxide (presumably due to the presence of SUR1 or SUR2B)
and the contribution of these channels to cardioprotection and arrhythmias should be
considered when assessing effectors of diazoxide.

Diazoxide activates mitochondrial KATP channels
A K+ selective ion channel, blocked by ATP with an IC50 of 800 µM, was initially described
in the inner membrane of fused giant mitoplasts prepared from rat liver mitochondria using
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patch clamp methods (Inoue, et al., 1991). A similar mitochondrial KATP (mKATP) channel
was recorded when purified membranes of rat liver or bovine heart were reconstituted in
lipid bilayer membranes (Bednarczyk, et al., 2005; Nakae, et al., 2003; Paucek, et al., 1992;
D. X. Zhang, et al., 2001). Patch clamping of the inner mitochondrial membrane of human
T-lymphocytes also demonstrated the existence of a mKATP channel that is blocked by
millimolar concentrations of ATP (Dahlem, et al., 2004). Some studies, however, failed to
find mKATP channels in the mitochondrial inner membrane (Antonenko, et al., 1994;
Brustovetsky, et al., 2005). Despite initial reports suggesting the presence of KATP channel
subunits (Kir6.x and SURx) in mitochondria, the current consensus appears to be that these
subunits do not comprise the mKATP channel (Wojtovich, et al., 2013; H. Zhang, et al.,
2009). Recent developments implicate novel, short-form, SUR2 splice variants and Kir1.1
subunits as potential subunit candidates (Foster, et al., 2012; Ye, et al., 2009). The mKATP
channel is activated by the cromakalim analog EMD60480 in the nanomolar range (EC50 of
6 nM) and diazoxide in the micromolar range (2.3–27 µM; Table 2; also see (Nakae, et al.,
2003)). Other patch clamp data, however, failed to demonstrate activation of mKATP
channels by 50 µM diazoxide (Dahlem, et al., 2004). Diazoxide (10 µM) directly increases
K+ fluxes in isolated mitochondria, as measured with the surrogate monovalent flux carrier,
thallium (Tl+) (Wojtovich, et al., 2013). The diazoxide concentrations needed to open
mKATP channels are within the cardioprotective range (Table 1) and are similar to that
needed to open other KATP channels (Table 2). The activation of KATP channel opening by
diazoxide can be antagonized with 5-hydroxydecanoate (5HD) (Nakae, et al., 2003; D. X.
Zhang, et al., 2001), which is therefore often employed as a mKATP channel-selective
blocker (Garlid, et al., 1997). However, care should be employed when using this compound
since some studies report no (or an unusually slow and irreversible) block of mKATP
channel by 5HD (Choma, et al., 2009; Dahlem, et al., 2004). Moreover, 5HD may have
other off-target effects (e.g., cardiac mitochondria can directly metabolize 5HD (Hanley, et
al., 2002; Suleiman, et al., 2001)). The selectivity of diazoxide to affect only mKATP
channels is increasingly being questioned (Jaggar, et al., 1993; Li, et al., 2010; Moritani, et
al., 1994; Notsu, Ohhashi, et al., 1992; Notsu, Tanaka, et al., 1992; K. Sakamoto, et al.,
1998; Szewczyk, et al., 2010). Given the electrogenic nature of the mKATP channel, the
expectation is that the mitochondrial membrane potential (ΔΨm) may be affected by its
opening. Mixed results exist in this regard, with some results indicting no effect, with others
suggesting depolarization of the ΔΨm (Table 3). Interestingly, the depolarizing effect of 10
µM, but not 100 µM diazoxide, is blocked by 5-hydroxydecanoic acid (5HD), which the
authors interpreted as non-specific effects at the higher diazoxide concentrations (Murata, et
al., 2001). A similar conclusion was reached by others, suggesting that at >50 µM, diazoxide
has mitochondrial effects that are independent of mKATP channels (Kowaltowski, et al.,
2001). Interestingly, ΔΨm depolarization induced by anoxia/reoxygenation or reactive
oxidant species is prevented by diazoxide (Table 3). Since maintenance of ΔΨm is essential
for ATP synthesis, this may be a potential protective or anti-ischemic effect.

