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The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been 

used for thousands of years for both recreational and medicinal purposes. In the past two 

decades, characterisation of the body‟s endogenous cannabinoid (CB) (endocannabinoid, eCB) 

system (ECS) has highlighted activation of central CB1 receptors by the major pCB, 
9
-

tetrahydrocannabinol (
9
-THC) as the primary mediator of the psychoactive, hyperphagic and 

some of the potentially therapeutic properties of ingested cannabis. Whilst 
9
-THC is the most 

prevalent and widely studied pCB, it is also the predominant psychotropic component of 

cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this 

regard, research focus has recently widened to include other pCBs including cannabidiol 

(CBD), cannabigerol (CBG), 
9
tetrahydrocannabivarin (

9
-THCV) and cannabidivarin 

(CBDV), some of which show potential as therapeutic agents in preclinical models of CNS 

disease. Moreover, it is becoming evident that these non-
9
-THC pCBs act at a wide range of 

pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted 

include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of 

feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, 

where available, clinical trial data that support therapeutic effects. Such developments may 

soon yield the first non-
9
-THC pCB-based medicines. 
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Abbreviations 

AD, Alzheimer's disease; AED, anti-epileptic drugs; AEA, arachidonylethanolamide; 2-AG, 2-

arachidonylglycerol; CBC, cannabichromene; CBD, cannabidiol; CBDV, cannabidivarin; CB, 

cannabinoid; CBG, cannabigerol; CBN, cannibinol; DAGL , diacylglycerol lipase ; eCB, 

endocannabinoid; FAAH, fatty acid amide hydrolase; FST, forced swim test; GPCR, G-protein-

coupled receptor; HD, Huntington‟s disease; 6-OHDA, 6-hydroxydopamine; iNOS, inducible 

nitric oxide synthase; IN, interneuron; LPS, lipopolysaccharide; MES, maximal electroshock; 

MAGL, monoacyl glycerol lipase; MS, multiple sclerosis; NO, nitric oxide; NRS, numerical 

rating scale; PD, Parkinson's disease; pCB, phytocannabinoid; PC, Purkinje cell; rCBF, regional 

cerebral blood flow; SAD, seasonal affective disorder; SCE, standardised cannabis extract; 

SPST, stressful public-speaking test; TST, tail suspension test; 
9
-THC, 

9
-

tetrahydrocannabinol; 
9
-THCV, 

9
tetrahydrocannabivarin; TRP, transient receptor potential; 

TH+, tyrosine hydroxylase positive. 
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1. Introduction 

This review focuses on the emerging potential of phytocannabinoids (pCBs) to act as novel 

therapeutic agents in CNS disorders, in particular, as assessed by the use of preclinical in vivo 

animal models of CNS disease and available clinical trial data. Cannabis has been used 

medicinally and recreationally for thousands of years with early documentation of medicinal 

use in Chinese pharmacopoeias (Li & Lin, 1974) and the Indian Atharva Veda which accords 

cannabis status as one of five sacred plants (Touw, 1981). Early texts on herbal medicines were 

summarized by Dioscorides in ~60 A.D. and by Galen, who wrote of cannabis in the 2
nd

 

century A.D. in his De facultatibus alimentorum, “The leaves of this plant cure flatus – some 

people squeeze the fresh (seeds) for use in ear-aches. I believe that it is used in chronic pains”. 

Cannabis appeared in the 1788 New England Dispensatory, which retained large elements of 

Dioscorides herbal pharmacopoeia. Work of the 19
th

 century Irish physician, William 

O‟Shaughnessy, introduced medicinal use of cannabis to the UK (O'Shaughnessy, 1840), 

benefiting from the ascribed analgesic, anti-inflammatory, anti-emetic and anti-convulsant 

properties of the plant. However, medicinal use of cannabis fell out of favour in the early 20
th

 

century, largely due to concerns about psychoactivity and effects on behaviour, motor co-

ordination and memory and learning; such concerns lead to cannabis being removed from the 

British Pharmacopoeia in 1932 (Ashton, 2001; Kalant, 2001; Robson, 2001). However, it was 

still possible for UK physicians to prescribe cannabis for specific medicinal uses up to 1973, 

until prohibition by the Misuse of Drugs Regulation; in the current iteration of this Act (1985), 

cannabis is classified in Schedule 1, meaning that therapeutic use is effectively prohibited 

(Moffat, 2002). 

Despite these restrictions, interest in the pharmacology and potential therapeutic use of 

pCBs was engendered by the isolation of Δ
9
-THC and the subsequent discovery of other pCBs 

(Gaoni & Mechoulam, 1971; Mechoulam, 2005). Thereafter, the development of synthetic CB 

receptor ligands, such as Pfizer‟s CP55,940 in the 1980s, led to the identification of specific Δ
9
-

THC binding sites in the human CNS (Herkenham et al., 1990) and the identification and 

cloning of the first CB receptor, CB1 (Matsuda et al., 1990). These findings contributed to the 

discovery of the endocannabinoid (eCB) system (ECS) (a term introduced by Di Marzo & 

Fontana, 1995), which comprises the cannabinoid (CB) receptors, eCBs as their endogenous 
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ligands and the proteins responsible for eCB synthesis and degradation. Shortly thereafter, a 

second, principally peripheral, cannabinoid CB2 receptor was identified in 1993 (Munro et al., 

1993). Around the same time, arachidonic acid-derived, endogenous CB receptor ligands were 

identified, with the discovery of arachidonylethanolamide (AEA; Devane et al., 1992) and 2-

arachidonylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura et al., 1995). The first eCB 

degrading enzyme to be cloned was fatty acid amide hydrolase (FAAH; Cravatt et al., 1996), 

with a number of further degradation and synthetic enzymes being identified shortly afterwards 

(Patricelli & Cravatt, 2001); these enzymes have become a major target for therapeutic 

manipulation (Di Marzo, 2008, 2009). The discovery and characterisation of the ECS 

subserved a resurgence of interest in the pharmacological effects of the individual pCBs (Izzo 

et al., 2009; Pertwee, 2008). 

Despite the therapeutic potential afforded by the discovery of the ECS, licensed pCB-

based medicines have largely been restricted to the use of Δ
9
-THC in a subset of chronically ill 

patients. Synthetically produced Δ
9
-THC and its analogues are used clinically as dronabinol 

and nabilone, both used for attenuation of cancer chemotherapy-induced nausea and vomiting 

and appetite stimulation in HIV/AIDS patients. The widespread use of Δ
9
-THC is limited by 

psychoactivity and the associated abuse potential. Δ
9
-THC is a partial agonist at CB1 receptors 

whilst, by contrast, the anti-obesity agent, rimonabant, was the first clinically licensed CB1 

receptor antagonist. However, as a result of psychiatric side effects (depression and suicidality) 

reported following usage of higher doses (Christensen et al., 2007), rimonabant sales were 

suspended in 2008. Sativex (an approximately 1:1 mixture of Δ
9
-THC:CBD) is the first 

medicine derived from whole cannabis plant extracts to be licensed (at present in the UK, 

Canada, Spain, Germany, Denmark and New Zealand); specifically, to treat pain and spasticity 

in multiple sclerosis (MS) patients (Barnes, 2006; Perras, 2005). Most pertinently, the 

introduction of Sativex provided a precedent for the licensed therapeutic use of pCBs, a theme 

that will be further investigated here. The combination of CBD and 
9
-THC in Sativex is 

considered to reduce unwanted effects of 
9
-THC (Russo & Guy, 2006), most likely by CBD 

inhibiting the metabolism of 
9
-THC to the more psychoactive 11-OH-

9
-THC (Bornheim & 

Grillo, 1998), and there is evidence that CBD can oppose 
9
-THC effects in vivo (Malone et 

al., 2009; Vann et al., 2008). Thus, Sativex is an important development as it reduces 
9
-THC 
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central actions to produce a drug which is more tolerable and less prone to abuse (Schoedel et 

al., 2011). In this regard, it is also possible that 
9
-THC efficacy could be enhanced by 

„entourage‟ effects of other pCBs  present in the 
9
-THC and CBD extracts of which Sativex is 

comprised (Russo, 2011). Overall, the investigation of alternative, non-
9
-THC pCBs which 

lack psychotropic effects, but retain pharmacological activity, and the elucidation of their 

mechanisms of action has increasingly become a focus of the pharmaceutical industry and their 

potential to combat CNS disease is the major focus of this review. 

 

2. Synthesis and production of phytocannabinoids 

pCBs are lipid-soluble chemicals present in the resin secreted from trichomes that are 

abundantly produced by female plants of the Cannabis sativa herb. It is worth highlighting that 

pCBs are not so named because they share a common pharmacological target site or 

mechanism of action to eCBs and synthetic CBs, but due to their shared chemical structure. 

Within the plant, pCBs are synthesised from fatty acid precursors via a series of transferase and 

synthase enzymes (Figure 1). The two major pCBs, 
9
-THC and CBD, are derived from a 

common synthetic precursor, cannabigerol (CBG). From a pharmacochemical perspective, 

whilst 
9
-THC and CBD have pentyl side chains, major homologues are 

9
-

tetrahydrocannabivarin (
9
-THCV) and cannabidivarin (CBDV) respectively, with propyl side-

chains, derived from cannabigerovarin (CBGV). As discussed below, despite only small 

differences in chemical structure, these compounds appear to exhibit markedly different 

pharmacological properties. Other pCBs, such as cannabinol (CBN), are considered to be 

oxidation products. All pCBs are uniquely found in cannabis, with the total number of 

identified pCBs currently reported as over 100 (together with over 500 non-cannabinoid 

constituents; Elsohly & Slade, 2005; Mehmedic et al., 2010). The plant can be genetically 

manipulated to alter the relative ratios of the pCBs produced. Whilst this exploitable feature has 

been capitalised upon by the recreational drug market as a means to increase 
9
-THC yields, it 

is only more recently that the approach has been successfully used to develop a legitimate 

medicinal product. Thus, it is possible to use solely horticultural techniques to produce cloned 

plants („chemovars‟) which are uniformly enriched in different, specific pCBs (de Meijer et al., 

2003). Analogous to pharmaceutical synthesis of drug material, these processes follow FDA 
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botanical guidelines (Food and Drug Administration, 2004) to transform a raw material into a 

botanical drug substance as an active pharmaceutical ingredient, which can then be formulated 

into a botanical drug product, such as the standardised cannabis extracts (SCEs) used in 

Sativex. Importantly, modulation of the ratio of specific pCBs in different SCEs may not only 

offer therapeutic potential dependent on the nature of the target disease, but also provide a 

viable intellectual property model to justify pharmaceutical industry development of cannabis-

based medicines. 

 

3. Phytocannabinoid molecular targets and mechanisms of actions 

3.1. The endocannabinoid system (ECS)  

The detailed characterisation of the ECS, including the molecular determination of CB receptors 

and the metabolic pathways and actions of eCBs, initially provided a useful framework to 

discuss pCB actions. CB receptor activity can be modulated directly by ligand binding, or 

indirectly, via modulation of eCB levels (for example by enzyme inhibition). CB1 and CB2 

receptors are seven-transmembrane spanning proteins of the rhodopsin G-protein-coupled 

receptor (GPCR) family A, sharing 44% sequence identity overall with 68% identity in their 

transmembrane domains (Munro et al., 1993; Pertwee et al., 2010). The pertussis toxin-sensitive 

nature of CB receptor-induced adenylyl cyclase inhibition suggested a predominant coupling to 

inhibitory G i/o subunits (Felder et al., 1993). Within the CNS, CB1 receptors are largely 

localized to presynaptic terminals, particularly in the cerebral cortex, hippocampus, cerebellum 

and basal ganglia, with little evidence of postsynaptic expression (Herkenham et al., 1990; Tsou 

et al., 1998). Activation of presynaptic CB1 receptors, via the retrograde release of eCBs 

produced by postsynaptic cells following periods of sustained excitation (Alger & Kim, 2011), 

causes a inhibition of neurotransmitter release and dynamically modulates both excitatory and 

inhibitory neuronal activity in the CNS (Chevaleyre et al., 2006; Ma et al., 2008; Guggenhuber 

et al., 2010). Recent studies have identified CB2 protein and mRNA at sites in the CNS (Van 

Sickle et al., 2005; Onaivi et al., 2006). CB2 receptors are expressed in the CNS on astrocytes, 

microglia and cerebromicrovascular endothelial cells (Golech et al., 2004; Nunez et al., 2004; 

Rivers & Ashton, 2010) and such expression could play a role in pathogenesis and treatment of 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Rivers%20JR%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Ashton%20JC%2522%255BAuthor%255D
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conditions involving neuroinflammation and neurodegeneration (Arevalo-Martin et al., 2008; 

Cabral & Griffin-Thomas, 2009). 

