
Performance Evaluation 65 (2008) 152–180
www.elsevier.com/locate/peva

Throughputs in processor sharing models for integrated stream and
elastic traffic

Remco Litjensa, Hans van den Berga,b,∗, Richard J. Boucheriec

a Department of Planning, Performance and Quality, TNO ICT, The Netherlands
b Department of Computer Science, University of Twente, The Netherlands

c Department of Applied Mathematics, University of Twente, The Netherlands

Received 10 December 2003; received in revised form 18 January 2007; accepted 11 May 2007
Available online 17 May 2007

Abstract

We present an analytical study of throughput measures in processor sharing queuing systems with randomly varying service
rates, modelling e.g. a communication link in an integrated services network carrying prioritised fixed rate stream traffic and rate-
adaptive elastic traffic. A number of distinct throughput measures for the elastic traffic are defined, analysed and compared under
various system conditions, both by analytical means and simulation. It is concluded that the call-average throughput, which is most
relevant from the user point of view but typically hard to analyse, is very well approximated by the newly proposed so-called
expected instantaneous throughput, which is readily obtained from the system’s steady state distribution.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Processor sharing (PS) queuing models are widely applicable to situations where a common resource is shared
by a varying number of concurrent users. In particular, PS models have been fruitfully applied in the field of the
performance evaluation of computer systems and telecommunication networks. For instance, the PS service discipline
appropriately models the design principle of fair resource sharing by TCP (Transmission Control Protocol) controlled
elastic (rate-adaptive) data calls or packet scheduling schemes in, e.g. IP (Internet Protocol), GPRS (General Packet
Radio Service), UMTS (Universal Mobile Telecommunications System) networks and WLANs (Wireless Local Area
Networks) [1–3,6,22,25].

The ‘classical’ PS model consists of a single server fairly sharing its fixed capacity among the varying number
of present jobs (calls). A relevant extension is the PS queue with randomly varying service capacity, which models
e.g. the impact of fluctuating high-priority stream traffic (e.g. speech calls) on low-priority elastic traffic (e.g. video
or data calls) sharing a common network link. Important performance measures for PS queues are the sojourn time
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and throughput experienced by a job. In the queuing literature, the analyses of PS models are generally focussed
towards the (conditional) sojourn times, and many analytical results are available. In contrast, although the relevance
is apparent from practical applications, throughput analyses are rare and few results are known. Therefore, in the
present paper, we concentrate on the analysis and comparison of a variety of relevant throughput measures in PS

models with fixed or randomly varying service capacity.

Literature Well-known results are the linearity and insensitivity properties, i.e. the expected sojourn time of a tagged
job is proportional to its service requirement and independent of the service requirement distribution of the other jobs
(see e.g. [20]). The sojourn time distribution for the M/G/1 PS queue has been derived by Yashkov [38] and Ott [31].
Cohen [10] considers a generalisation of the M/G/1 PS queue, viz. the so-called generalised processor sharing (GPS)
model, in which the service rate of the jobs is an arbitrary function of the number of jobs in the system. Note that
e.g. the multiple server M/G/c PS queue and the classical Erlang loss model are special cases of the GPS model,
which also possesses the linearity and insensitivity properties mentioned above. The reader is referred to [39] and
[40] for overviews of the available results on ‘classical’ PS systems; see also the more recent paper by Zwart and
Boxma [41] focusing on sojourn time asymptotics for the M/G/1 PS queue with heavy tailed service requirement
distributions (e.g. Pareto), and Cheung et al. [7] which provides insensitive bounds for higher moments of the sojourn
time.

In the present paper PS systems with randomly varying service rates (e.g. due to the presence of higher priority
jobs consuming part of the total service capacity) play a particularly important role. Randomly varying service rates
severely complicate the analysis, and the nice properties of the steady-state distribution and the expected sojourn time
do not hold anymore. Núñez-Queija [28] analyses an M/M/1 PS model with an on/off server, and derives closed-form
expressions for several sojourn time statistics. In [30], Núñez-Queija et al. consider a GPS model with two priority
classes, where each of the high priority jobs takes a fixed amount of the server capacity and the low priority jobs
utilise the (fluctuating) remaining service capacity in a PS fashion. For this model, expressions for the (conditional)
expected sojourn times of the low priority customers are derived. A generalisation and more extensive treatment of
this work can be found in [27,29]. [23] presents and analytically supports the remarkable phenomenon that in the PS

model with randomly varying capacity, the expected sojourn times are smaller if the job sizes are more variable, which
is a relevant insight in light of the commonly acknowledged property that e.g. WWW pages are heavy tailed [11,21].

Throughput analyses of PS systems are rare in the literature. The only references known to the authors are by
Kherani and Kumar [18,19], who use the M/G/1 PS queue as a model to evaluate the throughput of TCP-controlled
elastic data calls in the Internet, cf. [26,30,34]. While from the user’s perspective, the call-average throughput is
the most relevant average throughput measure, in PS systems the call-average throughput may be hard to determine
analytically [18,19]. Therefore, in many papers, other, more tractable throughput measures are selected as a basis
for the performance analysis of systems modelled by a PS queue. E.g. in [14,18,19,24] the time-average throughput,
defined as the expected throughput the ‘server’ provides to an elastic call at an arbitrary (non-idle) time instant, is
applied to approximate the call-average throughput. Many other papers use the ratio of the expected transfer volume
and the expected sojourn time as an approximation [1,2,4,5,12,32], however they do this mostly without substantiating
the validity of this measure.

Contribution The principal objective of the present paper is to investigate and compare, both analytically and
numerically, a variety of throughput performance measures in processor sharing models with fixed and varying service
capacities. In particular, we introduce the expected instantaneous throughput, i.e. the throughput an admitted call
experiences immediately upon admission to the system, as a new throughput measure, which can be analysed relatively
easily. The experiments demonstrate that the expected instantaneous throughput is the only one among the considered
throughput measures, which excellently approximates the call-average throughput for each of the investigated PS

models and over the entire range of traffic loads.
Aside from a substantial original contribution in the definition, analysis and comparison of throughput measures,

known results have been included in order to also establish the survey character of the paper.

Outline The remainder of this paper is organised as follows. Section 2 describes the PS models investigated in this
paper in the setting of a communication link shared by different traffic types, and specifies the various throughput
measures investigated in this paper. An analytical evaluation of these throughput measures is presented in Section 3.
Section 4 presents and discusses the results of an extensive set of numerical experiments carried out to compare
the different throughput measures for the different PS models. Additionally, some numerical results are provided for
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throughput variances in order to assess whether the qualitative conclusions obtained for averages extend to higher
moments. The concluding remarks in Section 5 end the main body of this paper. To enhance readability, some lengthy
proofs are contained in the Appendix.

2. Models and measures

As mentioned above, we introduce the models in the setting of a communication link shared by different call types.
In particular, we consider a communication link with C traffic channels which can be assigned to ‘stream’ calls,
characterised by a fixed channel assignment (e.g. speech telephony), and to ‘elastic’ calls that can adapt their service
requirements and share the traffic channels left over by the stream calls. Concerning the elastic calls, we consider two
distinct types: (i) elastic calls, whose sojourn time is unaffected by the (dynamically) assigned service rate (e.g. video
telephony); and (ii) elastic calls, whose sojourn time is affected by the assigned service rate (e.g. data transfer). In the
remainder of the paper, the three call types will be referred to by means of the given typical example services. The
defining characteristics of the different call types are given below, followed by the specification of the call handling
procedures in the two main performance models considered in this paper. An overview of the considered throughput
measures ends the section.

2.1. Call characteristics

The three distinct call types mentioned above are characterised in more detail as follows:

Speech calls Speech calls arrive according to a Poisson process with arrival intensity λspeech, and have a generally
distributed duration with mean 1/µspeech. A speech call requires a fixed assignment of one traffic channel.
The speech traffic load is given by ρspeech ≡ λspeech/µspeech, and is expressed in Erlangs.