Diazoxide improves mitochondrial function
As early as 1969, diazoxide has been recognized as an inhibitor of the mitochondrial
complex II protein, succinate dehydrogenase (SDH) (Schafer, et al., 1969). This inhibition,
which is also observed in heart (Hanley & Daut, 2005; Hanley, et al., 2002), occurs at
concentrations often used to study cardioprotection (K1/2=32 µM; Table 1) and similar to
those affecting other diazoxide effectors (Table 2). As expected, SDH inhibition by
diazoxide leads to increased flavoprotein fluorescence (Schafer, et al., 1971) (but see
(Lawrence, et al., 2001)) with a K1/2 of 27 µM (Y. Liu, et al., 1998). It is possible that the
cardioprotective effect of diazoxide is due at least partly to SDH inhibition since other SDH
inhibitors (e.g. thenoyltrifluoroacetone) are also cardioprotective (Duda, et al., 2007). The
mechanisms by which SDH inhibition is cardioprotective are under active investigation and
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may relate to partial uncoupling of oxidative phosphorylation (Kopustinskiene, et al.,
2003),53. Indeed, short-term administration of 2,4-dinitrophenol (DNP), an uncoupler of
oxidative phosphorylation, induces preconditioning-like cardioprotection (Minners, et al.,
2000), an effect that is independent of KATP channel activation (Rodrigo, et al., 2002). Since
the mitochondrial effects of diazoxide are dependent on the metabolic substrate used and do
not persist in the absence of K+ (B. Liu, et al., 2010; Riess, et al., 2008), this also argues
against a KATP channel-mediated response. Experiments with other approaches further
demonstrated that transient (or partial) inhibition of the oxidative phosphorylation may serve
as a mechanism to reduce I/R injury (Stottrup, et al., 2010). The activity of SDH, coupled
with the coenzyme Q cycle, is a site of generation of reactive oxygen species (Demin, et al.,
1998) and the possibility has been raised that diazoxide and other SDH inhibitors mediate
(at least some of) their cardioprotective effects via modulation of ROS production (Carroll,
et al., 2001; Drose, et al., 2011; Dzeja, et al., 2003; Pain, et al., 2000; Pasdois, et al., 2008;
Terzic, et al., 2000). Additionally, diazoxide has been demonstrated to protect mitochondrial
energetic function and prevent swelling during metabolic stress (Dos Santos, et al., 2002;
Iwai, et al., 2000; Ozcan, et al., 2001), partly by preventing Ca2+-dependent inhibition of
oxidative phosphorylation (Holmuhamedov, et al., 2012). Whatever the underlying
molecular mechanism(s), it is clear that improved mitochondrial function must be
considered as an important diazoxide effector in cardioprotection.