It is becoming apparent that pCBs exhibit a considerable range of affinities for the CB1 

receptor (Figure 2; Kreitzer & Stella, 2009; Pertwee, 2008; Pertwee et al., 2010). Δ
9
-THC is 

believed to exert the majority of its actions in the CNS as a partial agonist at CB1 receptors 

(Howlett, 2002). Amongst other pCBs, Δ
9
-THCV is one of the few compounds known to exert 

direct and relatively potent effects at CB receptors, leading to its description as a CB1 antagonist 

(although with evidence of CB1 agonist properties at higher doses (>10 mg/kg in vivo)) and, also, 

a potent CB2 receptor partial agonist (Thomas et al., 2005; Dennis et al., 2008; Ma et al., 2008; 

Pertwee, 2008; Bolognini et al., 2010). Interestingly, CBD shows only low CB receptor binding 

affinity (Bisogno et al., 2001; Pertwee, 2008; Jones et al., 2010; Figure 2), but has been shown to 

antagonise the action of synthetic CB ligands at CB1 and CB2 receptors (Pertwee et al., 2002; 

Thomas et al., 2007). In general, current knowledge for actions of other pCBs at CB receptors 

remains incomplete; however, CBG has been reported to exhibit only low CB receptor potency 

(Figure 2; Cascio et al., 2010), but antagonises the effects of CB1 ligands in [
35

S]GTP S binding 

assays (Cascio et al., 2010). Moreover, recent pharmacological evidence has shown that the CB1 

receptor contains an allosteric binding site (Price et al., 2005; Horswill et al., 2007) and the 

allosteric CB1 receptor antagonist, PSNCBAM-1 exerts agonist-dependent effects on inhibitory 

synaptic transmission in the CNS (Wang et al., 2011). The identification of an allosteric CB1 site 

promises to drive the characterisation and development of novel probes and drug candidates, 

although any potential for pCBs to act via such sites is not known as yet. Overall, whilst these 

studies demonstrate that selected pCBs (i.e. Δ
9
-THC and Δ

9
-THCV) exert effects via direct 

interaction with CB receptors, other pCBs thus far investigated exhibit an alternative, but 

potentially therapeutically exploitable, pharmacology (Izzo et al., 2009). 

More recent evidence has revealed that pCBs can exert effects via modulation of eCB 

tone in the CNS. The principal targets so far identified are the 2-AG biosynthetic enzyme, 

diacylglycerol lipase  (DAGL ), and the catabolic enzymes, FAAH and monoacyl glycerol 

lipase (MAGL), predominantly responsible for AEA and 2-AG hydrolysis, respectively (Di 

Marzo et al., 2005). A number of prominent non-Δ
9
-THC pCBs show micromolar potency as 

ECS enzyme inhibitors in vitro: CBDV inhibits DAGL  CBD inhibits FAAH whilst CBG and 
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cannabichromene (CBC) inhibit MAGL (Watanabe et al., 1996; Rakhshan et al., 2000; Bisogno 

et al., 2001; De Petrocellis et al., 2011). In a related fashion, micromolar concentrations of CBG, 

CBC, CBDV and CBN all inhibit cellular uptake of AEA (De Petrocellis et al., 2011). Whilst the 

functional effects of pCBs on eCB tone and their pharmacological relevance remain to be fully 

determined, this evidence suggests that pCB effects in the CNS are not limited to components of 

the ECS and such distinctions are discussed below. 

 

3.2. Non-CB receptors and ion channel targets of pCBs  

In addition to effects on the ECS, evidence arising from pharmacological experiments in 

recombinant cell lines and CB receptor knock-out animals strongly supports pCB actions at 

alternative, non-CB receptor sites. Orphan GPCRs, most notably GPR55 and GPR119, have 

been identified as potential novel CB receptors on the basis of affinity for some CB ligands 

(Pertwee, 2007; Ross, 2009; Pertwee et al., 2010). However, it is not yet clear whether GPR55 

is a bona fide CB receptor, as it possesses low sequence homology to CB1 and CB2 and the 

endogenous phospholipid, lysophosphatidylinositol, also has affinity for the receptor 

(Nevalainen & Irving, 2010; Sharir & Abood, 2010). There are, thus far, limited reports of pCB 

activity at GPR55; for example, 
9
-THC has a weak agonist effect, whilst reports of CBD as a 

GPR55 antagonist appear to be largely assay-dependent (Pertwee et al., 2010). 

  An interesting emerging concept is that pCBs can also activate non-CB metabotropic 

GPCRs. In particular, CBD has been widely reported to act as a 5-HT1A agonist (Russo et al., 

2005; Magen et al., 2010; Ledgerwood et al., 2011) and also to have actions sensitive to 

adenosine A2A receptor antagonists (Magen et al., 2009). Another recent study has shown that 

CBG is an agonist at α2-adrenoceptors and an antagonist at 5-HT1A receptors (Cascio et al., 

2010). It is also becoming clear that pCBs have the potential to affect neuronal excitability via 

the modulation of ligand-gated and voltage-gated ion channels (Pertwee, 2008; Pertwee et al., 

2010). In particular, recent studies have highlighted the effects of a number of pCBs, including 

CBD, CBG, CBC and CBN, at different transient receptor potential (TRP) (ligand-gated non-

selective cation) channels. CBD has been widely reported to activate TRPV1 and TRPV2 

channels (Costa et al., 2004; De Petrocellis et al., 2008; Qin et al., 2008); interestingly, TRPV1 

co-localises with CB1 receptors in mouse brain (Cristino et al., 2006). More recently, CBG, 
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CBGV and 
9
-THCV have also been shown to activate TRPV1 channels (De Petrocellis et al., 

2011). Similarly, 
9
-THC, CBD, CBGV, CBG, 

9
-THCV and CBDV have all been shown to 

activate rat TRPV2 channels (De Petrocellis et al., 2011). pCB effects at TRPV1 and TRPV2 

channels typically manifest at low micromolar concentrations, which does question, but not 

exclude, their pharmacological relevance; for example, reported actions included channel 

desensitization, akin to the proposed therapeutic action for agonists such as capsaicin. CBD, 

CBC, and CBN are more potent (nanomolar concentration) agonists at rat TRPA1 channels and 

also desensitise the channel (De Petrocellis et al., 2011). CBD, CBG, CBN, 
9
-THCV, CBDV 

and CBGV (at low micromolar concentrations) all also act as antagonists at rat TRPM8 

channels (De Petrocellis et al., 2011). CBD has also been demonstrated to act at ligand-gated 

receptors, being a putative allosteric inhibitor of 5-HT3A receptors (Yang et al., 2010) and an 

allosteric and direct activator of inhibitory glycine receptors (Ahrens et al., 2009; Foadi et al., 

2010). There is growing evidence that synthetic CBs and eCBs can modulate voltage-

dependent Ca
2+

, K
+
 and Na

+
 channels (Demuth &Molleman, 2006; Oz, 2006; Pertwee et al., 

2010); at present, evidence for similar pCB actions at ion channels is limited. However, Δ
9
-

THC and CBD have recently been shown to inhibit CaV3.1, CaV3.2 and CaV3.3 (T-type) Ca
2+

 

channels (Ross et al., 2008). Therefore, both ligand-gated and voltage-dependent ion channels 

may be targeted by pCBs and it will be important to augment such studies using in vitro 

electrophysiology to determine the functional effects of pCBs on neuronal excitability and 

whether such effects are seen at pharmacologically relevant concentrations. 

 

3.3 Neuroprotection and CNS immune function 

pCBs are known to protect neurons from neurotoxic stimuli or neurodegeneration via a range of 

properties which may include ligand action at CB receptors, innate antioxidant properties and 

effects on the CNS immune system. 
9
-THC has been shown to possess CB1-dependent 

neuroprotective effects in excitotoxicity assays in vitro (Abood et al., 2001; Gilbert et al., 2007) 

and in vivo (Chen & Buck, 2000; van der Stelt et al., 2001; El-Remessy et al., 2003; Zani et al., 

2007). However, several studies have highlighted CB receptor-independent mechanisms by 

which 
9
-THC and other pCBs can protect neurons. Most clearly described is the antioxidant 

capacity of pCBs. A study in 1998 first highlighted the CB1 receptor-independent antioxidant 
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properties of 
9
-THC and CBD (Hampson et al., 1998), demonstrating their ability to protect rat 

cortical neurons from glutamate receptor-mediated excitotoxicity, which is known to be 

mediated by reactive oxygen species. El-Remessy et al. (2003) showed that both 
9
-THC and 

CBD protected rat retinal neurons against NMDA-induced neurotoxicity in vivo, decreasing 

levels of peroyxnitrite and associated oxidative stress-related compounds.  

pCBs are also able to modulate immune cells and the production of immune factors in the 

CNS in experimentally-induced models of neurodegenerative disorders. The primary immune 

cells in the CNS are microglia which provide support to neural cells; in neurodegenerative 

diseases, microglia are co-localised to sites of neuronal death (Ramirez et al., 2005; Lull & 

Block, 2010). Agonism of CB2 receptors on microglia attenuates their further activation (Carrier 

et al., 2004; Kreitzer & Stella, 2009; Stella, 2010), limiting ability of microglia to release pro-

inflammatory agents including tumour necrosis factor  and nitric oxide (NO) (Ehrhart et al., 

2005; Ramirez et al., 2005). Correspondingly, the agonist properties of both 
9
-THC and 

9
-

THCV at CB2 receptors have been implicated in neuroprotection in vivo (Tourino et al., 2010; 

Garcia et al., 2011). CBD has also been shown to be anti-inflammatory by limiting ATP-induced 

increases in intracellular Ca
2+

 levels and NO production in cultured microglial cells (Martin-

Moreno et al., 2011). An anti-inflammatory effect of CBD was also observed in 

lipopolysaccharide (LPS)-injected mice due to inhibition of adenosine uptake (Carrier et al., 

2006); a similar effect was seen in vitro and in rat retina insulted by LPS (Liou et al., 2008). 

Production of pro-inflammatory cytokines by LPS–stimulated cultured microglial cells was 

inhibited by CBD via a decreased activity of NF- B, but increased activation of STAT3 (Kozela 

et al., 2010). Additionally, CBD decreased inducible nitric oxide synthase (iNOS) expression 

and TNF  levels in a mouse model of LPS-induced inflammation (Ruiz-Valdepenas et al., 

2011).  