Video calls Video calls arrive according to a Poisson process with arrival intensity λvideo, have a generally distributed
duration with mean 1/µvideo, and are elastic (scalable) in the ideal sense that the assigned number of traffic
channels, and thus the video quality can instantaneously, and with perfect granularity, adapt to the varying
network load. The number of traffic channels that can be assigned to a video call is constrained by a maximum
denoted βmax

video. On the other hand, acceptable video quality is guaranteed by means of a minimum channel
assignment of βmin

video ∈
[
0, βmax

video

]
traffic channels, corresponding to a bit rate of rvideoβ

min
videokbits/s, with

rvideo the effective video bit rate per traffic channel. The video traffic load is defined as ρvideo ≡ λvideo/µvideo.
Data calls Data calls arrive according to a Poisson process with arrival intensity λdata. A data call is assumed to be the

transfer of a file with a generally distributed size, which is expressed in its nominal transfer time assuming a
single dedicated traffic channel. The mean call size and effective data bit rate per traffic channel are denoted
by 1/µdata and rdata (in kbits/s) respectively, corresponding to an actual mean transfer volume of rdata/µdata
kbits. Data calls are elastic, in the sense that they are delay tolerant, and can therefore tolerate a dynamic
channel assignment, which affects the experienced throughput, and thus the data call’s sojourn time. As for
the video calls, a maximum assignment denoted βmax

data is enforced to incorporate the terminals’ technical
limitations, while a possible QOS requirement is modelled by means of a minimum channel assignment
βmin

data. The data traffic load is given by ρdata ≡ λdata/µdata, while the normalised data traffic load is denoted
as ρ?data ≡ ρdata /C .

Observe from the specifications above that the key difference between video and data calls is the impact of the
channel assignment on the calls’ presence in the system. For video calls, the channel assignment influences the
perceived audio and image quality experienced on the video terminal, while it does not affect the autonomously
sampled video call duration. In case of data calls, the channel assignment affects the rate at which the file is
transferred and thus the data call’s sojourn time which, aside from the data throughput, is a key performance measure in
itself.

2.2. Performance models

As speech calls require a fixed capacity assignment during their lifetimes, the dynamics in their arrivals and
departures leave a time-varying residual capacity for the considered elastic call type. In other words, from the point of
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view of the elastic calls, the system behaves as a processor sharing type of model with varying service capacity. For
the case of elastic video calls, the model is denoted by SV, and for elastic data calls by SD. These models are described
in more detail below. Let S(t), V (t) and D(t) denote the processes following the number of speech, video and data
calls present at time t ≥ 0, with states denoted s, v and d, respectively.

SV model In the SV model, the C traffic channels are dynamically shared by speech and video calls. Aside from the
channels that are assigned to ongoing video calls in order to meet their minimum QOS requirements, the
remaining service capacity is available with preemptive priority for speech calls. In other words, an arriving
speech call is admitted if and only if s + 1 ≤ smax(v) ≡

⌊
C − vβmin

video

⌋
, given a presence of s speech

and v video calls. Analogously, if βmin
video > 0, the condition for the admission of a video call is given by

v + 1 ≤ vmax (s) ≡
⌊
(C − s) /βmin

video

⌋
. At any given time, the capacity that is not assigned to speech calls,

is fairly shared by the present video calls in a PS fashion, i.e. each video call is assigned an instantaneous
channel assignment of βvideo (s, v) ≡ min

{
(C − s) /v, βmax

video

}
, which is guaranteed to exceed the minimum

QOS requirement due to effects of the call admission control. Observe that the SV model is an example of a
multi-rate model (see e.g. [16,33]) incorporating speech and video calls with respective capacity requirements
of 1 and βmin

video traffic channels.
SD model In the SD model, the C traffic channels are dynamically shared by speech and data calls. In line with the

above specification of the SV model, the call admission control conditions for the admission of a speech or
data call are given by s + 1 ≤ smax(d) ≡

⌊
C − dβmin

data

⌋
and d + 1 ≤ dmax (s) ≡

⌊
(C − s) /βmin

data

⌋
(only if

βmin
data > 0), respectively, given a presence of s speech and d data calls. At any given time, the capacity that

is not assigned to speech calls, is fairly shared by the present data calls, i.e. each data call is assigned an
instantaneous channel assignment of βdata(s, d) ≡ min

{
(C − s) /d, βmax

data

}
≥ βmin

data.

The models described above ‘reduce’ to processor sharing models with fixed capacity when the speech call arrival
intensity is taken as equal to zero. The resulting models are denoted V and D, and will be treated in the analysis in
Section 3 as special cases of the SV and SD models, for which often more (or more explicit) results can be derived.

2.3. Throughput measures

In this subsection, we present the definitions of the different throughput measures to be analyzed and compared
in Sections 3 and 4. The definitions apply to both elastic call types, i.e. video and data. Denote by ak (dk) the arrival
(departure) time of the kth admitted elastic call, by τk ≡ dk − ak the call’s sojourn time and by xk the associated
information volume (in kbits) transferred during its sojourn. Recall that for the video service, the call durations τk are
autonomously sampled and the transfer volumes xk are determined by the system dynamics, while for the data service
the reverse holds. Let τ and x be the corresponding random variables with expected values E {τ } and E {x}.

The call-average throughput Rc is the most relevant average throughput measure from the user’s perspective,
defined as the per call throughput averaged over all calls, i.e.,

Rc
≡ lim

n→∞

1
n

n∑
k=1

xk

τk
= E

{ x

τ

}
. (1)

The time-average throughput Rt is defined as the expected throughput the server provides to an elastic call at
an arbitrary (non-idle) time instant. With N (t) as the number of elastic calls present in the system, and C(t) as the
aggregate number of channels assigned to the elastic service at time t ≥ 0, this throughput measure is expressed as

Rt
≡ lim

t→∞

1
t

∫ t
0

rC(u)
N (u) 1 {N (u) ≥ 1} du

1
t

∫ t
0 1 {N (u) ≥ 1} du

, (2)

where r denotes the effective information bit rate per traffic channel. Note that N (t) is given by V (t) in the (S)V

model or D(t) in the (S)D model, while C(t)/N (t) is given by the channel assignment functions β (·). The time-
average throughput is used to approximate the call-average throughput in e.g. [14,18,19].
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As a new throughput measure, we introduce the expected instantaneous throughput, denoted by Ri . It is defined as
the expected throughput an admitted call experiences immediately upon admission to the system, i.e.,

Ri
≡ lim

n→∞

1
n

n∑
k=1

rC (ak)

N (a+

k )
, (3)

where N (a+

k ) denotes the number of ongoing elastic calls immediately after the kth elastic call admission, and thus
includes the new call.

The ratio Rr of the expected transfer volume and the expected sojourn time is, like the time-average throughput,
also often used as an alternative to the call average throughput, see e.g. [1,2,4,5,12,32]. It is formally defined by

Rr
≡ lim

n→∞

1
n

n∑
k=1

xk

1
n

n∑
k=1

τk

=
E {x}

E {τ }
. (4)

Note that Rr can also be written as

Rr
=
λ (1 − P)E {x}

λ (1 − P)E {τ }
= lim

t→∞

1
t

∫ t
0 rC (u) du

1
t

∫ t
0 N (u)du

,

where λ denotes the elastic call arrival rate and P the elastic call blocking probability (see also below). This alternate
expression for Rr is given by the ratio of the long-term average aggregate system throughput and the long-term
average number of elastic calls in the system. Its equivalence to expression (4) is due to the fact that in equilibrium
the aggregate admitted bit rate must be equal to the aggregate processed bit rate (numerator) and Little’s law
(denominator).

As a final measure, the (unitless) call-average stretch S (or the normalised sojourn time) is given by

S ≡ lim
n→∞

1
n

n∑
k=1

τk( xk
rC

) = rC E
{τ

x

}
, (5)

which is relevant for the data service only and is used as a performance measure in e.g. [15,34].