Are endothelial KATP channels involved?
Although diazoxide can cause vasodilation in the absence of an intact endothelium (Antoine,
et al., 1992), several reports indicate the endothelium to be another diazoxide target (Feleder
& Adler-Graschinsky, 1997). In humans, plethysmography recordings of forearm blood flow
demonstrated that endothelial function is impaired by ischemia (induced by blood pressure
cuff inflation), which is prevented by IPC or diazoxide pre-administration (800 µg/min for
20 min) (Broadhead, et al., 2004). Post-ischemic endothelial dysfunction also occurs in
animal models, and can be minimized by IPC or diazoxide-preconditioning (Duda, et al.,
2006; Pagliaro, et al., 2003). Although excessively high diazoxide concentrations were used
in some of these studies, the coronary endothelium is in fact exquisitely sensitive to
diazoxide: it causes endothelial hyperpolarization in the sub-micromolar concentration range
and Ca2+ oscillations have been reported to occur with concentrations as low as 100 nM
(Langheinrich, et al., 1998; White & Hiley, 2000). KATP channels in the endothelium are
established to contribute significantly to coronary function (Ishizaka & Kuo, 1997; Janigro,
et al., 1993; Kuo & Chancellor, 1995; Q. Liu & Flavahan, 1997; Malester, et al., 2007;
Schnitzler, et al., 2000; von Beckerath, et al., 1996). The endothelial KATP channels are
thought to be composed of Kir6.1 and Kir6.2 in combination with the diazoxide-sensitive
SUR2B subunit (Jansen-Olesen, et al., 2005; Schnitzler, et al., 2000; Yoshida, et al., 2004)
(Table 2). Activation of these channels by diazoxide (Schnitzler, et al., 2000) may be partly
responsible for the observed electrophysiological effects. It is unclear at present how
diazoxide leads to protection against endothelial dysfunction. Mitochondrial energetics and
mKATP channel activation may contribute, but the changes in membrane potential and
cytosolic Ca2+ suggest that other ion channels (particularly endothelial KATP channels) may
also be involved. KATP channel-mediated endothelial hyperpolarization may be propagated
to the coronary smooth muscle through connexin-mediated myo-endothelial electrical
communication (Murai, et al., 1999). It is also possible that endothelial KATP channel
opening (and associated changes in cytosolic Ca2+) may benefit the secretion of vasoactive
substances such as nitric oxide (Luckhoff & Busse, 1990; H. Wang, et al., 2007), which has
an established cardioprotective role (Downey, et al., 2007). It should be a priority of future
experiments to investigate these possibilities.
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Diazoxide regulates neurotransmitter release
A novel role for KATP channels has been described in the sympathetic nervous system,
where it was found that norepinephrine (NE) release is inhibited by active KATP channels
(Oe, et al., 1999). The data supporting this finding are that KATP channel openers (including
100 µM diazoxide) inhibit NE release as well as the increase in atrial rate induced by
electrical stimulation of the sympathetic ganglion (Mohan & Paterson, 2000; Oe, et al.,
1999). In contrast, KATP channel blockers had the opposite effects. KATP channels also are
involved in neurotransmitter release from parasympathetic nerves. Acetylcholine (Ach) is
synthesized and released in the central nervous system as well as from autonomic ganglia in
the peripheral nervous system and in postganglionic parasympathetic neurons. In the heart,
vagal nerve stimulation causes Ach release, which slows the heart rate by G-protein-
mediated activation of Kir3.x channels (Coetzee, et al., 1999). It was found that Ach-release
evoked by electrical stimulation of isolated guinea pig atria was stimulated by KATP channel
blockers, suggesting a role for negative feedback of KATP channels in exocytotic processes
in these neurons (Kilbinger, et al., 2002). Importantly, 30 µM diazoxide significantly
reduced the stimulation-evoked release of [3H]acetylcholine. Interestingly, Ach release of
neurons in the ileum is affected similarly by KATP channel activity (Zini, et al., 1991),
whereas mesenteric neurons are not affected by KATP channel modulation (Kilbinger, et al.,
2002; Schworer & Kilbinger, 1989). These observations suggest diversity of KATP channels
in various neuronal compartments, which remains to be studied. The KATP channels in
dorsal vagal neurons have been suggested to be composed of Kir6.2/SUR1 channels
(Karschin, et al., 1998) (as in the pancreas), which raises issues of potential cardiovascular
side-effects of sulphonylurea treatment in the setting of diabetes. The study of the molecular
composition of the KATP channels in sympathetic and parasympathetic neurons and the
molecular mechanisms responsible for coupling KATP channel activity to exocytotic release
await more refined tools (such as mice lacking KATP channels in specific tissue
compartments). Moreover, the pathophysiological consequences of modulating
neurotransmitter release by diazoxide in the context of ischemia and cardioprotection remain
a fertile area for future investigation. Interestingly, depletion of presynaptic nerve terminals
of their NE stores with reserpine (a monoamine transporter blocker) results in the failure of
ischemic preconditioning protocols to be cardioprotective (Toombs, et al., 1993), suggesting
that the NE release is critical to preconditioning-mediated protection. The ability of
diazoxide to stimulate NE release from sympathetic nerve endings must therefore be
considered when evaluating the cardioprotective actions of the compound.

Other diazoxide effectors
Other than those discussed above, diazoxide affects the functions of several other proteins
and biological processes. For example, in the cardioprotective range, 100 µM diazoxide
causes a significant increase in ATPase activity in purified cardiac membranes isolated from
guinea pig hearts (Bienengraeber, et al., 2000). Stimulation of mitochondrial ATPase
activity has also been reported (Dzeja, et al., 2003; Portenhauser, et al., 1971), which is due
to stimulation of the F0F1 ATP synthase (Belisle & Kowaltowski, 2002). The mechanism
appears to be that diazoxide stabilizes Mg-ADP bound in the catalytic site (possibly within
the nucleotide binding fold) of the β subunit of the mitochondrial ATP synthase (Contessi, et
al., 2004). A similar mechanism has been reported for activation of KATP channels by
diazoxide (Bienengraeber, et al., 2000). Thus, the possibility should be considered that
stabilization of Mg-ADP complexes at nucleotide binding folds might be a general action of
diazoxide.