In summary, it is clear that pCBs exhibit a range of apparently neuromodulatory, 

neuroprotective, anti-oxidant and anti-inflammatory properties, including effects on biochemical 

pathways that could complement their effects on receptors, ion channels and enzymes to achieve 

an overall therapeutic aim. The utility of such effects is discussed hereafter in an examination of 

pCB effects in animal models of CNS disease and human clinical trials. 
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4. Effects of phytocannabinoids in CNS disorder, disease and dysfunction 

4.1 Phytocannabinoids in the treatment of epilepsy and hyperexcitability disorders  

4.1.1.Historical background 

Cannabis has played a historical role in the treatment of hyperexcitability disorders, a 

prominent example being epilepsy, where the first evidence of therapeutic use was attributed to 

the Arabic scholar al-Mayusi in 1100AD (Lozano, 2001), although additional evidence to 

support such use can be found in both Ayurvedic and Islamic medicine (Russo, 2005; Russo 

2007). Cannabis use was again noted in the 15
th

 century, when the historian Ibn al-Badri wrote 

that when “the epileptic son of the caliph's chamberlain” was treated with cannabis “it cured 

him completely, but he became an addict who could not for a moment be without the drug” 

(Mechoulam, 1986), a predictable consequence given the chronic, progressive nature of 

epilepsy. Thereafter, it was not until after William O‟Shaughnessy successfully treated seizures 

in an infant using cannabis tincture (O'Shaughnessy, 1840) that further reports emerged 

describing attempts to use cannabis to treat seizures (McMeens, 1856, 1860; Reynolds, 1868). 

  In the 1970s, effects of several common cannabis constituents on seizure states were 

further examined using the maximal electroshock (MES) model (Karler et al., 1973; Karler et 

al., 1974b; Turkanis et al., 1974). These early studies revealed an order of potency of 
9
-

THC>CBD>CBN although, interestingly, the authors asserted that CBD had the greatest 

protective index, comparable to the, then widely used, anticonvulsant phenobarbital (for review, 

see Karler & Turkanis, 1981; Karler & Turkanis, 1976). These studies supported a number of 

small-scale human trials, individual case studies and surveys that investigated herbal cannabis 

and isolated pCB use for seizure control (Table 1). Whilst these studies stimulated a limited 

number of pre-clinical investigations (Chiu et al., 1975; Karler et al., 1974a; Smiley et al., 

1976; Thomson & Turkanis, 1973; Turkanis et al., 1977; Turkanis & Karler, 1975; Turkanis & 

Karler, 1981a; Turkanis & Karler, 1987; Turkanis et al., 1991; Turkanis et al., 1979), the 

complex nature of epilepsy and the diverse model- and species-specific effects of cannabis (and 

individual pCBs) rendered the elucidation of mechanisms of action difficult, particularly in the 

case of 
9
-THC, upon which attention had been largely focussed (Martin & Consroe, 1978; 

Consroe & Fish, 1980). 
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 The renewed interest in potential therapeutic applications of pCBs included 

investigations using in vitro models of epileptiform activity (Wilkinson et al., 2003; Whalley et 

al., 2004) and, subsequently, in vivo models of seizure. 
9
-THC clearly affects seizure states 

and susceptibility in preclinical models (Lutz, 2004; Boggan et al., 1973) via well-known 

effects at central CB1 receptors (Shen & Thayer, 1999). However, 
9
-THC (and other CB1 

agonists) often exhibit contradictory pro- and anti-convulsant effects in clinical cases (Table 1) 

and preclinical models (Karler & Turkanis, 1980; Turkanis & Karler, 1981b; Turkanis & Karler, 

1982; Consroe & Mechoulam, 1987; Wallace et al., 2001; Fish et al., 1983). Together with 

psychotropic side effects, such contradictory effects likely limit or prohibit 
9
-THC‟s 

widespread therapeutic use as an isolated agent. However, many surveys continue to report 

medicinal cannabis use for the control of seizures, which lends credence to an overall 

conclusion that the presence of 
9
-THC in SCEs per se does not necessarily represent a de 

facto pro-convulsant risk. Moreover, in some clinical cases (Table 1), 
9
-THC at higher doses 

can be an effective anticonvulsant, but is limited by extensive psychoactive side-effects. 

Overall, whilst the variability of 
9
-THC‟s effects may represent a limiting factor, growing 

evidence supports attenuation of undesirable 
9
-THC effects by pCB- and non-pCB 

components of cannabis (Russo, 2011), so improving its therapeutic index and legitimising the 

case-by-case use of 
9
-THC-based medicines (e.g. „medical marijuana‟) against seizures, as is 

currently the case in Canada and some US states.  

 

9
-tetrahydrocannabivarin (

 9
-THCV) in hyperexcitability 

9
-THCV has demonstrated interesting potential for use in the treatment of hyperexcitability 

states. Following identification and characterisation of 
9
-THCV as a CB1 receptor antagonist 

(Thomas et al., 2005; Dennis et al., 2008), the increase of inhibitory synaptic transmission in 

cerebellar brain slices represented the first description of functional
9
-THCV effects in the 

CNS (Ma et al., 2008). In the latter study, 
9
-THCV (5-58 M) significantly increased 

GABAergic transmission at interneuron-Purkinje cell (IN-PC) synapses in patch clamp 

electrophysiological recording; complementary use of multi-electrode array (MEA) recording 

demonstrated that 
9
-THCV significantly reduced spontaneous unit and multi-unit PC spike 

firing (Figure 3; Ma et al., 2008). 
9
-THCV modulated the effects of the CB agonist 
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WIN55,212-2 and 
9
-THCV actions were abolished by the GABAAR antagonist, bicuculline. 

Overall, these data were consistent with 
9
-THCV antagonising CB1 receptors at IN-PC 

presynapses to increase inhibitory neurotransmission (either via a blockade of eCB action or by 

attenuation of constitutive CB1 activity) leading to a reduction in PC excitation. The ability of 

9
-THCV to modulate PC output contrasts with the well-known adverse (partial) agonist 

effects of 
9
-THC, which induces deficits in motor coordination in vivo (DeSanty & Dar, 

2001a; DeSanty & Dar, 2001b; Patel & Hillard, 2001), a reported effect of cannabis 

intoxication. From the perspective of hyperexcitability states, the effects of 
9
-THCV in 

increasing inhibition in the cerebellum is consistent with a desirable pharmacological profile 

for use in spinocerebellar ataxias, a progressive and presently pharmacologically untreatable 

group of hyperexcitability disorders (Paulson, 2009), although pre-clinical in vivo animal 

studies in this specific therapeutic area have yet to be undertaken.  

More recently, 
9
-THCV was reported to exhibit in vitro anti-epileptiform and in vivo 

anticonvulsant properties (Hill et al., 2010a). In this study, 
9
-THCV (>20 M) significantly 

reduced burst complex incidence and the amplitude and frequency of paroxysmal depolarizing 

shifts (PDSs) induced by use of Mg
2+

-free media (which activates excitatory glutamatergic 

NMDA receptors) in piriform cortical brain slices; 
9
-THCV also inhibited the propagation of 

this epileptiform activity. This investigation also showed that pre-incubation of piriform 

cortical slices with 10 M 
9
-THCV significantly reduced neuronal excitability in response to 

Mg
2+

-free media, consistent with the hypothesis that exposure to 
9
-THCV may be 

prophylactic in preventing hyperexcitability. In the pentylenetetrazole model of acute 

generalised seizures, 
9
-THCV (0.25 mg/kg) significantly reduced seizure incidence, although 

failing to affect other commonly employed seizure measures (Hill et al., 2010a). It has been 

shown recently that in vivo seizure states may be disrupted as a result of a CB1 agonist-

mediated desynchronisation of pathological neuronal firing (Mason & Cheer, 2009), similar 

desynchronisation could also hold true for CB1 antagonist-mediated blockade of eCB tone; 

such a hypothesis is consistent with known 
9
-THCV effects upon the propagation of 

epileptiform activity (Hill et al., 2010a). 

Overall, although the concept of presynaptic CB1 receptor-mediated inhibition of 

excitatory neurotransmitter release being consistent with anti-epileptiform effects is intuitively 



 

15 

 

clear (Lutz, 2004), a mechanism underlying anticonvulsant 
9
-THCV effects, alongside other 

confirmatory and contradictory reports of synthetic CB1 antagonist effects in seizure models 

(Echegoyen et al., 2009; Kozan et al., 2009), is not immediately apparent. However, when a 

preferential CB receptor ligand effect is considered, such as that described above for inhibitory 

IN-PC synapses in the cerebellum (Ma et al., 2008) or excitatory terminals in the hippocampus 

(Monory et al., 2006), it becomes clear that effects on neuronal excitability obtained via CB1 

modulation are likely to be highly dependent upon the sub-population of neurons (i.e. 

inhibitory or excitatory) preferentially affected (Lutz, 2004). 

 

4.1.3 Cannabidiol (CBD) in hyperexcitability 

CBD remains the only isolated, non-
9
-THC pCB to have been investigated for anticonvulsant 

effects in human subjects to date (Table 1). As early as 1977, CBD effects upon seizure states 

in animals were investigated using MES and audiogenic seizures and compared with those of 

standard anti-epileptic drugs (AEDs) including phenytoin, phenobarbital, carbamazepine, and 

ethosuximide (Consroe & Wolkin, 1977a). CBD (>100 mg/kg) administered alone was an 

effective anticonvulsant in both seizure models, but had differential effects when co-

administered with standard AEDs, enhancing the anticonvulsant effects of phenytoin or 

phenobarbital, but diminishing the effects of chlordiazepoxide, clonazepam, trimethadione or 

ethosuximide (Consroe & Wolkin, 1977a; Consroe & Wolkin, 1977b). A potential advantage of 

CBD is that, unlike 
9
-THC, no evidence of contradictory central excitatory or pro-convulsant 

effects exists (Chiu et al., 1979). In electrically kindled limbic seizures in rats, CBD (0.3-3 

mg/kg) raised epileptic after-discharge threshold in a manner consistent with the known effects 

of phenytoin in this model, but, in common with the effects of ethosuximide, also decreased 

after-discharge amplitude, duration and propagation (Turkanis et al., 1979). It is notable that, 

compared to phenytoin and ethosuximide, the authors concluded that “CBD was the most 

efficacious of the drugs tested against limbic ADs [after-discharges] and convulsions”. CBD 

had a selective depressant effect upon evoked cortico-limbic responsiveness in non-epileptic 

states (Turkanis & Karler, 1981a). CBD (60 mg/kg) had no discernible effect in rats rendered 

chronically epileptic by cortical implantation of cobalt, which manifests as partial seizures with 

secondary generalisation (Colasanti et al., 1982), whilst 
9
-THC was found to exert a short 
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term (~1 day) anticonvulsant effect. It is however noteworthy that cobalt-induced seizures share 

many common features with human absence seizures (Loscher, 1997) and, as such, have little 

in common with seizure models in which CBD exerts a significant anticonvulsant effect. Such 

model-specific effects were also exemplified using a battery of acute models of seizures 

induced by agents that included MES, 3-mercaptoproprionic acid, picrotoxin, isonicotinic acid 

hydrazine, bicuculline, pentylenetetrazole and strychnine (Consroe et al., 1982). Here, CBD 

(50-400 mg/kg with most notable effects occurring at >100 mg/kg) was equally effective in the 

MES and all GABA inhibition-based models, but entirely ineffective against strychnine-

induced convulsions. 

More recently, CBD effects upon chemically-induced epileptiform activity in acute 

hippocampal brain slices have been described (Jones et al., 2010). Here, CBD significantly 

reduced measures of spontaneous epileptiform activity induced either by use of Mg
2+

-free 

media, or by the application of the K
+
 channel blocker, 4-aminopyridine. In the Mg

2+
-free 

model, CBD (100 M) decreased epileptiform local field potential burst amplitude and duration. 