For the special case of unrestricted channel assignments, i.e. βmin
data = βmin

video = 0 and βmax
≥ C , let R̃

c
, R̃

t
, R̃

i
,

R̃
r

and S̃, denote the associated performance measures corresponding to the measures specified above for the more
general settings.

3. Performance analysis

In this section, we derive analytical expressions for the performance measures in the four models specified above.
In particular, in Sections 3.1 and 3.2 we study the SV and V models, respectively. Sections 3.3 and 3.4 are concerned
with the analysis of the SD and D models. For each model, we start by analysing the equilibrium distribution and call
blocking probabilities, and then successively consider, for the involved elastic traffic type, the call-average throughput,
the time-average throughput, the expected instantaneous throughput, the ratio throughput measure and the call-average
stretch (note that this last measure is applicable only to the SD and D models). Finally, an analytical comparison of the
throughput measures for the considered model is made.

3.1. Analysis of SV model

Consider the SV model with generally distributed speech and video call durations. The evolution of the system in the
SV model can then be described by the continuous-time stochastic process (S(t), V (t))t≥0, with states denoted (s, v).
The process’ state space is given by S ≡

{
(s, v) ∈ N0 × N0 : s + vβmin

video ≤ C
}
. The unique equilibrium probability
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vector π of the stochastic process, given by

π (s, v) =

 ∑
(s,v)∈S

ρs
speech

s!

ρvvideo

v!

−1
ρs

speech

s!

ρvvideo

v!
, (s, v) ∈ S,

is insensitive to the specific form of the speech and video call distributions, depending on their means only (see
e.g. [16,17,33]). For the special case of unrestricted channel assignments to the video service, the state space is equal
to S̃ ≡ {(s, v) ∈ N0 × N0 : s ≤ C}, and the equilibrium distribution is given by

π̃ (s, v) = exp (−ρvideo)

(
C∑

s=0

ρs
speech

s!

)−1
ρs

speech

s!

ρvvideo

v!
, (s, v) ∈ S.

Using the well-known PASTA property [37], which states that in equilibrium, under very general conditions, the
fraction of Poisson arrivals that find a stochastic process in a particular system state is equal to the fraction of time the
process spends in that state, the call blocking probabilities (Pspeech, P video) are readily derived from the equilibrium
distribution:

Pspeech =

vmax(0)∑
v=0

π (smax (v) , v) and Pvideo =

C∑
s=0

π (s, vmax (s)) .

In the case of unrestricted channel assignments to the video service, the speech call blocking probability is simply
given by the Erlang loss probability, denoted P̃speech, since speech traffic does not ‘see’ video traffic in the absence of
video QOS guarantees, while the video call blocking probability equals zero.

3.1.1. Call-average throughput

In the analysis of the call-average throughput a video call, we first confine ourselves to the case of exponentially
distributed speech and video call durations. Next, it will be shown (see Theorem 2 and the proof in Appendix B) that
this performance measure is insensitive to the distributions of the speech and video call durations (apart from their
means), i.e. the result derived under the assumption of exponential calls is also valid for generally distributed speech
and video call durations.

For each state (s, v) ∈ S+

video ≡ {(s, v) ∈ S : v > 0}, denote with x̂s,v(τ ) the conditional expected transfer
volume of an admitted video call of duration τ , arriving at a given system state (s, v), where v includes the
new video call. The derivation involves a modified version of the Markov chain that is readily specified to
describe the evolution of the SV model’s stochastic process under the exponentiality assumption. Characterised
by the presence of one permanent video call, the modified Markov chain consequently has the reduced state
space S+

video. The video call departure rates in the associated infinitesimal generator Q?video reflect the presence
of the permanent video call, i.e. Q?video ((s, v) ; (s, v − 1)) = (v − 1)µvideo. The equilibrium distribution vector
π?video ≡

(
π?video(s, v), (s, v) ∈ S+

video

)
, lexicographically ordered in (s, v), of the modified Markov chain is, invoking

reversibility and truncation of a reversible process [17], readily obtained as

π?video (s, v) =
π (s, v − 1)∑

(s′,v′)∈S+video

π (s′, v′ − 1)
, (s, v) ∈ S+

video, (6)

i.e. the equilibrium probabilities π?video(s, v) corresponding to the modified Markov chain with one permanent video
call are equal to the conditional probabilities that a newly admitted video call brings the system in state (s, v) in the
original Markov chain. The equilibrium distribution π?video can readily be seen to be insensitive to the specific form of
the speech and video call duration distributions [16,17,33]. Let Bvideo ≡ diag(βvideo(s, v), (s, v) ∈ S+

video) denote the
diagonal matrix of video channel assignments, lexicographically ordered in (s, v). We can now formulate Theorem 1
below, which is proven in Appendix A.
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Theorem 1. For exponentially distributed video call durations, the conditional expected video throughput vector
x̂(τ )/τ ≡ (̂xs,v(τ )/τ, (s, v) ∈ S+

video), lexicographically ordered in (s, v), is given by

x̂(τ )
τ

= rvideo
(
π?videoBvideo1

)
1 +

1
τ

[
I − exp

{
τQ?video

}]
γ video,

where γ video ≡
(
γvideo(s, v), (s, v) ∈ S+

video

)
is the unique solution to

Q?videoγ video = rvideo
{(

π?videoBvideo1
)

1 − Bvideo1
}
, (7)

π?γ video = 0. (8)

The conditional expected (call-average) video throughput Rc
video(s, v, τ ) of a video call admitted to the system in

state (s, v) with a given holding time τ is given by (recall (1))

Rc
video(s, v, τ ) =

x̂s,v(τ )

τ
. (9)

Deconditioning on the system state upon admission yields the conditional expected (call-average) video throughput
of an admitted video call with duration τ , given by

Rc
video(τ ) =

∑
(s,v)∈S+video

 π (s, v − 1)∑
(s′,v′)∈S+video

π (s′, v′ − 1)

Rc
video (s, v, τ )

= π?video

{
rvideo

(
π?videoBvideo1

)
1 +

1
τ

[
I − exp

{
τQ?video

}]
γ video

}
= rvideo

(
π?videoBvideo1

)
+

1
τ

π?video

(
γ video −

∞∑
k=0

(
τQ?video

)k
k!

γ video

)

= rvideoπ
?
videoB video1 = rvideo

∑
(s,v)∈S+video

 π (s, v − 1)∑
(s′,v′)∈S+video

π (s′, v′ − 1)

βvideo (s, v) ,

using (8) and π?videoQ
?
video = 0. Observe that rvideoπ

?
videoBvideo1 is equal to the time-average video throughput in

the SV model with one permanent video call (see also below). Comparing the first and last expressions in the above
derivation might confuse the reader into thinking that Rc

video (s, v, τ ) is simply equal to rvideoβvideo (s, v), which is
however readily seen to be not the case. Observe that Rc

video(τ ) does not depend on τ , so that the call-average video
throughput is given by

Rc
video =

∫
∞

τ=0
Rc

video(τ )µvideo exp {−τµ video} dτ = Rc
video(τ ) = rvideoπ

?
videoBvideo1. (10)

Whereas the above derivations utilised the exponentiality of the speech and video call durations, Theorem 2 implies
that the obtained expressions for both Rc

video and Rc
video(τ ) (not Rc

video(s, v, τ )) also hold for general distributions of
the speech and video call durations.

Theorem 2. The call-average video throughput Rc
video, and the conditional call-average video throughput Rc

video(τ ),
are insensitive to the speech and video call duration distributions apart from their means.

The proof of this theorem is presented in Appendix B.
In the case with unrestricted channel assignments, the (conditional) call-average video throughput can be simplified

to
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R̃
c
video = R̃

c
video(τ ) = rvideo

C∑
s=0

∞∑
v=1


ρs

speech
s!