Diazoxide also affects other ion channels. For example, inhibition of voltage gated inward
and outward currents has been reported in CA1 hippocampal neurons (Erdemli & Krnjevic,
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1995). Direct effects of diazoxide on cardiovascular ion channels have not yet been reported.
Interestingly, however, pharmacological preconditioning ith 100 µM diazoxide strongly
reduces the cardiac L-type Ca2+ channel density and the amplitude of cytosolic Ca2+

transients (Gonzalez, et al., 2010). It remains to be determined to what extent cardiovascular
ion channels (other than KATP channels) are affected by diazoxide-induced preconditioning.
There are also reports that diazoxide may act to open the mitochondrial permeability
transition pore (Katoh, et al., 2002). Non-channel mediated actions of diazoxide have also
been reported. For example, 100 µM diazoxide was reported to induce translocation of PKC-
ε from the cytosol to mitochondria in H9c2 cells. Moreover, diazoxide-induced flavoprotein
oxidation was inhibited by PKC-ε inhibition and transfection with wild type PKC-ε
mimicked the flavoprotein-oxidizing effect of diazoxide). These data led the authors to
conclude that the primary effect of diazoxide is PKC-ε activation (Kim, et al., 2006), which
has known cardioprotective properties (Steinberg, 2012). Diazoxide also attenuates swelling
of isolated rabbit ventricular myocytes during metabolic inhibition (Al-Dadah, et al., 2007).

Conclusion
A drug does not have to be selective in order to be effective. It has been argued that an ideal
drug may be one whose efficacy is not solely based on a single target, but rather on
rebalancing several biological effectors/process that contribute to the etiology, pathogeneses,
and progression of diseases (i.e. a promiscuous drug) (Mencher & Wang, 2005). Diazoxide
appears to be such as a drug: while it is clear that diazoxide has potent cardioprotective
properties, a review of the literature shows that diazoxide has multiple effectors that may
synergistically contribute to its cardioprotective properties (Figure 2). Diazoxide is,
however, neither specific nor selective. The specificity of diazoxide (defined here as the
capacity of a drug to have a unique action) is questionable since it affects blood pressure,
blood glucose levels and contributes to cardioprotection. Diazoxide also lacks selectivity
(defined here as the ability of a drug to affect a particular molecular target in preference to
others) since it affects several types of KATP channels and also have other off-target effects.
Moreover, the diazoxide sensitivities of these various effectors are similar (and within the
range of concentrations used for most studies when examining cardioprotection). Care
should be taken when referring to diazoxide as having specificity or selectivity to a
particular biological process or effector (e.g. an ion channel) and the reader is urged to
consider the multiplicity of diazoxide’s effectors when evaluating the cardioprotection
literature.
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Figure 1.
The number of PubMed citations returned when searching with the keyword “diazoxide”.
The data are binned over the time period 1960–2013. The inset shows the structural formula
for diazoxide.
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Figure 2.
A cartoon summary of the main potential effectors of diazoxide, depicting some of the
potential mechanisms by which they may contribute to cardioprotection. NO is nitric oxide,
NE is norepinephrine and Ach is acetylcholine. For details and concentrations at which
diazoxide affects these targets, please refer to the text and the Tables.
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Table 1

Diazoxide is cardioprotective

Preparation Procedure Result Concentration

Isolated rat hearts 25 minutes of global ischemia and
30 minutes of reperfusion

Diazoxide and cromakalim
increased the time to onset of
contracture and improved post-
ischemic functional recovery

11–30 µM (Garlid, et al.,
1997)

In vivo rabbits 30 min of regional ischemia and 3
h of reperfusion

Diazoxide administered before
ischemia reduces infarct size

10 mg/kg (Baines, et al.,
1999)

Langendorff-perfused rat hearts Diazoxide pretreatment prior to
40 minutes ischemia and 30
minutes of reperfusion

Diazoxide improved left
ventricular end-diastolic pressure,
LDH release and coronary flow
after I/R

1–100 µM (80 µM is optimal)
(Y. Wang, et al., 1999)

Langendorff-perfused rabbit hearts Diazoxide pretreatment prior to
30 minutes ischemia and 60
minutes of reperfusion

Reduction in infarct size and
improved mitochondrial function

100 µM (Miura, et al., 2000)

In vivo rabbits 30 min of regional ischemia and 3
h of reperfusion

Diazoxide administered before
ischemia reduces infarct size

1 mg/kg (Ockaili, et al., 1999)

In vivo rats 30 min of regional ischemia and 2
h of reperfusion

Diazoxide administered before
ischemia reduces infarct size

10 mg/kg iv (Fryer, et al.,
2000)

Human right atrial specimens 90 min ‘ischemia’ and 2h
‘reperfusion’

Less CK leakage in diazoxide
group

100 µM (Ghosh, et al., 2000)