In the 4-aminopyridine model, CBD (100 M) decreased burst amplitude in CA1 only, burst 

duration in CA3 and dentate gyrus, and burst frequency in all regions. The same report also 

recapitulated the previous investigation of CBD effects upon pentylenetetrazole-induced, acute, 

generalised seizures (Consroe et al., 1982) and found that CBD (100 mg/kg) significantly 

decreased mortality and the incidence of the most severe seizure states. Finally, in this study, 

CBD was shown to exhibit only low affinity for CB1 receptors in radioligand binding studies 

and no agonist activity in GTP S binding assays, supporting a CB1 receptor independent 

mechanism of anticonvulsant action (Jones et al., 2010; see also Figure 2). 

Taken together, CBD exhibits the most reliable anticonvulsant effects of currently tested 

pCBs. Moreover, in contrast to clinically used anticonvulsants, CBD exhibits no neurotoxic or 

motor side-effects as assessed by standard rotarod tests (Consroe et al., 1981; Martin et al., 

1987). Overall, recent data more fully supports the proposal for CBD potential in the treatment 

of grand mal, cortical focal, partial, but not absence seizures. In this regard, CBD exhibits a 

potential useful polypharmacology that may benefit modulation of neuronal excitability (Figure 

4). In addition to the epilepsy-specific actions described above, CBD has been shown to reduce 

intracellular Ca
2+

 levels in hippocampal neurons under conditions modelling increased 
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excitability (Ryan et al., 2009). Such actions occur via an inhibitory action on mitochondria Ca
2+

 

stores and are consistent with CBD possessing further useful actions to reduce hyperexcitability 

in the CNS. 

 

4.1.4 Summary 

Overall, 
9
-THC effects in hyperexcitability disorders can be unpredictable and, based on the 

extant evidence, effects are likely to be specific to the disorder and the individual which is, 

given 
9
-THC‟s psychoactive effects and the idiopathic and/or cryptogenic natures of most 

epilepsies, unsurprising. This, together with notable side effects, limits 
9
-THC‟s widespread 

therapeutic use, although sufficient case studies have reported apparent benefit and so prevent 

the drawing of a single definitive conclusion applicable to all epilepsies. We have used 

complementary in vitro electrophysiological techniques to provide the first descriptions of non-

9
-THC pCB effects in hyperexcitability in the CNS; in particular, effects of 

9
-THCV and 

CBD have been translated into preclinical in vivo seizure models and shown to possess 

therapeutic potential. Whilst 
9
-THCV shows some promise in this regard, its clinical utility 

may be limited to pathophysiological conditions associated with CB1 receptors preferentially 

located on inhibitory synapses. By contrast, there is clearly compelling evidence to support 

further investigation of CBD effects in human hyperexcitability states, either as an adjunct or 

standalone treatment. More broadly, whilst 
9
-THCV and CBD‟s effects in seizure models cast 

new light upon the potential therapeutic use of cannabis constituents for the treatment of 

hyperexcitability disorders, it is notable that they still represent a minority of the pCBs present 

in cannabis. Consequently, further studies are required to assess whether other, as yet 

uninvestigated, pCBs modulate seizure activity from both the perspective of AED development 

and risks associated with cannabis use (Wilkinson et al., 2003; Hill et al., 2010b). In the near 

future, it will be important to extend investigations in disease models to fully determine their 

potential as therapeutic agents in their own right or their use as a structural basis for rational 

drug development, and then progress into clinical trials. 

 

4.2 Phytocannabinoids in the treatment of CNS neurodegenerative diseases 

4.2.1 Historical background 
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Neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are 

characterised by a progressive loss of viable, functional neurons within one or more regions of 

the CNS, leading to specific deficits that increase in severity as the disorder progresses. A strong 

neuroinflammatory response is also observed in AD and PD (Lee et al., 2010; Qian et al., 2010) 

and is characterised by activation of microglia and the release of inflammatory agents. This 

inflammatory response is now itself considered a significant pathological cause of 

neurodegeneration. Additionally, the autoimmune CNS disease MS is also understood to have a 

neurodegenerative element crucial to the pathology of the disease which worsens in parallel with 

the development of symptoms (Stadelmann et al., 2011). Thus, although AD, PD and MS have 

distinct aetiologies, they all exhibit both neurodegeneration and inflammation. As described 

above, cannabis has been used for many thousands of years in the treatment of a wide range of 

disorders and illnesses; the first historical uses of cannabis in a wide range of neurological 

disorders are comprehensively discussed in Russo (2007). Neuroprotective effects of cannabis 

have been suggested as early as ~1200 A.D. in India (Shou-Zhong, 1997) and more recently in 

the West when treating dementia (Reynolds, 1868). Prolonged use of an Indian hemp preparation 

was also reported to "quiet the tremor for a time" for a patient with Parkinson's in 1888 by Sir 

William Gowers (Gowers, 1888). More recently, a survey sent to PD sufferers treated at the 

Prague Movement Disorder Centre reported a benefit of cannabis in nearly half of respondents 

(Venderova et al., 2004). These reports, alloyed with the anti-inflammatory, antioxidant and 

immunomodulatory properties of several pCBs (Section 3.3) have led to preclinical research in 

animal models of neurodegenerative diseases and, in some cases, limited human trials in AD, 

HD and PD, which are outlined below. 

Whilst a significant clinical benefit of pCBs for many neurodegenerative disorders has 

yet to fully manifest, the link between cannabis and the relief of MS symptoms, primarily 

spasticity, has a richer history. The first reference to the muscle relaxant properties of cannabis 

may have been as early as the 9
th

 century A.D. (Russo, 2007), with further reports by 

O'Shaughnessy in the 19
th

 century (O'Shaughnessy, 1840). Small-scale human studies into the 

beneficial effect of cannabis and 
9
-THC on MS symptoms between 1983 and 2002 (for review 

see Rog, 2010), as well as anecdotal reports of benefits and a report from the British Medical 

Association (1997), prompted the British government to call for a large-scale clinical 
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investigation of the effects of cannabis on MS (House of Lords, 1998). Additionally, changes in 

the ECS, particularly CB1 receptor expression, have been shown to occur in human and 

experimental Parkinsonism (Silverdale et al., 2001; Hurley et al., 2003; Walsh et al., 2010) and 

Huntington‟s disease (HD) (Blazquez et al., 2011), suggesting CB1 receptors may be a target for 

drug interventions in these diseases. In the following section we discuss the extant, largely 

clinical, data regarding the effect of SCEs on MS symptoms and associated preclinical research. 

Following this, the preclinical research on pCB effects in animal models of AD, PD and HD is 

summarised, as are the limited number of relevant human studies.  

 

4.2.2 Phytocannabinoids in multiple sclerosis (MS) 

MS is a chronic, progressive disease that is most frequently diagnosed in young adults. The 

majority of patients experience acute attacks followed by months or even years of remission, 

with attacks becoming progressively more severe in later life (Compston & Coles, 2008). The 

pathological basis of MS is the formation of inflammatory, demyelinating lesions in the CNS 

with resultant axonal loss, neuronal death and sclerotic plaques result (for review, see 

Stadelmann et al., 2011). Preclinical research from animal models of MS has suggested a 

potential role for pCBs in the attenuation of inflammation and the protection of neurons at risk of 

damage. As early as 1989, 
9
-THC was reported to delay or prevent signs of symptom onset in 

the experimental allergic encephalomyelitis model of MS in mice, as well as increasing survival 

rates and decreasing neuroinflammation (Lyman et al., 1989). Recent work has indicated that 

CB1 and CB2 agonists, including 
9
-THC, can limit symptoms, relapses, axonal loss and 

neuroinflammation in rodent models of MS (Arevalo-Martin et al., 2003; Croxford & Miller, 

2003; Docagne et al., 2007; Maresz et al., 2007; Hasseldam & Johansen, 2010). 
9
-THC (10 

mg/kg) has also been reported to control spasticity in the chronic relapsing experimental allergic 

encephalomyelitis mouse model of MS via a CB1-dependent mechanism (Baker et al., 2000). 

Clinical investigation of SCEs in the treatment of MS symptoms have focussed on 

extracts with 
9
-THC and CBD as their primary active ingredients; other pCB/plant matter is 

minimised at <10%. The reader is directed to two additional reviews by Lakhan & Rowland 

(2009) and Rog (2010) for a more detailed description of these studies. The cannabinoids in MS 

study (CAMS) investigated the effects of dronabinol (Marinol, a synthetic 
9
-THC) and 
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Cannador (2.5:1.25mg 
9
-THC:CBD SCE delivered in capsule). In a randomised, large-scale, 

placebo-controlled trial, neither dronabinol nor SCE (maximum 
9
-THC dose 25mg/day) 

significant affected objective (Ashworth Scale) measures of spasticity, but strong positive 

outcomes were observed for both drugs against control as assessed by patient-reported measures 

of spasticity and pain (Zajicek et al., 2003). A one-year follow up in which patients remained on 

their treatment suggested that the patient-reported benefit is maintained (Zajicek et al., 2005). 

The pattern of strong significant improvements in patient-reported measures of spasticity 

combined with changes in objective spasticity measures in favour of the SCE, but not 

significantly so, is common for SCE clinical studies; however, a significant improvement in 

Ashworth Scale scores was reported by Vaney et al. (2004) after treatment of 57 patients for two 

weeks with a 
9
-THC/CBD SCE (maximum dose 30.8 mg/10.8 mg 

9
-THC/CBD per day).  

Sativex (2.7:2.5 mg/100 l spray marketed as Nabiximols) is delivered as an oromucosal 

spray, the benefit of which is a faster plateau of plasma concentrations compared to the oral route 

(GW Pharmaceuticals, 2001). Sativex is now licenced in a number of countries for adjunctive 

treatment of spasticity in MS, as well as for neuropathic pain in Canada. Wade and co-workers 

measured the effect of Sativex (<120 mg/day) on a variety of MS symptoms, and found that 

patient-reported (visual analogue scale) spasticity scores were significantly lowered by Sativex 

(Wade et al., 2004). A long-term open label extension found that Sativex maintained this 

beneficial effect (Wade et al., 2006). Collin et al. (2007) also reported significant improvements 

in spasticity as measured by a patient-reported daily numerical rating scale (NRS) score of 

spasticity, the primary endpoint. Secondary outcomes (including Ashworth Scale outcomes) 

were non-significantly in favour of Sativex (up to 48 doses/day Sativex). Most recently, a large-

scale trial used an initial four-week single-blind Sativex regimen to identify a patient population 

that responded well to Sativex (maximum 12 sprays/day; Novotna et al., 2011). Around 40% of 

patients had spasticity NRS results that were improved by ≥20% in the first four weeks; these 

responders were randomised into a double-blind, placebo-controlled study (12 weeks), and 

Sativex was shown to significantly improved spasticity NRS scores and several other secondary 

outcomes, including spasm frequency and sleep disturbances.  

Sativex, CBD and dronabinol were each found to be effective in treating MS-related and 

neuropathic pain in a recent meta-analysis (Iskedjian et al., 2007). Additionally, one double-
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blind, randomised placebo-controlled five-week trial reported a significant effect of Sativex in 

alleviating MS-related pain (maximum 48 sprays/day; Rog et al., 2005). This effect was 

maintained without signs of tolerance in an open-label, uncontrolled two year extension that 

recruited participants from the previous trial (Rog et al., 2007). Further investigation into 

whether pCBs can alter the progression of MS in addition to effectively ameliorating symptoms 

could provide further justification for cannabis-based treatments for this disease, such 

investigations are currently in progress in the CUPID (Cannabinoid Use in Progressive 

Inflammatory Brain Disease) long-term (three year) study in which 493 MS patients are 

randomised to a placebo or 
9
-THC treatment group (Clinical Neurology Research Group, 

2009).  