ρv−1
video

(v−1)!

C∑
s′=0

∞∑
v′=1

ρs′
speech
s′!

ρv
′−1

video
(v′−1)!

 C − s

v

= rvideo exp (−ρvideo)

∞∑
v=1

ρv−1
video

v!

C∑
s=0


ρs

speech
s!

C∑
s′=0

ρs′
speech
s′!

(C − s)


= rvideo exp (−ρvideo)

(
C − ρspeech

(
1 − P̃speech

)) ∞∑
v′=1

ρv−1
video

v!

= rvideo
1 − exp (−ρvideo)

ρvideo

(
C − ρspeech

(
1 − P̃speech

))
,

with P̃speech being the Erlang loss probability in a system with C channels, and traffic load equal to ρspeech Erlang.

3.1.2. Time-average throughput
Using the theory of regenerative processes (e.g. [36,37]), the time-averaged video throughput is given by, cf. (2),

Rt
video ≡ lim

t→∞

1
t

∫ t
0 rvideoβvideo (S (u) , V (u)) 1 {V (u) ≥ 1} du

1
t

∫ t
0 1 {V (u) ≥ 1} du

= rvideo

∑
(s,v)∈S+video

 π(s, v)∑
(s′,v′)∈S+video

π(s′, v′)

βvideo (s, v) , (11)

where π(s, v)/
∑
(s,v)∈S+video

π(s, v) is the equilibrium probability that the system is in state (s, v), conditioned on the
presence of at least one video call. The involved Césaro limits are derived using the renewal reward theorem [36,37].
For the special case without channel assignment restrictions, this yields

R̃
t
video = rvideo

∑
(s,v)∈S+video

 π(s, v)∑
(s′,v′)∈S+video

π(s′, v′)

βvideo (s, v)

= rvideo

C∑
s=0

∞∑
v=1


ρs

speech
s!

ρvvideo
v!

(C−s
v

)
C∑

s′=0

∞∑
v′=1

ρs′
speech
s′!

ρv
′

video
v′!

 = rvideo


∞∑
v=1

ρvvideo
vv!

∞∑
v′=1

ρv
′

video
v′!

 C∑
s=0

 ρs
speech/s!

C∑
s′=0

ρs′

speech/s
′!

 (C − s)

=
rvideo

(exp (ρvideo)− 1)

(
∞∑
v=1

ρvvideo

vv!

) (
C − ρspeech

(
1 − P̃speech

))
,

where P̃speech is the Erlang loss probability. Note that the derivation of (11) does not require information on the specific
form of the equilibrium distribution. As this equilibrium distribution is insensitive to the call duration distribution
(except for its mean), this property is inherited by the time-average video throughput.

3.1.3. Expected instantaneous throughput
Again applying the theory of regenerative processes, the expected instantaneous video throughput as defined in (3)

is obtained as
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Ri
video ≡ lim

n→∞

1
n

n∑
k=1

rvideoβvideo
(
S(ak), V (a+

k )
)

= rvideo

∑
(s,v)∈S+video

 π(s, v − 1)∑
(s′,v′)∈S+video

π(s′, v′ − 1)

βvideo (s, v)

= rvideo

∑
(s,v)∈S+video

π?video (s, v) βvideo (s, v) . (12)

As for the time-averaged throughput, the expected instantaneous video throughput measure inherits its insensitivity
with respect to the specific form of the video call duration distribution from the insensitivity of π?video. Observe that
the expected instantaneous video throughput is equal to the call-average video throughput, and hence so is the special
case with unrestricted channel assignments.

3.1.4. Ratio throughput measure

The ratio of the expected video call transfer volume and the expected video call duration is given by

Rr
video =

E
{
τRc

video(τ )
}

µ−1
video

= Rc
video

(cf. (4)), where the numerator is indeed equal to the expected transfer volume of a video call, using the fact that
Rc

video(τ ) = Rc
video does not depend on τ . It is readily seen that also for the special case of unrestricted channel

assignments, the ratio throughput measure is equal to the corresponding call-average video throughput.

3.1.5. Comparison of throughput measures

From the results derived above, it appears that the call-average video throughput, the expected instantaneous video
throughput and the ratio of the expected video call transfer volume and the expected video call duration are identical,
i.e.

Rc
video = Ri

video = Rr
video,

and hence what remains is to compare these measures with the time-average throughput. Based on the explicit
expressions (10) and (11), it can be shown for the case of βmin

video ∈ {0, 1, . . . ,C} that the time-average throughput
exceeds the call-average throughput:

Theorem 3. In the SV model with βmin
video ∈ {0, 1, . . . ,C}, the call-average video throughput is less than or equal to

the time-average video throughput: Rc
video ≤ Rt

video.

The proof of this theorem is given in Appendix C
As an interesting corollary, we obtain that the time-average video throughput is monotonous in the offered video

traffic load. This is noted to be non-trivial: while for ρspeech = 0 (V model), this monotonicity can readily be concluded
via stochastic monotonicity, for ρspeech > 0 speech calls may take the place of video calls, thus destroying stochastic
monotonicity.

Corollary 1. The time-average video throughput is non-increasing in the video traffic load for βmin
video ∈ {0, 1, . . . ,C},

i.e.,

∂Rt
video

∂ρvideo
≤ 0.

The proof of this corollary is given in Appendix D.
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3.2. Analysis of V model

Since all relevant video throughput measures have been derived in closed-form for the SV model, including those
for the case of unrestricted channel assignments, an explicit consideration of the V model would be superfluous, as it
is merely a special case of the SV model with ρspeech = 0. Also the ordering of the different throughput measures is
as under the SV model.

3.3. Analysis of SD model

Consider the SD model with exponentially distributed speech call durations and data call sizes. The evolution of
the system in the SD model can then be described by an irreducible two-dimensional continuous-time Markov chain
(S(t), D(t))t≥0, with states denoted (s, d). The state space of the Markov chain is given by S ≡ {(s, d) ∈ N0 × N0 :

s + dβmin
data ≤ C}, while its infinitesimal generator Q is readily specified in terms of the speech and data call arrival

and departure rates (see e.g. [22]). The irreducibility of the finite state space Markov chain (S(t), D(t))t≥0 ensures
the existence of a unique probability vector π that satisfies the system of global balance equations πQ = 0, with
0, the vector with all entries zero. The equilibrium distribution is not insensitive to the specific form of the speech
call duration and data call size distributions. For the Markovian case, the equilibrium distribution can be determined
numerically, e.g. by a successive overrelaxation procedure [36].

Using PASTA, the speech and data call blocking probabilities are given by

Pspeech =

dmax(0)∑
d=0

π(smax(d), d) and Pdata =

C∑
s=0

π(s, dmax (s)).

In the special case of unrestricted channel assignments to the data service, the speech call blocking probability
becomes equal to the Erlang loss probability, as speech traffic does not ‘see’ data traffic in the absence of data QOS

guarantees, while the data call blocking probability becomes zero.