Isolated rabbit hearts 30 min of regional ischemia and 2
h of reperfusion

Diazoxide administered before
ischemia reduces infarct size

100 µM (S. Wang, et al.,
2001)

Isolated mouse hearts 20 min of global ischemia and 1 h
of reperfusion

Improved post-ischemic
functional recovery

100 µM (Suzuki, et al., 2003)

Isolated mouse hearts 30 min of global ischemia and 1 h
of reperfusion

Diazoxide administered before
ischemia improved functional
recovery and reduced infarct size.
The protection was blunted in
Kir6.2(−/−) mice

30 µM (Wojtovich, et al.,
2013)

Isolated mouse hearts 40 min of global ischemia and 30
minutes of reperfusion

Diazoxide IV administration 24 h
prior to ischemia improves post-
ischemic functional recovery

7 mg/kg (Y. Wang, et al.,
2001)

Open-chest pig 30 min of regional ischemia and 3
h of reperfusion

Diazoxide administered before
ischemia reduces infarct size

3.5 mg/kg (Schwartz, et al.,
2002)

Open-chest beagle dogs 90 min of regional ischemia and 6
h of reperfusion

Diazoxide partially decreased
infarct size

80 µM (Sanada, et al., 2001)
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Table 2

Effectors of diazoxide

Target Effect Concentration (K1/2)

Mitochondrial KATP channel Opens 2–27 µM (Garlid, et al., 1993; Y. Liu, et al., 2001; Wojtovich, et al.,
2013)

Pancreatic β-cell KATP channel Opens 7–20 µM (Trube, et al., 1986; Zunkler, et al., 1988)

Kir6.1/SUR1 or Kir6.2/SUR1 channels Opens 10 µM (Y. Liu, et al., 2001)

Smooth muscle Relaxation 7–20 µM (Mahmoudian & Mirkhani, 1998; Newgreen, et al., 1990)

Rabbit mesenteric KATP channel Opens 37 µM (Quayle, et al., 1995)

Kir6.1/SUR2B channels Opens 60 µM (Inagaki, et al., 1995)

Ventricular KATP channels Cytosolic ADP is needed
(D’Hahan, et al., 1999)

Kir6.2/SUR2A channels Cytosolic ADP is needed
(D’Hahan, et al., 1999;
Matsuoka, et al., 2000)

Succinate dehydrogenase Inhibition 32–49 µM (Dzeja, et al., 2003; Schafer, et al., 1969)

Pharmacol Ther. Author manuscript; available in PMC 2014 November 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Coetzee Page 23

Table 3

Effects of diazoxide on mitochondrial membrane potential (Δψm)

Preparation Concentration Method Result

Isolated rat cardiac myocytes 200 µM TMRE fluorescence No effect on Δψm (Lawrence, et al., 2001)

Isolated guinea-pig ventricular myocytes 100 µM TMRE fluorescence No effect on Δψm (Hanley, et al., 2002)

Cultured human atrial-derived cardiocytes 30 µM JC-1 fluorescence No effect on Δψm (Carroll, et al., 2001)

Cultured hippocampal neurons 30 µM TMRE fluorescence Depolarize Δψm (D. Liu, et al., 2002)

Isolated mitochondria from piglet brain 50–500 µM TMRE fluorescence Depolarize Δψm (Busija, et al., 2005)

Isolated rat cardiac mitochondria 500 µM TMRE fluorescence Depolarize Δψm (Katakam, et al., 2007)

Permeabilized rabbit ventricular myocytes 10–100 µM TMRE fluorescence Depolarize Δψm (Murata, et al., 2001)

Rat heart mitochondria >50 µM TPP+-selective electrode Depolarize Δψm(Kowaltowski, et al., 2001)

Isolated rat cardiac myocytes 100 µM TMRE fluorescence aPrevents ROS-mediated Δψm depolarization (Jin,
et al., 2012)

Neonatal rat cardiac myocytes 20–200 µM TMRE fluorescence Prevents H2O2-mediated Δψm depolarization
(Akao, et al., 2001)

Cultured neonatal rat cardiac myocytes 100 µM JC-1 fluorescence Protects against Δψm depolarization induced by
anxoxia/reoxygenation (Xu, et al., 2001)

Cultured H9c2 cells 50 µM TMRE fluorescence Prevents Δψm depolarization induced by hypoxia/
reoxygenation (Mykytenko, et al., 2008)

a
The intervention used was intermittent laser illumination of a 15 min period.
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