 

4.2.3 Phytocannabinoids in Alzheimer‟s disease (AD) 

AD is the most common form of dementia, with age being a significant risk factor. AD is 

associated with the formation of neurofibrillary tangles, senile plaques and cortical atrophy (Perl, 

2010). At present, there is limited preclinical data regarding the effects of pCBs in animal 

models of AD. A single in vitro study has suggested that 
9
-THC competitively inhibits 

acetylcholinesterase (Eubanks et al., 2006), a therapeutic strategy that is approved to treat mild 

to moderate AD (Ellis, 2005). Iuvone and colleagues have shown that CBD (≥0.1 M) decreases 

levels of -amyloid-associated reactive oxygen species and lipid peroxidation in PC12 cells and 

in vivo (Iuvone et al., 2004). Extending these studies, Esposito et al. (2006) demonstrated that 

CBD (≥1 M) attenuated a -amyloid-induced increase in iNOS, also decreasing levels of p38 

MAP kinase and NF- B, both of which are involved in the response to oxidative stress. The 

same group showed that CBD (2.5 and 10 mg/kg) attenuated the -amyloid inflammatory 

response in vivo by limiting iNOS and IL-1  expression (Esposito et al., 2007). More recently, 

Martin-Moreno et al. (2011) have shown that CBD (20 mg/kg) can limit microglial activation in 

in vitro and in vivo models of AD.  

In line with limited preclinical data available at present, there is no published data 

describing clinical effects of pCBs on human AD (Krishnan et al., 2009), with the exception of a 

single, small (six subject), open-label, non-placebo controlled study which reported that synthetic 

9
-THC (dronabinol; 2.5 mg/day) alleviates night-time agitation in patients with AD or vascular 
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dementia (Walther et al., 2006). Reports of CBD effects on in vitro and preclinical in vivo 

models of AD, allied with the high tolerability of CBD in humans, suggest that further 

investigation of therapeutic potential is merited in AD, particularly given that seizures are a 

common symptom of AD (Leppik & Birnbaum, 2010) that could also benefit from the 

anticonvulsant effects of CBD described previously. 

 

4.2.4 Phytocannabinoids in Parkinson‟s disease (PD) 

PD is primarily a movement disorder characterised by bradykinesia, tremor at rest and rigidity. 

The death of nigral dopaminergic neurons that innervate the striatum and modulate motor 

behaviour is responsible for these motor symptoms, resulting in a loss of tyrosine hydroxylase 

positive (TH+) neurons in the substantia nigra and reduced dopamine levels in the striatum. 

Neuropsychiatric symptoms are also common, as are sleep disturbances (for review, see Hindle, 

2010). The effects of CB receptor ligands and pCBs on neuronal death, motor symptoms and 

inflammation have been widely investigated in preclinical animal models of Parkinsonism and 

there is evidence that pCBs can provide symptomatic relief and neuroprotection from 

experimentally-induced Parkinsonism.  

Evidence for the efficacy of 
9
-THC in ameliorating motor symptoms in PD models is 

mixed. Meschler et al. (2001) found that 
9
-THC (>1 mg/kg) exacerbated of Parkinson-like 

bradykinesia induced by administration of MPTP, a toxin that kills dopaminergic neurons, into 

the substantia nigra in cynomolgus monkeys. By contrast, 
9
-THC (~4mg/kg) caused 

improvement in both activity and hand-eye coordination in MPTP-treated marmosets (van Vliet 

et al., 2008). The contrasting results could be explained by the use of different monkey species, 

MPTP- and 
9
-THC-dosing regimens, and clinical measures of Parkinsonism. In MPTP-treated 

marmosets, CB receptor agonism by the synthetic 
9
-THC analogue (nabilone, ≥0.1mg/kg) has 

been reported to decrease L-DOPA-induced dyskinesias (Fox et al., 2002). Rats that received 

daily treatment with 
9
-THC or CBD (both 3 mg/kg) for 2 weeks post-lesion had significantly 

higher levels of TH mRNA and dopamine ipsilateral to the lesion compared to vehicle-treated 

animals in the 6-hydroxydopamine (6-OHDA) model of PD (Lastres-Becker et al., 2005). This 

neuroprotective effect is likely to be CB1-independent, due instead to the antioxidant capacity of 

pCBs (Garcia-Arencibia et al., 2007).  
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9
-THCV has an attractive range of properties in relation to PD, 

9
-THCV is likely to 

share the neuroprotective antioxidant properties possessed by other pCBs and can act as a CB2 

agonist in vivo (Bolognini et al., 2010; Pertwee, 2008), and can therefore affect microglial 

activation; additionally, 
9
-THCV is a CB1 antagonist, and the CB1 antagonist SR141716A (0.1 

mg/kg) has been shown to ameliorate motor symptoms in animal models of Parkinsonism 

(Gonzalez et al., 2006; Garcia-Arencibia et al., 2008; Kelsey et al., 2009). Acute administration 

of 
9
-THCV (2 mg/kg) has recently been shown to improve motor performance in the 6-OHDA 

model of Parkinsonism in rat (Garcia et al., 2011); 
9
-THCV increased striatal glutamate, but not 

dopamine, levels in a manner consistent with CB1 antagonism. In the same study, chronic 
9
-

THCV (2 mg/kg) administration partially protected TH+ cells from 6-OHDA-induced death, 

attenuated microglial activation and also exerted a significant neuroprotective effect on nigral 

TH+ neurons in the LPS model of PD in mice. The LPS model exhibits greater CB2 up-

regulation than the 6-OHDA model; the effectiveness of a CB2-specific agonist and the 

exacerbation Parkinsonism in mice lacking CB2 receptors suggest 
9
-THCV may be 

neuroprotective in a CB2-dependent manner in this model (Garcia et al., 2011).  

Investigation of the effects of cannabis and pCBs in human PD is limited. Small-scale 

human studies have investigated the effect of nabilone (Sieradzan et al., 2001) and Cannador 

(Carroll et al., 2004) on dyskinesias caused by the most common PD treatment, L-DOPA. Whilst 

nabilone (0.03 mg/kg) was reported to significantly improve dyskinesias in pilot trial in 7 

patients as assessed by the Rush Dyskinesia Scale (Sieradzan et al., 2001), two patients withdrew 

due to adverse side-effects. Cannador (maximum 
9
-THC dose of 0.17 mg/kg/day) had no effect 

on dyskinesia as assessed by several parameters, although it was well-tolerated, possibly due to 

an earlier dose escalation study to determine suitable dosages (Carroll et al., 2004). CBD alone 

(≤400 mg/day) has been reported as effective in the treatment of PD-associated psychosis over 

four weeks of treatment in six consecutive patients presenting with three or more months history 

of psychosis (Zuardi et al., 2009), consistent with findings that CBD is an anti-psychotic (Zuardi 

et al., 2006). However, a study primarily concerned with dystonia found that CBD (>300 

mg/day) aggravated Parkinsonism in two patients (Consroe et al., 1986). The Venderova et al. 

(2004) survey referred to previously represents the most promising finding regarding PD and 

human use of cannabis. A quarter of respondents reported cannabis (predominantly oral, not 
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smoked) use for PD symptom relief. Nearly half (45.9%) described a mild or substantial 

alleviation of symptoms above that provided by their prescribed treatment. Of these individuals, 

significant numbers reported improvements in resting tremor (30.6%) and bradykinesia (44.7%), 

14.1% also reported alleviation of L-dopa-induced dyskinesia. 4.7% reported a worsening in 

symptoms (Venderova et al., 2004). This study, whilst a simple survey, indicates that further 

work is merited. 

The use of pCBs in the treatment of various facets of preclinical experimentally-induced 

Parkinsonism appears promising. Specifically, although at an early stage of investigation, the 

combined properties of 
9
-THCV (antioxidant, CB1 receptor antagonist, CB2 receptor agonist) 

hold promise in combating neurodegenerative, immunological and motor function symptoms of 

PD; the anti-inflammatory and antioxidant properties of CBD are also attractive. The current 

clinical evidence is very limited in scope, and therefore whilst findings are not uniformly 

positive, more extensive human studies are required to ascertain whether preclinical promise can 

be translated into treatments for this age-dependent, poorly-controlled disorder. 

 

4.2.5 Phytocannabinoids in Huntington‟s disease (HD) 

HD is a movement disorder that also causes cognitive and behavioural changes (for review, see 

Kumar et al., 2010). An autosomal dominant mutation of the Huntingtin protein is responsible 

for HD, causing neuronal death in the striatum and other areas of the brain, with spiny 

GABAergic neurons most affected (Gil & Rego, 2008). HD is also associated with a loss of CB1 

receptors (Blazquez et al., 2011). CBD and 
9
-THC (both 5mg/kg) were neuroprotective in the 

3-nitropropionic acid-induced striatal lesion HD model (Lastres-Becker et al., 2004; Sagredo et 

al., 2007); the effects of 
9
-THC were most likely mediated by CB1 receptors, whilst the effects 

of CBD were proposed to be due to antioxidant properties. However, daily treatment with 
9
-

THC (10 mg/kg over 8 weeks) reportedly had no effect on motor deterioration in a mouse 

transgenic model of HD (Dowie et al., 2010). 

A small clinical trial following daily CBD (300-600 mg) treatment demonstrated an 

improvement in HD symptoms in 1 of 4 participants (Sandyk et al., 1989); however, a double-

blind randomised placebo-controlled crossover trial in 15 HD patients showed no significant 

effect of CBD (10 mg/kg/day, 6 weeks) on chorea severity (Consroe et al., 1991). More recently, 
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a randomised, double-blind crossover placebo-controlled trial with 37 patients investigating the 

effects of the synthetic 
9
-THC analogue nabilone (1-2 mg) showed no effect on the primary 

outcome (the Unified Huntington's Disease Rating Scale), but some evidence of improvement in 

chorea and neuropsychiatric outcomes (Curtis et al., 2009). As with other disorders, further 

clinical research is required into the effects of pCBs in HD to elucidate the potential benefits. 

The recent finding that loss of striatal CB1 receptor expression may be an important factor in the 

pathogenesis of HD (Blazquez et al., 2011) indicates that the ECS system is a rational target for 

HD treatment, which may include pCB-based medicines. 

 

4.2.6 Summary 

The ability of a combination of 
9
-THC and CBD to decrease symptoms associated with MS has 

led to the introduction of Sativex, the first licensed pCB drug. Moreover, there is increasing 

preclinical evidence that indicates pCBs may also be of benefit in treating the development of 

several neurodegenerative disorders; in particular, CBD‟s ability to modulate immune cell 

activity in the CNS and limit oxidative stress is promising and confers strong neuroprotective 

capacity. However, it should be noted that previously proposed, putative treatments for 

neurodegenerative diseases that exploit antioxidant and anti-inflammatory strategies have, in 

many cases, met with limited clinical success (Dumont & Beal, 2011; Whitton, 2010). Apart 

from the positive data gathered in the past decade on the effects of SCEs on MS symptoms, at 

present there is very little human data available on pCB effects in neurogdegenerative disorders. 

Thus, coordinated clinical trials investigating the effect of pCBs on both disease progression and 

symptom control for a range of neurodegenerative disorders are required to determine if and how 

pCBs can benefit patients with AD, HD and PD, all of which have a significant unmet clinical 

need. Encouragingly, most pCB-based treatments investigated to date, independent of the target 

disorder, appear to be well-tolerated, a promising sign for further clinical studies. Whilst most 

research has been performed on CBD, other pCBs share antioxidant capacity and may be more 

suited to specific diseases states. For example, 
9
-THCV effects in models of PD appear to limit 

both neuronal cell death and the associated immune response whilst decreasing signs of 

bradykinesia. 
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4.3. Phytocannabinoids in affective disorders 

In this section, we consider affective disorders; it is notable that pCBs also have effects in non-

affective psychosis disorders, including schizophrenia (Hallak et al., 2011), however, such 

actions are not considered here. 