3.3.1. Call-average throughput
Compared to other data throughput measures, obtaining explicit expressions for the call-average data throughput

Rc
data is more involved. We first concentrate on the distribution of the data call sojourn times, conditional on the data

call size. For each state (s, d) ∈ S+

data ≡ {(s, d) ∈ S : d > 0} define τs,d(x) as the random time it takes to transfer a
file of size x , arriving at a given system state (s, d), where d includes the new data call. Define the Laplace–Stieltjes
transform of the distribution of τs,d(x) by

Ts,d(ζ, x) ≡ E
{
exp

{
−ζ τs,d(x)

}}
, Re(ζ ) ≥ 0, (s, d) ∈ S+

data

and let T(ζ, x) =
(
Ts,d(ζ, x), (s, d) ∈ S+

data

)
be lexicographically ordered in (s, d) ∈ S+

data.
In an analogous manner to that used to determine the conditional expected transfer volumes of video calls in the SV

model, the derivation of an explicit expression for T(ζ, x) involves a modified version of the original Markov chain,
governed by infinitesimal generator Q?data, characterised by the presence of one permanent data call, and with state
space S+

data. The data call departure rates in the modified chain reflect the presence of the permanent data call, and are
equal to Q?data ((s, d) ; (s, d − 1)) = βdata (s, d) (d − 1)µdata. Denote with π?data the unique equilibrium distribution
of the modified Markov chain, and let Bdata ≡ diag(βdata (s, d), (s, d) ∈ S+

data) be the diagonal matrix of data channel
assignments, lexicographically ordered in (s, d). Partition S+

data into S+

data,0 ≡
{
(s, d) ∈ S+

data : βdata (s, d) = 0
}

and its
complement S+

data,+ ≡ S+

data \S+

data,0, and reorder the rows and columns inQ?data, Bdata, π?data and T(ζ, x) in accordance
with the introduced state space partitioning, in order to allow the partitioning

Q?data =

[
Q?++ Q?

+0
Q?0+

Q?00

]
, Bdata =

[
B+ O
O O

]
,

and

π?data =
(
π?data,0,π

?
data,+

)
, T(ζ, x) = (T0(ζ, x),T+(ζ, x)) ,
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where we omit the ‘data’ subscript in the submatrices of Q?data and Bdata for enhanced readability. We note that in
case βmin

data > 0, this implies that S+

data,0 = ∅, leading to a slightly simplified analysis (see [27, Section 4.2]).
As shown in [27, Section 4.4], for x ≥ 0 and Re(ζ ) ≥ 0, a closed-form expression for T(ζ, x) is given by

T0(ζ, x) = −
(
Q?00 − ζI

)−1Q?0+
T+(ζ, x),

and

T+(ζ, x) = exp
{

xB−1
+

(
Q?++ −Q?

+0

(
Q?00 − ζI

)−1Q?0+
− ζI

)}
1.

The conditional expected throughput Rc
data(s, d, x) of a data call admitted to the system in state (s, d), and with a

given size x is given by

Rc
data(s, d, x) = rdataE

{
x

τs,d (x)

}
= rdata

∫
∞

τ=0

x

τ
dΦs,d,x (τ )

= rdatax
∫

∞

τ=0

(∫
∞

ζ=0
exp {−ζ τ } dζ

)
dΦs,d,x (τ )

= rdatax
∫

∞

ζ=0

(∫
∞

τ=0
exp {−ζ τ } dΦs,d,x (τ )

)
dζ

= rdatax
∫

∞

ζ=0
Ts,d(ζ, x)dζ,

where Φs,d,x (τ ) denotes the cumulative distribution function of τs,d (x), given data call size x and system state (s, d)
upon the considered data call’s admission. Deconditioning on the system state (s, d) upon admission yields

Rc
data(x) =

∑
(s,d)∈S+data

 π(s, d − 1)∑
(s′,d ′)∈S+data

π(s′, d ′ − 1)

Rc
data(s, d, x),

while subsequently deconditioning on the exponentially distributed data call size x gives the call-average data
throughput as:

Rc
data = µdata

∑
(s,d)∈S+data

 π(s, d − 1)∑
(s′,d ′)∈S+data

π(s′, d ′ − 1)

∫ ∞

x=0
exp (−µdatax)Rc

data(s, d, x)dx .

Since the equilibrium distribution can only be numerically obtained, the above expression does not simplify for the
special case of unrestricted channel assignments.

3.3.2. Time-average throughput

The time-average data throughput can be derived is a similar way as the time-average video throughput in the SV

model, cf. (11). In particular, we obtain:

Rt
data = rdata

∑
(s,d)∈S+data

 π(s, d)∑
(s′,d ′)∈S+data

π(s′, d ′)

βdata (s, d) .

This expression does not simplify for the special case of unrestricted channel assignments.
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3.3.3. Expected instantaneous throughput
Similar to the derivation of the corresponding measure (12) for the SV model, the expected instantaneous data

throughput is given by

Ri
data = rdata

∑
(s,d)∈S+data

 π(s, d − 1)∑
(s′,d ′)∈S+data

π(s′, d ′ − 1)

βdata (s, d) .

This result does not simplify for the special case of unrestricted channel assignments.

3.3.4. Ratio throughput measure
The ratio of the expected data call size and the expected data call sojourn time is equal to

Rr
data =

(
rdata

µdata

)/
∑

(s,d)∈S
dπ(s, d)

λdata(1 − Pdata)

 = rdata
ρdata(1 − Pdata)∑
(s,d)∈S

dπ(s, d)
,

where Little’s formula (see e.g. [36]) is applied to express the expected data call sojourn time in terms of the
equilibrium distribution. The resulting formula does not simplify for the special case of unrestricted channel
assignments.

3.3.5. Call-average stretch
The call-average stretch, or normalised sojourn time, is given by the expected ratio of the actual and the minimum

sojourn time, where the latter is given by the service requirement (data call size). Using

E
{
τs,d (x)

x

∣∣∣∣ x, s, d

}
= −

1
x

∂

∂ζ
Ts,d (ζ, x)

∣∣∣∣
ζ=0

,

with the Laplace–Stieltjes transform Ts,d(ζ, x) as defined above, the expected (call-average) data stretch is given by

Sdata = CE
{
τs,d (x)

x

}

= −Cµdata

∑
(s,d)∈S+data

 π(s, d − 1)∑
(s′,d ′)∈S+data

π(s, d − 1)

×

{∫
∞

x=0

1
x

exp (−µdatax)

(
∂

∂ζ
Ts,d (ζ, x)

∣∣∣∣
ζ=0

)
dx

}
,

conforming to the definition given by (5), and noting that in the above analysis the data call size x is expressed in
units of rdata kbits (see also Section 2.1). This result does not simplify for the special case of unrestricted channel
assignments.

3.3.6. Comparison of measures
The expressions for the various throughput measures derived above for the SD model do not allow an analytical

comparison. A numerical comparison is presented in Section 4.

3.4. Analysis of D model

The D model is a special case of the SD model with ρspeech = 0. Moreover, the D model is equivalent to
the M/G/1/dmax GPS queuing model with state-dependent aggregate service rates given by drdataβdata(d) =

drdata min
{
C/d, βmax

data

}
, see [10]. For this model, the equilibrium distribution is known to be insensitive to the specific

form of the data call size distribution, and is given by

π(d) =

(
ρ?data

)d
φ(d)

dmax∑
d ′=0

(
ρ?data

)d ′

φ(d ′)

, with φ(d) ≡

(
d∏

d ′=1

d ′βdata
(
d ′
)

C

)−1

, d = 0, . . . , dmax,
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where ρ?data ≡ ρdata/C denotes the normalised data traffic load and φ (0) ≡ 1 by convention. For the special case of
unrestricted channel assignments, dmax = ∞ and the D model reduces to the standard M/G/1 PS queuing model,
which has a geometric equilibrium distribution:

π̃(d) =
(
1 − ρ?data

) (
ρ?data

)d
, d ≥ 0,

requiring ρ?data < 1 for stability.
Using PASTA, the data call blocking probability is equal to

Pdata = π(dmax),

while it is equal to zero in the case of unrestricted channel assignments.

3.4.1. Call-average throughput
In this section, we assume exponentially distributed data call sizes. We first derive a closed-form expression for

T(ζ, x) ≡ (Td(ζ, x), d = 1, . . . , dmax) with Td(ζ, x) the Laplace–Stieltjes transform of the distribution of τd(x),
i.e. the random sojourn time of a data call of size x admitted to the system in the presence of d − 1 other data
calls. Recall that x is expressed in the nominal sojourn time (in seconds). By analogy with the similar analysis
presented for the SD model, Bdata is the diagonal matrix of channel assignments, and Q?data is the infinitesimal
generator corresponding the D model’s modified Markov chain with one permanent data call. In this data-only model,
βdata(d) > 0 for all d ≥ 1, so that no partitioning of T(ζ, x) is required. As a specific instance of the result presented
in [27, Section 4.2], for x ≥ 0 and Re(ζ ) ≥ 0, T(ζ, x) is given by the closed-form expression

T(ζ, x) = exp
{

xB−1
data

(
Q?data − ζI

)}
1.