 

4.3.1 Historical background 

Cannabis has been used as a treatment for mood disorders for several thousand years, with well-

documented use as a hypnotic and tranquilizer in the treatment of anxiety, mania, and hysteria 

(Mechoulam et al., 1970). Use of the plant continued into the early part of the 20
th

 Century, 

where extracts have been used for their sedative and hypnotic properties to treat insomnia, 

melancholy, mania, and delirium (Russo & Guy, 2006). However, a decline and eventual 

cessation of cannabis use in psychiatry occurred over the last 100 years due to the development 

of new and more selective hypnotic and sedative drugs with well-characterised modes of action, 

alongside prohibition of use of the plant. However, the recent isolation and identification of 

pCBs with little or no psychoactivity is of particular relevance here and gives rise to the prospect 

of new therapeutic agents which may be used for the treatment of the affective disorders.  

 

4.3.2 Phytocannabinoids in anxiety 

Cannabis use has been associated with a high prevalence of anxiety; however, individual pCBs 

have been shown to possess anxiolytic properties (Crippa et al., 2009; Crippa et al., 2011) and 

thus use of specific pCBs (or selected combinations thereof) may hold as yet unexploited, 

therapeutic potential in the treatment of anxiety disorders. 

There is evidence to suggest a significant comorbidity between cannabis use and 

prevalence of anxiety disorders. Reilly et al. (1998), using a structured interview in a rural area 

of Australia, found that 21% of long-term cannabis users reported high levels of anxiety, 

paranoia or depression. Similarly, Saban et al. (2010) investigating the relationship between 

substance misuse and psychopathology in high school students, reported a significant association 

between cannabis use and levels of anxiety. Furthermore, a recent study in Italian university 

students demonstrated a link between cannabis use and levels of anxiety which may, in turn, 

trigger risky and suicidal behaviour (Innamorati et al., 2008). In a study with 18-year-old New 
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Zealanders, it was reported that those who had smoked cannabis at least ten times between the 

ages of 15 and 16 had twice the prevalence of anxiety disorders compared to those who had 

never used the drug (Fergusson & Horwood, 1997). Likewise, in a study investigating emotion 

regulation and mental health problems, Dorard et al. (2008) found that more than half of the 

cannabis abusers reported comorbid diagnosis of CNS disorders, most commonly affecting mood 

and anxiety. 

By contrast, it has been suggested that subjects with high levels of anxiety and patients 

with anxiety disorders use cannabis as a form of “self-medication” to treat symptoms. In support, 

an elegant analysis of the US National Comorbidity Survey showed that a large proportion of 

subjects developed anxiety disorders prior to the onset of their first symptoms of cannabis 

dependence, implying that the subjects were self-administering cannabis as an anxiolytic 

medication (Agosti et al., 2002). In line with this hypothesis, Buckner & Schmidt (2008) 

examined the temporal sequencing between the onset of seasonal affective disorder (SAD), 

alcohol misuse and cannabis dependence. Using a sample of participants from the Oregon 

Adolescent Depression Project, it was reported that SAD was an independent risk factor for the 

subsequent onset of cannabis dependence (Buckner & Schmidt, 2008). Overall, whilst cannabis 

may be anxiogenic in otherwise healthy cohorts, there are clear indications of anxiolytic effects 

in sufferers of anxiety disorders 

The anxiolytic effects of CBD have been thoroughly investigated in preclinical models. 

The earliest reported study by Zuardi & Karniol (1983) showed that purified CBD (10 mg/kg) 

significantly decreased conditioned emotional responses to a stimulus in rats. Resstel & 

colleagues used a restraint stress paradigm in rats, which raises blood pressure and increases 

heart rate indicative of human anxiety behaviour, to demonstrate that CBD (1- 20 mg/kg) 

decreased acute autonomic responses (Resstel et al., 2009). Similarly, Guimaraes et al. (1990) 

showed that mice treated with 2.5-10 mg/kg (but not 20.0 mg/kg) CBD spent a greater amount of 

time in the open arm of an elevated plus maze, an effect similar to that produced by the standard 

anxiolytic agent diazepam. The anxiolytic actions of CBD have also been demonstrated in the 

mouse model of social defeat (Pistovcakova et al., 2006), the Vogel conflict test (Moreira et al., 

2006), the conditioned fear paradigm (Resstel et al., 2006) and the contextual fear memory 
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extinction paradigm (Bitencourt et al., 2008). Taken together, the results from animal studies 

suggest that CBD has anxiolytic potential. 

Preclinical data have led to a number of studies investigating possible anxiolytic actions 

in healthy and clinical human populations. An early study using healthy volunteers subjected to a 

stressful public-speaking test (SPST) showed that CBD (300 mg) reduced the volunteer‟s 

subjective anxiety to levels comparable with the standard anxiolytic, diazepam (Zuardi et al., 

1993). A follow-up study by the same group (Crippa et al., 2004) used functional neuroimaging 

to demonstrate that CBD (400 mg) significantly decreased subjective anxiety; importantly, CBD 

also significant decreased regional cerebral blood flow (rCBF) in the left hippocampal and 

parahippocampal gyrus regions, indicative of an action on limbic and paralimbic brain areas. 

Later, Fusar-Poli et al. (2009) used functional magnetic resonance imaging to investigate neural 

correlates of the anxiolytic properties of CBD, demonstrating that CBD (600 mg) reduced 

amygdala, anterior cingulate cortical and posterior cingulate cortical activity in 15 healthy 

subjects subjected to a sequence of fearful facial stimuli. A recent study substantiated the role of 

CBD, whereby increases in anxiety induced by the SPST on subjects with SAD was reduced by 

CBD (600 mg) (Bergamaschi et al., 2011). In a clinical context, Crippa et al. (2011) investigated 

the effects of CBD treatment in 10 patients with generalised SAD; CBD (400 mg) significantly 

reduced subjective anxiety and led to reduced rCBF in left parahippocampal gyrus, hippocampus 

and inferior temporal gyrus, while increasing rCBF in right posterior cingulated gyrus. The 

authors suggest that CBD produces its anxiolytic actions due its effects on activity in limbic and 

paralimbic brain areas. To date, no studies have investigated the actions of other pCBs on 

anxiety, but it seems that CBD has promise as an anxiolytic agent. The description of both 

anxiogenic and anxiolytic actions of ingested cannabis also raise the possibility that individual 

pCBs have differential effects on anxiety; for example, anxiolytic CBD may oppose the 

anxiogenic effects of 
9
-THC (Zuardi et al., 1982); such a description would fit well with the 

general concept that CBD can usefully ameliorate unwanted 
9
-THC effects discussed 

previously. 

 

4.3.3 Phytocannabinoids in depression 
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Elevation in mood and reduction in levels of stress following recreational cannabis use have been 

documented anecdotally for many years (Skolnick et al., 2001). Indeed, a recent internet survey 

comparing individuals with differing levels of marijuana use showed that those who used 

marijuana daily and those who used marijuana once per week or less reported less depressed 

mood and more positive affect than non-users (Denson & Earleywine, 2006). However, a review 

of the literature also reveals that cannabis ingestion is associated with an increased incidence of 

bipolar disorders and depression (Jarvis et al., 2008; van Rossum et al., 2009). As a result of 

these bi-directional effects research has largely focussed on understanding the role of the ECS in 

the pathogenesis and treatment of depression, rather than an investigation of the potential 

therapeutic actions of pCBs (for a recent review see Parolaro et al., 2010). Here, we will restrict 

our discussion to studies that have investigated the actions of individual pCBs in depressive 

syndromes. 

The suggestion of a potential antidepressant role for Δ
9
-THC is widespread. In the early 

1980‟s the effects of Δ
9
-THC (2.5 and 10 mg/kg delivered by paced smoking of herbal 

cigarettes) showed increases in relaxation and decreases in subjective ratings of anxiety, tension 

and depression (Ashton et al., 1981). In a clinical setting, significant antidepressant actions of 

Δ
9
-THC treatment have been documented in patients suffering advanced cancer (Regelson et al., 

1976), MS (Martyn et al., 1995; Svendsen et al., 2004) or chronic pain (Notcutt et al., 1997; 

Wade et al., 2003). However, as suggested above, evidence in support of a cannabis 

antidepressant action is equivocal. An early study by Kotin et al. (1973) reported that in 8 

hospitalized patients with moderate to severe depression, Δ
9
-THC administered for up to 7 days 

failed to exhibit any significant antidepressant response; however, the small sample size, limited 

study duration and relative severity of symptoms may hinder a firm conclusion from this study. 

A comprehensive analysis of the potential antidepressant action of isolated pCBs has 

recently been reported by El-Alfy et al. (2010), where antidepressant actions of major pCBs were 

evaluated in the forced swim test (FST) model in mouse. Compounds that showed an anti-

depressant action in the FST were additionally tested in the tail suspension test (TST). Both the 

FST and TST are standard preclinical tests used to measure the effect of antidepressant drugs. 

Classically, the results of these tests have been interpreted such that the time spent immobile is 

considered a behavioural correlate of negative mood. Treatment with 2.5 mg/kg Δ
9
-THC (but not 
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1.25 or 5.0 mg/kg) produced a significant reduction in overall immobility time in both the FST 

and TST, consistent with an antidepressant action. Interestingly, similar reductions in time spent 

immobile in both the FST and TST were also seen with CBC. Here, 20 mg/kg CBC elicited 

decreased immobility time in the FST, whilst both 40 and 80 mg/kg CBC were effective in the 

TST. Finally, 200 mg/kg CBD decreased time spent immobile in the FST, but failed to show any 

further anti-depressant actions in the TST; treatment with Δ
8
-THC, CBG or CBN failed to elicit 

any antidepressant-like actions (El-Alfy et al., 2010). Only one other study has investigated the 

actions of CBG to alleviate depression, CBG (40-80 mg/kg) produced significant reductions in 

the time spent immobile in the TST, with comparable effects to a known anti-depressant dose of 

imipramine (Musty & Deyo, 2006). Work by the same authors has also demonstrated a potential 

anti-depressant role for CBC (greatest activity seen at 40 mg/kg) using the TST (Deyo & Musty, 

2003). 

Of the non-Δ
9
-THC pCBs, CBD appears to be the most thoroughly researched for its 

antidepressant actions. However, as highlighted by El-Alfy et al. (2010), results to-date have not 

always been consistent. Following the successful demonstration that CBD administration could 

reduce the behavioural consequences of restraint stress (Resstel et al., 2009), it was further 

shown that CBD (30, but not 3, 10 or 100 mg/kg doses) increased time spent swimming in the 

FST (Zanelati et al., 2010); interestingly, pre-treatment with a 5-HT1A receptor antagonist 

blocked CBD action. Finally, in a small-scale human trial, 2 patients suffering bipolar affective 

disorder and experiencing a manic episode failed to show any improvement in symptoms in 

response to CBD treatment for 25 days (initial oral dose of 600 mg/day rising to 1200 mg/day), 

although this may reflect a differing aetiology underlying positive and negative symptoms in 

bipolar disorder (Zuardi et al., 2010). 

 

4.3.4 Summary 

These data suggest that, in the future, individual pCBs may have important therapeutic 

advantages over the ingested cannabis used in earlier studies in the treatment of affective 

disorders. At present, CBD is the most likely pCB to be translated into clinical practice due to its 

non-psychoactivity, safety and tolerability. However, long-term, double-blind, placebo-
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controlled trials with subjects suffering from different affective disorders are still necessary and 

critical for this to be realised. 