By analogy with the analysis for the SD model, expressions for the conditional expected throughput measures
Rc

data(d, x) and Rc
data(x) are readily derived. We limit ourselves here to stating the (unconditional) call-average data

throughput:

Rc
data = µdata

dmax∑
d=1

 π(d − 1)
dmax∑
d ′=1

π(d ′ − 1)


∫

∞

x=0
exp (−µdatax)

(
rdatax

∫
∞

ζ=0
Td(ζ, x)dζ

)
dx .

For the case of unrestricted channel assignments, R̃
c
data (x) can be obtained using the following closed-form

expression for the deconditioned Laplace–Stieltjes transform T̃ (ζ, x) as derived in [9]:

T̃ (ζ, x) ≡ E {exp {−ζ τ(x)}} =

∞∑
d=1

 π(d − 1)
∞∑

d ′=1
π(d ′ − 1)

 T̃d(ζ, x)

=

(
1 − ρ?data

) (
1 − ρ?datar2

)
exp {− (λdata (1 − r)+ ζ ) x}(

1 − ρ?datar
)2

− ρ?data (1 − r)2 exp
{
−µx

(
1 − ρ?datar2

)
/r
} ,

with Re(ζ ) ≥ 0 and r given by

r =
(λdata + µdata + ζ )−

√
(λdata + µdata + ζ )2 − 4λdataµdata

2λdata
,

so that the conditional expected (call-average) data throughput is given by

R̃
c
data (x) =

∞∑
d=1

π(d − 1)
(

rdatax
∫

∞

ζ=0
T̃d(ζ, x)dζ

)
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= rdatax
∫

∞

ζ=0

(
∞∑

d=1

π(d − 1)T̃d(ζ, x)

)
dζ

= rdatax
∫

∞

ζ=0
T̃ (ζ, x)dζ

= rdatax
∫

∞

ζ=0

(1 − ρ)
(
1 − ρr2

)
exp {− (λ (1 − r)+ ζ ) x}

(1 − ρr)2 − ρ (1 − r)2 exp
{
−µx

(
1 − ρr2

)
/r
}dζ.

3.4.2. Time-average throughput
Evaluating definition (2) for the D model, the time-average data throughput is given by

Rt
data = rdata

dmax∑
d=1

 π(d)
dmax∑
d ′=1

π(d ′)

βdata(d).

In the case of unrestricted channel assignments, this simplifies to

R̃
t
data = rdata

∞∑
d=1


(
1 − ρ?data

) (
ρ?data

)d
∞∑

d ′=1

(
1 − ρ?data

) (
ρ?data

)d ′

 C

d

= rdataC

(
1 − ρ?data

ρ?data

) ∞∑
d=1

((
ρ?data

)d
d

)

= rdataC

(
1 − ρ?data

ρ?data

)
ln
(

1
1 − ρ?data

)
,

requiring ρ?data < 1 for stability. Note that due to the insensitivity of the equilibrium distribution, these expressions for
the time-average throughput are also insensitive to the specific form of the data call size distribution.

3.4.3. Expected instantaneous throughput
It is readily seen that the D model definition (3) for the expected instantaneous data throughput yields

Ri
data = rdata

dmax∑
d=1

 π(d − 1)
dmax∑
d ′=1

π(d ′ − 1)

βdata(d). (13)

Only in the special case of unrestricted channel assignments, the expression for the expected instantaneous data
throughput is equal to that for the time-average data throughput:

R̃
i
data = rdata

∞∑
d=1


(
1 − ρ?data

) (
ρ?data

)d−1

∞∑
d ′=1

(
1 − ρ?data

) (
ρ?data

)d ′−1

 C

d

= rdataC

(
1 − ρ?data

ρ?data

) ∞∑
d=1

1
d

(
ρ?data

)d
= rdataC

(
1 − ρ?data

ρ?data

)
ln
(

1
1 − ρ?data

)
,
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requiring ρ?data < 1 for stability. The equality of R̃
t
data and R̃

i
data can be understood from the geometric equilibrium

distribution for the number of present data calls (which is stressed to only hold in the case of unrestricted channel
assignments) with the associated memorylessness property, and the PASTA property for Poisson arrivals. Once again,
the above expressions for the expected instantaneous throughputs inherit the insensitivity property of the equilibrium
distribution.

3.4.4. Ratio throughput measure
Following definition (4), the ratio of the expected data call size and the expected data call sojourn time is equal to

Rr
data =

(
rdata

µdata

)/
dmax∑
d=0

dπ(d)

λdata(1 − Pdata)

 = r data
ρdata(1 − Pdata)

dmax∑
d=0

dπ(d)

,

again applying Little’s formula. In the case of unrestricted channel assignments we have

R̃
r
data = rdata

ρ data
∞∑

d=0
d
(
1 − ρ?data

) (
ρ?data

)d = rdata
C(

1 − ρ?data

) ∞∑
d=0

d
(
ρ?data

)d−1
= rdataC

(
1 − ρ?data

)
,

requiring ρ?data ≤ 1. Both expressions are insensitive to the data call size distribution, aside from its mean.

3.4.5. Call-average stretch
The call-average stretch is given by

Sdata = E {Sdata (x)} = C E
{

Tdata (x)

x

}
= CE


1
x

x

dmax∑
d=0

dπ(d)

ρdata(1 − Pdata)


 =

dmax∑
d=0

dπ(d)

ρ?data(1 − Pdata)
,

using the known linearity in x of the conditional expected sojourn time Tdata (x) of a data call of size x [10,36]. The
call-average stretch for the case of unrestricted channel assignments is readily derived to be equal to

S̃data =
1

1 − ρ?data
,

requiring ρ?data < 1 for stability. Note that the effect of the channel rate rdata is captured only in the definition of the
data traffic load ρ?data.

3.4.6. Comparison of measures
We now present a number of results on relations between the different throughput measures derived above. Our

first result relates the call average throughput and the ratio throughput measure.

Theorem 4. For the D model,

Rc
data ≥ Rr

data. (14)

Proof. The result is a straightforward extension of the equivalent result given in [18] for the case of unrestricted
channel assignments. Applying Jensen’s inequality (see e.g. [35]) with convex mapping ψ (x) ≡ 1/x :

Rc
data = rdataE

{
ψ

(
Tdata (x)

x

)}

≥ rdataψ

(
E
{

T data (x)

x

})
= rdata

E


1
x

x

dmax∑
d=0

dπ(d)

ρdata(1 − Pdata)





−1
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= rdata
ρdata(1 − Pdata)

dmax∑
d=0

dπ(d)

= Rr
data. �

We further adopt the following result for the case of unrestricted channel assignments and deterministic data call
sizes.

Theorem 5 (Kherani and Kumar [18]). In case of deterministic data call sizes, the following inequality holds:

R̃
t
data > R̃

c
data. (15)

Lastly, the explicitly derived expressions above revealed that, only for the case of unrestricted channel assignments,
the time-average throughput is equal to the expected instantaneous throughput:

R̃
t
data = R̃

i
data,

while in general it holds that

Rr
dataSdata = R̃

r
dataS̃data = rdataC.

4. Numerical experiments

In this section, we present the results from a set of numerical experiments, carried out in order to provide further
insight in the throughput performance of elastic (video or data) calls in a system with a fixed or varying service
capacity. As an example setting used for the presented experiments, we have selected the wireless environment of a
GSM/GPRS cell, although we argue that the revealed qualitative trends are unaffected by the actual parameter settings
and thus apply to other contexts equally well. The applied system and traffic parameter settings are summarised in
Section 4.1 below. Subsequently, Section 4.2 presents a numerical evaluation of the conditional expected throughput
in the V and D models as a function of the (exponentially distributed) elastic call size, the number of competing elastic
calls found upon admission and the CAC threshold. In Section 4.3, an extensive numerical comparison is presented
of the various (unconditional) throughput measures in the (S)V and (S)D models, considering different elastic call
size distributions where relevant. As the results will demonstrate, the expected instantaneous throughput is the only
(average) throughput measure that closely approximates the call-average throughput for all considered scenarios.
Finally, Section 4.4 presents some results on the coefficient of variation associated with the distinct throughput
measures. Although the principal focus of the paper is on througput averages, these results are included to assess
whether the qualitative conclusions obtained for averages extend to higher moments.

4.1. Parameter settings

The system and traffic parameter settings applied for the numerical experiments are summarised in Table 1. As
stated above, the parameter settings are based on the example context of a single GSM/GPRS cell. The number of
traffic channels C in the integrated services SV/SD models is based on a cell with 22 traffic channels (corresponding to
3 GSM frequencies minus 2 control channels). The capacity selected for the single service V/D models is equal to the
average number of idle traffic channels in the SV/SD models, i.e. 22 − ρspeech

(
1 − Pspeech

)
, where ρspeech is chosen

such the corresponding speech call blocking probability is 1%. The speech call durations are exponentially distributed.
An average call duration of 50 s is assumed for both the speech and video service. The average data file transfer is set
at 320 kbits, which normalises to the given expected duration of µ−1

data s. The video (data) bit rate per traffic channel
is set to 13.4(9.05) kbits/s, based on an assumed GPRS coding scheme CS-2 (CS-1). The video and data traffic loads
are varied between 0 and the applicable value of C . Potential practical upper bounds on the channel assignment
are disregarded. In the conditional throughput analyses for the V/D models, the minimum QOS requirements are
varied within the range [0,C], so that corresponding CAC thresholds between 1 and ∞ are considered, while no such
restrictions are imposed for the unconditional throughput analyses.
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Table 1
Summary of the parameter settings assumed for the numerical experiments, based on the chosen context of a single cell in a GSM/GPRS network

SV model V model SD model D model

C 22 8.486 22 8.486
µ−1

speech 50 s – 50 s –

ρspeech 13.651 Erlang – 13.651 Erlang –
µ−1

video 50 s 50 s – –
ρvideo ∈ (0,C) ∈ (0,C) – –
rvideo 13.4 kbits/s 13.4 kbits/s – –
βmin

video 0 channels ∈ [0,C] channels – –

µ−1
data – – 35.359 s 35.359 s
ρdata – – ∈ (0,C) ∈ (0,C)
rdata – – 9.05 kbits/s 9.05 kbits/s
βmin

data – – 0 channels ∈ [0,C] channels

βmax
GPRS C C C C

Fig. 1. Conditional expected throughput performance in the V model. The left chart shows the call-average throughput of a tagged video call as a
function of its duration τ and the number of video calls v found upon admission, and the right chart shows it as a function of the duration τ and the
CAC threshold vmax.

4.2. Conditional throughput performance

We now present the results of the numerical conditional throughput analyses that have been carried out for the
single service V and D models, respectively.

V model Fig. 1 shows the conditional call-average video throughputs (in kbits/s) for the case of exponentially
distributed video call durations and ρvideo =

1
2 C = 11. A logarithmic scale is used for the video call duration τ

(expressed in seconds). The results in the left chart assume a CAC threshold of vmax = 10, which is achieved by setting
βmin

video ∈ (0.7715, 0.8486], and leads to a video call blocking probability of Pvideo = 0.0075. The depicted curve for
Rc

video (v, τ ) is obtained using a special case of the result presented in (9), i.e. without speech traffic. As τ ↓ 0, the
call-average throughputs conditional on the system state v upon admission approach rvideoβ video (v) = 113.7023/v.
As τ increases, the impact of the system state upon admission vanishes, and for each v the call-average throughput
converges towards the time-average video throughput in a system with one permanent video call, which was seen to be
equal to Rc

video, i.e. the call-average video throughput in the original model without a permanent video call, h.l. equal
to 26.6132. Observe that for low (high) v, convergence is from above (below), in accordance with intuition.

The right chart shows Rc
video (τ ) for βmin

video ∈ [0,C] and hence vmax ∈ {1, 2 . . . ,∞}. The corresponding video call
blocking probabilities are as follows:

vmax 1 2 3 4 5 10 ∞

Pvideo 0.8093 0.6319 0.4719 0.3336 0.2206 0.0075 0.0000
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Fig. 2. Conditional expected throughput performance in the D model. The left chart shows the call-average throughput of a tagged data call as a
function of its size x and the number of data calls d found upon admission, and the right chart shows it as a function of the size x and the CAC

threshold dmax.

Observe that, in accordance with the exact result demonstrated in Section 3, Rc
video (τ ) is independent of the

video call duration τ , which reflects the equivalence of the expected instantaneous throughput and call-average
throughput measures. For vmax = 1, the call-average video throughput is trivially equal to the aggregate service
rate rvideoC = 113.7023, while for vmax → ∞ the conditional video throughput decays exponentially to

rvideoC

(
1 − exp (−ρvideo)

ρvideo

)
= 26.4149.

Note that the case for vmax = 10 is identical to the converged values in the left chart (for τ → ∞).

D model Fig. 2 shows the conditional call-average data throughputs in the D model, for the case of exponentially
distributed data call sizes and ρdata =

1
2 C = 11 (ρ?data = 0.5). Equivalent to the above experiment for the V model, the

results for Rc
data (d, x) (with x expressed in nominal transfer seconds, as explained in Section 2) in the left chart assume

a CAC threshold of dmax = 10, which is achieved by setting βmin
data ∈ (0.7715, 0.8486]. At the considered data traffic

load, the selected CAC threshold causes virtually no data call blocking. The profile of the left chart is very similar to
that of the left chart in Fig. 1: limx↓0 Rc

data (d, x) is given by the instantaneous throughput rdataβdata(d) = 76.7915/d,
while limx→∞ Rc

data (d, x) is independent of d and given by the time-average data throughput in a data-only system
with one permanent call, readily derived to be

rdataC

(
1 − ρ?data

) (
1 −

(
ρ?data

)dmax
)

(
1 −

(
ρ?data

)dmax+1
)

− (dmax + 1)
(
ρ?data

)dmax
(
1 − ρ?data

) = 38.5843. (16)

In contrast with the V model, in the D model the time-average throughput in the modified Markov chain with one
permanent data call is not equal to the call-average throughput in the original Markov chain.

The right chart shows Rc
data (x) for various CAC thresholds dmax ∈ {1, 2, . . . ,∞}, with the corresponding data call

blocking probabilities given by

dmax 1 2 3 4 5 10 ∞

Pdata 0.3333 0.1429 0.0667 0.0323 0.0159 0.0005 0.0000

In the trivial case of dmax = 1, the call-average data throughput is equal to the aggregate service rate rdataC = 76.7915,
independent of the data call size x . As dmax increases, not only does Rc

data (x) decrease due to an increased carried
data traffic load and hence a greater competition for resources, it is also no longer independent of x . For a given
CAC threshold of dmax, Rc

data (x) decreases from the corresponding expected instantaneous data throughput Ri
data

(cf. expression (13)) to the expected time-average data throughput in the associated modified Markov chain with one
permanent data call (cf. expression (16)). Observe that the expected instantaneous throughput is an upper bound for
the call-average throughput. Unlike in the V model, in the D model small calls experience a higher throughput than
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Fig. 3. Comparison of different throughput measures in the SV, V and D models. The (insensitive) throughput measures in the left chart are identical
for the SV and V models, given an appropriately normalised video traffic load. The right chart depicts, for the D model, the insensitive Rt

data, Ri
data

and Rr
data measures, along with the sensitive Rc

data measure for three distinct data call size distributions.

large calls. It is stressed, however, that the expected sojourn time is proportional in the data call size, so that the
expected stretch is insensitive to the data call size. The potential confusion is due to the fact that the reciprocal of
the expectation of a random variable is generally unequal to the expectation of the reciprocal of that random variable.
Observe that the expected instantaneous throughput is an upper bound for the call-average throughput.