 

4.4 Phytocannabinoids and feeding-related disorders  

In this section, we will explore the actions of the pCBs on food intake, a phenomenon that is 

intimately associated with modulation of feeding circuits in the hypothalamus by the eCB system, 

at present proposed to be principally due to an action on CB1 receptors (Pagotto et al., 2006; Di 

Marzo et al., 2009). Whilst a detailed description of brain reward circuitry and interactions with 

the eCB system is beyond the scope of this article, several authors have reviewed these aspects in 

detail (Cota et al., 2003; Kirkham, 2008). It is clear that food intake may activate eCBs to 

stimulate reward pathways to engender further feeding behaviour. CB1 receptor antagonists are 

well-known anti-obesity agents (Lee et al., 2009); however, obesity per se is not a solely CNS 

disease, rather, our discussion will be related to clinical conditions such as cachexia, anorexia 

and malnutrition, including the establishment of such conditions as a consequence of diseases 

such as AIDS, cancer and AD, diseases in which a disorder of appetite is a core feature. 

 

4.4.1 Historical background 

The appetite-stimulating, orexigenic properties of marijuana have been documented as far back 

as 300 A.D. (Chopra & Chopra, 1939). However, this seemingly well-substantiated phenomenon 

was previously only sparsely supported by empirical evidence, with few detailed human studies 

and even fewer well-controlled animal studies. In an early report, Hollister (1971) demonstrated 

that a single oral dose of marijuana (containing 0.35 mg/kg Δ
9
-THC) significantly increased 

intake of milkshakes in normal, unfasted volunteers. Foltin and colleagues showed that volunteer 

subjects given marijuana cigarettes (1.84 % w/w Δ
9
-THC) showed a markedly increase in food 

intake (1500 kcal), primarily attributable to an increase in snack food items (Foltin et al, 1986; 

Foltin et al., 1988).  

In animals, the first comprehensive dose-response analysis of Δ
9
-THC hyperphagia in 

rats was documented in the late 1990s (Williams et al., 1998); a range of Δ
9
-THC doses were 

administered orally to pre-satiated rats with significant hyperphagia seen at doses ≥0.5 mg/kg Δ
9
-

THC. Subsequently, this hyperphagia was shown to be mediated by CB1 receptors (Williams & 

http://edrv.endojournals.org/search?author1=Uberto+Pagotto&sortspec=date&submit=Submit


 

32 

 

Kirkham, 2002b), and involved a marked reduction in latency to begin feeding (Williams & 

Kirkham, 2002a). Together these effects imply that the stimulation of feeding induced by ∆
9
-

THC may be linked to the appetitive phase of feeding, being associated with orienting an animal 

toward food and increasing the salience or reward value of food stimuli. The concept of 

cannabinoids influencing reward processes is well-established and has been supported by 

findings that blockade of CB1 receptors by SR141716A reduced sensitivity to the rewarding 

effects of electrical brain stimulation (Arnold et al., 2001; Deroche-Gamonet et al., 2001) and 

blocked the acquisition of drug- or food induced place preferences (Chaperon et al., 1998). 

Conversely, stimulation of CB1 receptors underlie the motivation to obtain and ingest palatable 

ingesta (Gallate & McGregor, 1999; Gallate et al., 1999; Higgs et al., 2003). Overall, current 

evidence suggests that animals work harder to obtain food after ∆
9
-THC treatment, and eat 

earlier and more frequently when food is freely available.  

At present, clinical interventions involving pCBs in syndromes affecting food 

consumption are dominated by use of ∆
9
-THC and synthetic analogues. Cachexia is 

characterised by metabolic changes associated with a severe loss of appetite (McGrath, 2002) 

and is a common feature of the later stages of diseases such as AIDS and metastatic cancer (Cat 

& Coleman, 1994; Inui, 2002). Thus, treatments aimed at stimulating appetite by enhancing the 

attractiveness and enjoyment of food should be beneficial in these circumstances. Sacks and 

colleagues found that treatment with dronabinol (5 mg, three times daily) had little effect on food 

intake, but greatly attenuated the reduction in daily energy intake produced by chemotherapy 

(Sacks et al., 1990). In the field of HIV-wasting syndrome, chronic daily dronabinol treatment 

(5-20 mg, orally for up to 20 weeks), caused a highly significant increase in appetite and mood 

ratings, with the majority of patients gaining weight over the course of treatment (Plasse et al., 

1991). Similarly, Beal et al. (1995) evaluated the long-term effects of ∆
9
-THC or placebo in 

patients with AIDS-related appetite and weight loss; dronabinol (2.5 mg, twice per day over 42 

days) administered to patients who had suffered progressive weight loss, experienced either 

stabilization of their body or a modest weight gain, accompanied by substantial increases in 

appetite.  

Wasting and loss of appetite are also important features of ageing and associated 

conditions such as dementia (Morris & Volicer, 2001; Hickson, 2006). It is therefore possible 
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that the appetite-stimulating properties of cannabinoids may be a useful tool in attempting to 

maintain proper nutrition in these populations. Dronabinol (5 mg per day over 6 weeks) 

produced significant weight gain, but not increases in energy intake, in food-refusing dementia 

patients (Volicer, 1997). Finally, a possible target for the application of cannabinoids to stimulate 

appetite and overcome food refusal may be in the treatment of anorexia nervosa, a psychiatric 

condition exemplified by self-starvation. Dronabinol has been used to successfully manage 

appetite in elderly patients suffering from anorexia and significant weight loss (Wilson et al., 

2007). By contrast, a study in 11 female patients with primary anorexia nervosa failed to show an 

effect of ∆
9
-THC on daily changes in weight and caloric intake versus an active diazepam 

placebo (Gross et al., 1983). However, it should be noted that the underlying psychopathology of 

anorexia is very complex, and involves significant psychological factors that are unrelated to any 

dysfunction in the normal physiological mechanisms controlling eating. 

 

4.4.2 Phytocannabinoid standardised cannabis extracts (SCEs) in feeding-related disorders 

Despite the evidence of Δ
9
-THC stimulatory effect on feeding and appetite detailed above, 

relatively few studies have investigated the contribution of non-Δ
9
-THC pCBs to the feeding 

effects of cannabis. However, recent work has demonstrated that a range of pCBs may have 

significant effects on feeding patterns (reviewed in Farrimond et al., 2011). In an initial study, 

the effects of purified Δ
9
-THC, synthetic Δ

9
-THC and Δ

9
-THC SCEs (which also contain an 

array of non-Δ
9
-THC pCBs) were compared (Farrimond et al., 2010a). Importantly, all 

treatments were matched to a range of Δ
9
-THC doses known to induce hyperphagia. Using 

standardised pre-feed paradigm (Williams et al., 1998), Δ
9
-THC SCE showed significantly lower 

hyperphagia in comparison to the synthetic and purified Δ
9
-THC doses; these data suggested that 

the combination of pCBs (and, potentially, non-pCB components) in the SCE attenuated the 

hyperphagic effects of Δ
9
-THC. In a follow-up study (Farrimond et al, 2010b), SCEs containing 

concentrations of Δ
9
-THC between two- and ten-fold lower than those previously demonstrated 

to induce hyperphagia, caused pre-satiated rats to significantly increase chow intake by reducing 

their latency to the first contact with food. These effects on feeding replicated those previously 

seen with much higher concentrations of pure Δ
9
-THC (Williams et al., 1998; Farrimond et al., 

2010a) and indicate that cannabis compounds other than Δ
9
-THC may also have the ability to 
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stimulate appetite, effects that were concealed when a higher concentration of Δ
9
-THC was 

present in the extract. It is clear from the data presented above (Farrimond et al., 2010a; 

Farrimond et al., 2010b) that the precise composition of an SCE is critical in determining the 

action on feeding, and that individual pCBs may antagonise the appetite-stimulating actions of 

Δ
9
-THC, whilst others may have appetite-stimulating properties themselves. Finally here, the 

action of two SCEs, one of these containing 67% ∆
9
-THC, the other a ∆

9
-THC-free SCE have 

been investigated; all remaining pCBs in the SCE were kept constant (CBD: 0.3%; CBG: 1.7%; 

CBC: 1.6%; Δ
9
-THCV: 0.9%; THCA: 0.3%; CBN: 1.5%; and sesame oil vehicle; total mixture 

dose range: 0.5 - 4.0 mg/kg) (personal communication, J Farrimond). Administration of both ∆
9
-

THC-free and 67%-∆
9
-THC SCEs induced highly significant dose-dependent increases in food 

consumption in the first hour after food was returned to the animals. This effect was attributed to 

highly significant reductions in the latency to the onset of feeding produced by both SCEs. 

However, some differences between the extracts were evident when considering other meal 

pattern parameters; most significantly, the 67% ∆
9
-THC SCE significantly increase the duration 

of the first meal, whilst the ∆
9
-THC-free SCE failed to induce any significant effect. This finding 

echoes those of previous studies (Farrimond et al., 2010b), further implicating non-Δ
9
-THC 

pCBs in the appetitive actions of feeding only. 

Despite these promising findings, only one single clinical trial has been undertaken to 

investigate the effects of an SCE on appetite and feeding. Strasser et al. (2006) compared the 

effects of Cannador (2.5 mg THC and 1 mg CBD), ∆
9
-THC (2.5 mg) and placebo on appetite and 

quality of life in patients with cancer-related anorexia-cachexia syndrome (CACS). Here, adult 

patients suffering significant weight loss were treated twice daily for 6 weeks with measures of 

appetite, mood, and nausea monitored daily. Results showed no significant differences between 

the three treatments, with increased appetite ratings of 73%, 58%, and 69% for patients receiving 

Cannador, THC, or placebo, respectively. 

 

4.4.3 Individual phytocannabinoids in feeding-related disorders 

Animal data presented to date strongly indicate that the non-Δ
9
-THC pCBs present in the SCEs 

produce significantly effects on the appetitive, but not consummatory, aspects of feeding 

behavior. Thus, determination of the effects of individual pCBs are clearly warranted; however, 
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prior to 2009 there were few studies investigating the actions of individual non-Δ
9
-THC pCB on 

feeding, with the majority of these studies being either unreplicated or even contradictory. In all 

cases, no detailed analyses of changes to feeding microstructure had been undertaken, which 

necessarily limits the interpretation of these findings. In 1976, Sofia and Knobloch examined the 

acute effects of CBN and CBD (both 50 mg/kg) on food and sucrose consumption. In this 

paradigm, animals were pre-trained to consume their total daily food intake during a 6 hour 

feeding period; water, 5% sucrose or 20% sucrose solutions were also available during this 

period. Both CBN and CBD significantly reduced food intake, effects which persisted for 4-5 

days post-drug administration (Sofia & Knobloch, 1976). CBN and CBD produced similar 

reductions in sucrose intake, which returned to pre-baseline levels by day 3-4 post-drug 

administration. The authors interpreted these findings as suggestive that CBN and CBD 

produced a preference for sweet calories. It should also be noted that the Sofia & Knobloch 

(1976) study used doses of CBN and CBD between 200 and 1500 times greater than the 

concentrations of these compounds used in other studies that have suggested that non-Δ
9
-THC 

pCB stimulate feeding (Farrimond et al., 2010a; Farrimond et al., 2010b). Wiley et al. (2005) 

showed that CBD (3-100 mg/kg) failed to significantly alter food intake in mice; yet it should be 

noted that doses of 3 and 10 mg/kg CBD showed a non-significant trend towards an increase in 

intake suggesting that CBD may be worthy of further investigation. However, a recent study by 

Scopinho et al. (2011) further demonstrated that CBD (1, 10 or 20 mg/kg) failed to alter feeding 

and failed to replicate the non-significant trend towards an increase in feeding at low doses. CBD 

(2.5 and 5 mg/kg/day for 14 days) has been reported to produce significant decreases in body 

weight in rats, although no measures of food intake were taken (Ignatowska-Jankowska et al. 

2011); interestingly, CBD action was sensitive to co-administration of the CB2 receptor selective 

antagonist, AM630, suggesting a CB2 receptor mechanism may be critical to the action of CBD 

on body weight.  

In general, there is a broad literature implicating CB1 receptor antagonists as potential 

anti-obesity agents; however, the recent failure of rimonabant has highlighted the need to 

develop safer alternatives (Lee et al., 2009; Izzo et al., 2009). In this regard, Riedel et al. (2009) 

have investigated the feeding effects of Δ
9
-THCV (3, 10 and 30 mg/kg) and a Δ

9
-THCV SCE 

(containing between 0.1 and 0.3 mg/kg Δ
9
-THCV). All doses of Δ

9
-THCV significantly reduced 
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food intake during the 12 h following treatment, whereas Δ
9
-THCV SCEs did not affect 

consumption. This study confirms that purified Δ
9
-THCV can reduce food intake in mice, which 

is worthy of further investigation. In particular, future work should investigate effects of purified 

Δ
9
-THCV and Δ

9
-THCV SCE using conditions which would be expected to maximise food 

intake (e.g. during the dark phase of the light:dark cycle or following periods of deprivation), 

thus ensuring high baseline food intake, maximizing the ability to detect any Δ
9
-THCV-induced 

decreases in food intake.  

 

4.4.4 Summary 

The association between the effects of exogenous CBs and appetite gave a strong lead in 

suggesting possible physiological roles for the ECS in feeding-related diseases. Indeed, Δ
9
-THC 

induces a degree of over-eating that far exceeds that produced by most other hyperphagic 

pharmacological manipulations. Crucially, the behavioural adjustments induced by exogenous 

CBs suggest that these compounds are involved in the processes which drive us to eat. Animals 

work harder to obtain food after CB1 stimulation, and eat earlier and more frequently when food 

is freely available. CB1 receptor agonists thus seem to actively provoke feeding, rather than 

merely prolonging eating that has been initiated through other mechanisms. More recent data has 

additionally shown a role for some non-Δ
9
-THC pCBs in the stimulation of appetite, however, no 

studies have clearly delineated the individual pCB which may underlie these appetite-stimulating 

actions. Thus, further studies in animal models and humans are needed to confirm the ability of 

individual pCBs to alter food intake, and to clarify the mechanisms of action underlying these 

effects, such initiatives may lead to the development of novel therapeutic strategies for the 

treatment not only of feeding disorders themselves, but also disorders arising as a symptom of 

other CNS diseases. 

 

5. Conclusions 

The demonstration that Cannabis sativa contains numerous pCBs in addition to the major 

psychoactive 
9
-THC component provides the impetus to support a solid body of preclinical 

studies focussing on therapeutic development of non-
9
-THC pCBs. Work in animal models of 

diseases is now being extended to an increasing number of clinical trials in human CNS 



 

37 

 

disease. The latter, in particular, has been fuelled by the introduction of the first SCE- and, by 

extension, pCB-, based medicine, Sativex. As well as providing a useful proof-of-concept, the 

introduction of Sativex may serve to lower the barriers to the perceived societal difficulties 

associated with cannabis-based medicines. In general, where 
9
-THC has been shown to be an 

effective treatment in animal models or clinically, the adverse side effects of CB1 agonism need 

to be weighed against the clinical benefit to patients; however, the combination of 
9
-THC and 

CBD into an SCE yields a medicine that is well-tolerated in the clinic, suggesting that the 

presence of 
9
-THC does not necessarily preclude the development of medicines suitable for 

widespread use.  

Whilst, generally still in their infancy, clinical data for effects of individual (or mixed) 

non-
9
-THC pCBs may be usefully extended to trials for feeding-related disorders, 

neurodegenerative diseases, affective disorders and epilepsy, amongst others. This review has 

highlighted CBD, as a compound with a multi-modal mechanism of action, with clear 

therapeutic potential in a number of these areas, befitting its status as the second most prevalent 

pCB in cannabis (Lerner, 1963). In general, whilst it can be seen that large doses of CBD can 

be tolerated in humans, it is worth pointing out that formulation of CBD (or other pCBs), for 

example with lipid vehicles or dispersing surfactants, during potential drug development could 

substantially increase bioavailability. It is also apparent that other pCBs, such as 
9
-THCV and 

CBG, may have a similar therapeutic potential, but that further preclinical work is needed to 

justify human trials. It is also clear that non-
9
-THC pCBs act at a wide range of molecular 

targets and may possess useful additional properties, such as anti-oxidant capacity, to support 

their pharmacological profile. A recurring issue is a pharmacological relevance of some of the 

pCB actions described herein; in this regard, pCBs typically exhibit functional responses with 

low micromolar potencies. A caveat here is that due to their high lipophilicity, for studies 

conducted in, for example, brain slice preparations, pCBs may partition into lipid membranes 

leading to underestimations of effective potency (discussed in Ma et al., 2008; see also Brown 

et al., 2004). Importantly, despite the relatively high concentrations required at some targets, 

pCBs such as 
9
-THCV and CBD are known to penetrate the blood–brain barrier well, with no 

major toxicity, genotoxicity, or mutagenicity (Hill et al., 2010a; Jones et al., 2010). Based on 

measurements of CSF levels in rat, we have calculated that 100 mg/kg CBD doses i.p. reach 
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CNS concentrations of ~18 M which suggests that low micromolar potencies can have 

functional relevance. In this regard, CBD doses as high as 1200 mg have been safely tolerated 

in human trials (Trembly & Sherman, 1990; see Table 1). Thus, the future of pCBs as safe and 

efficacious agents to combat CNS disease holds great pharmacological and therapeutic 

promise. 
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Figure legends 

 

Figure 1. Biosynthesis of major phytocannabinoids.  

 

Figure 2. Effect of phytocannabinoids on SR141716A binding in mouse cerebellum membranes. 

Competition binding assays for phytocannabinoids in comparison to standard synthetic CB1 

ligands against 1 nM [
3
H]SR141716A. B) 

9
-THCV has micromolar affinity and CBD and CBG 

have millimolar affinity for CB1 receptors. 

 

Figure 3. Effect of 
9
-THCV in mouse cerebellar brain slices. A) In patch clamp recording from 

IN-PC synapses, 
9
-THCV(58 M) increased frequency of miniature inhibitory postsynaptic 

currents and blocked agonist effects of WIN55,212-2 (WIN55; 5 M). B) In MEA recording 

from cerebellar slices (i), WIN55 (5 M)-induced increases in PC spike firing were significantly 

reversed by 
9
-THCV (5-40 M); * p<0.05 (Mann-Whitney U-test) 

 

Figure 4. CBD has a multi-modal action. Scheme showing some identified molecular targets and 

potential modes of actions for CBD in central neurons. 
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Table1: Summary of human case studies and clinical trials employing cannabinoids or 

cannabis in which a pro- or anti-convulsant effect was observed. The limited nature of some 

sources occasionally render information regarding study design, dosage routes, compound purity 

and origin unavailable. Extant and pertinent information has been included below. 

Report 

type 

Study 

drug 

Pro- or anti-  

convulsant  

Primary outcome Reference Notes 

Clinical 

trial 
9
-THC 

Anti-

convulsant 

„severe anticonvulsant 

resistant grand mal 

epilepsy controlled‟ in 2/5 

children; no change to 3/5 

children. 

Davis & 

Ramsey 

(1949) 

9
-THC administered to 5 

institutionalised children, 

previously unresponsive to 

phenobarbital and phenytoin.   

Case 

study 

Smoked 

cannabis  

Anti-

convulsant 
Full control of seizures 

Consroe et al. 

(1975) 

Isolated report of one adult using 

phenytoin and phenobarbital who 

only achieved full seizure control 

when also using smoked cannabis. 

Seizures returned when phenytoin 

and phenobarbital were withdrawn 

and only cannabis smoked. 

Clinical 

trial 

Oral 

CBD 

(≤300 

mg per 

day) 

Anti-

convulsant 

4/8 CBD treated patients 

with full seizure control, 

1/8 improved markedly, 

2/8 improved somewhat, 

1/8 no improvement.  

In placebo-treated patients 

1/8 showed a little 

improvement, 7/8 showed 

no change.   

Carlini & 

Cunha (1981) 

Small (15), adult patient cohort all 

with partial seizures with secondary 

generalisation that were 

unresponsive to conventional 

treatment; double blind study 

design employing CBD and 

placebo.  

Clinical 

trial 

Oral 

CBD 

(200-300 

mg per 

day) 

No change 
No significant change to 

seizure incidence 

Ames & 

Cridland 

(1986) 

Findings only published in abstract 

form which yields limited 

information; 12 patients enrolled; 

CBD given as an adjunct to existing 

treatments.  

Survey 

of 

cannabis 

use in 

patients 

admitted 

to 

hospital 

after first 

seizure 

Cannabis 
Anti-

convulsant 

The authors concluded that 

„marijuana use [is] a 

protective factor for new-

onset seizures‟ 

Ng et al., 

(1990) 

Survey of 308 patients admitted to 

hospital after first seizure compared 

to 294 control patients with no 

seizure; the results were criticised 

as „weak‟ by a 1999 US Institute of 

Medicine report „Marijuana and 

medicine: Assessing the science 

base‟ since „the study did not 

include measures of health status 

prior to hospital admissions and 

differences in their health status 

might have influenced their drug 

use'  
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Clinical 

trial 

CBD 

(900-

1200 mg 

per day 

for 10 

months) 

Anti-

convulsant 

„seizure frequency was 

markedly reduced in the 

patient‟ 

Trembly & 

Sherman 

(1990) 

 

 

Open label clinical trial; Results 

presented at conference and cited 

in: British Medical Association. 

Therapeutic uses of cannabis. 

Harwood Academic Publishers, 

Amsterdam, 1997; p51 

Case 

studies 
Cannabis 

Anti-

convulsant 

Qualitative reports of 

successful seizure control 

with cannabis in three 

epilepsy patients  

Grinspoon & 

Bakalar 

(1997) 

 

Case 

studies 
Cannabis 

Anti-

convulsant 

Qualitative reports of 11 

patients successfully self-

treating seizures with 

cannabis  

Petro (1997) 

Patients identified as applicants to 

the US Compassionate Use 

Investigational New Drug 

Programme to provide legal 

medical exemption from 

prosecution for cannabis possession 

and use. 

Survey Cannabis 
Anti-

convulsant 

4% of patients supported 

by a medical marihuana 

programme reported use 

for seizure control 

Corral (2001) Survey population size: 77 

Survey Cannabis 
Anti-

convulsant 

1% of clinical cannabis 

users in California reported 

use for seizure control  

Gieringer 

(2001) 
Survey population size: ~2500 

Survey 

Cannabis 

and 
9
-

THC 

Anti-

convulsant 

1.4% of German medical 

users of cannabis and THC 

reported use for seizure 

control 

Grotenhermen 

& Schnelle 

(2003) 

Survey population size: 143 

Case 

studies 
9
-THC 

Anti-

convulsant 
„Anticonvulsive action‟ Lorenz (2004) 

0.04–0.12 mg/kg administered 

orally 

Survey Cannabis 
Anti-

convulsant 

„The majority of active 

users [reported] beneficial 

effects on seizures‟ 

Gross et al., 

(2004) 

Telephone survey of epilepsy 

patients 

Survey Cannabis 
Anti-

convulsant 

Dutch Ministry of Health 

ordered (1999) monitoring 

of 
9
-THC content of all 

legally supplied cannabis 

following reports of 

reduced seizure duration 

and incidence in cannabis 

users. 

Pijlman et al. 

(2005) 
 

Clinical 

trial 

 
9
THC 

/CBD 

(Sativex) 

Pro-

convulsant 

Four patients experienced 

„first ever seizures‟ 

Wade et al. 

(2006) 

Open label clinical trial in multiple 

sclerosis patients 

Case 

study 
Cannabis 

Anti-

convulsant 

„Marked improvement‟ in 

seizure control following 

marijuana use 

Mortati et al. 

(2007) 
Adult cerebral palsy patient 
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