4.3. Unconditional throughput performance

We now concentrate on the unconditional throughput as a function of the elastic traffic load, with a principal focus
on the proximity of the various throughput measures in the different PS models.

(S)V model Consider the SV and V models. Fig. 3 depicts the various (unconditional) throughput performance
measures as functions of the normalised elastic traffic load. In all considered cases, no channel assignment restrictions
have been imposed on the elastic services. The left chart covers both the SV and the V models, for which all throughput
measures are identical for any given normalised video traffic load ρ?video ≡ ρvideo/C , with C appropriately chosen
in each model (see Table 1). The chart reveals both the demonstrated equality of Rc

video, Ri
video and Rr

video, and the
proven ordering of Rt

video ≥ Rc
video. It can be observed from the numerical results that Rt

video may exceed Rc
video by

more than 36%.

D model The right chart of Fig. 3 concentrates on the D model. Since (only) the call-average throughput measure
Rc

data is sensitive to the data call size distribution and no explicit expression could be derived, three distinct curves
have been obtained via dynamic simulations for deterministic (zero variance), exponential and Pareto (with shape
parameter α = 1.35: infinite variance) data call size distributions. Sufficient numerical accuracy is ensured in the
simulation experiment, indicated by a relative precision of the constructed 95% confidence intervals that is no worse
than 5%. Observe that the call-average throughput is higher for more variable data call sizes, as also observed in [18],
although the discrepancies are extremely small. This is probably due to the fact that a more variable data call size
distribution features a relatively large number of small data calls, which appear to experience higher throughputs than
large data calls (cf. the right chart of Fig. 2).

As shown in Section 3, the insensitive time-average and expected instantaneous throughput measures are identical,
and appear to offer a very good, only slightly overestimating (cf. (15)), approximation for the call-average throughput.
Finally, Rr

data significantly underestimates the call-average throughput (cf. (14)), for high data traffic loads even by a
factor exceeding 2.

SD model For the SD model, all the throughput measures are more or less sensitive to the data call size distribution,
so that for reasons of clarity the numerical results are presented in the two separate charts of Fig. 4 (for each marker
in the legend, the left (right) throughput measure is depicted in the left (right) chart). In all cases, observe again that
a more variable data call size distribution appears to lead to higher expected throughputs, which is in agreement with
the sojourn time results of [23]. In this data model with varying service capacity, both the time-average throughput
(Rt

data) and the ratio of the expected data call size and the expected sojourn time (Rr
data) are significantly lower than
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Fig. 4. Comparison of different throughput measures in the SD model. All throughput measures are sensitive to the data call size distributions. The
performance induced by three distinct distributions is shown.

the call-average throughput (Rc
data ), in particular for lower data traffic loads. In contrast, the expected instantaneous

throughput (Ri
data) remains a very good and fairly insensitive approximation for Rc

data, across the entire range of data
traffic loads. The slight overestimation of the call-average throughput seems to be not significant enough to lead to
perilously loose Call Admission Control schemes or planning guidelines.

Comparing the throughput results for the D and SD models, observe that the call-average data throughput appears
to be fairly insensitive to the variability of the available capacity, as also observed in [12] (recall that for the SV and V

models, the call-average video throughputs were identical). Only for heavy data traffic loads, is the call-average data
throughput non-negligibly higher for the fixed capacity D model.

In order to get a better grasp on the large discrepancy between e.g. the time- and call-average data throughputs
in the SD model, the left chart of Fig. 5 shows the time-average data throughput versus the normalised data traffic
loads for various degrees of acceleration of the speech call arrival and departure process. Keeping ρspeech fixed at
13.651 Erlang, we multiply both λspeech and µspeech by the acceleration factor ϑ ∈ {1, 10, 100,∞}. The case of
ϑ = 1 refers to the original model, and the associated curve is identical to the one for Rt

data in Fig. 4 (left chart). At
the other extreme, in the case of ϑ → ∞, the speech calls arrive and depart so quickly that from the perspective
of the data traffic, the available capacity is deterministic at C − ρspeech

(
1 − Pspeech

)
, and hence the accelerated

model corresponds with the D model. As a consequence, the associated curve is identical to the one for Rt
data in

Fig. 3 (right chart). Observe that as the capacity fluctuation process is accelerated, i.e. when ϑ is increased from
1 to ∞, the time-average throughput curves gradually approach the one corresponding to the extreme case of the
D model, and the time-average throughput thus approximates the call-average throughput more and more closely.
Additional numerical experiments (not included) indicate that among the different throughput measures, the ratio
throughput measure is most sensitive to the degree of speech call dynamics in the SD model. While the call-average
and expected instantaneous throughputs are largely insensitive to ϑ , and the time-average throughput converges
to a significantly lower, yet positive value as ϑ ↓ 0, the ratio throughput measure becomes negligible for very
small ϑ .

The right chart of Fig. 5 shows the expected stretch of a data call for both the SD and D models. As noted in
Section 3, the expected stretch in the D model is insensitive to the data call size distribution. For the SD model, such
insensitivity does not hold, as is demonstrated by the three expected stretch curves for deterministic, exponential
and Pareto (with shape parameter α = 1.35) data call size distributions. In correspondence with the throughput
performance, the expected stretch appears to be smaller (better) for more highly variable data call sizes. A noteworthy
observation from the numerical experiments that is not included in the figure, is that the expected stretch turns out
to be infinitely large for the considered subexponential Weibull data call size distributions, i.e. with coefficient of
variation greater than 1, for any data traffic load. In contrast, for highly variable Pareto distributions such as the one
included in the figure, the expected stretch was nicely finite within the stable regime of data traffic loads. The probable
reason for this phenomenon is that a subexponential Weibull distribution features many very small data calls, which
may suffer from excessively large relative sojourn times in the case of a varying service capacity that is even equal
to zero at times. Pareto distributions are inherently truncated at the lower end, however, so that extremely small data
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Fig. 5. The impact of acceleration of the speech call arrival and departure process on Rt
data in the SD model (left chart). The expected stretch

performance for different data call size distributions (SD model), as well as the insensitive values for the D model.

calls simply do not occur. In any case, the expected stretch thus appears to be less useful as a measure for throughput
performance.

4.4. Coefficient of variation of the throughput

Although the focus of the paper is on the analysis and comparison of distinct call- and time-centric average
throughput measures, in this subsection we present some numerical results for the Coefficients of Variation (CoV)
associated with the considered throughput measures. Note that the CoV is defined as the ratio of the standard deviation
of the throughput and its average. More specifically, we consider the CoV of the instantaneous, call-1 and time-centric2

throughputs, noting that no CoV measure exists that can be associated with the ratio throughput measure. For the (S)V

and (S)D models, and three distinct CoV measures, Fig. 6 depicts the numerical results, which are analytically obtained
when possible, or via dynamic simulations otherwise. For instance, for the SV model, closed-form expressions for the
CoV of the instantaneous and time-centric throughput are readily derived from the equilibrium distribution. As was
shown to be the case for the associated averages, these CoVs are different and insensitive to the call size distribution.
Other CoV measures that can be derived analytically are the CoV of the instantaneous and time-centric throughputs in
the D model, which appear to be identical and also insensitive to the call size distribution, which was also derived to
hold for the associated averages.

Considering the numerical results depicted in the figure, a number of observations can be made. Note first the
distinct trends of the curves associated with the (S)V and (S)D models, respectively, which reflect the net effect of a
generally decreasing trend of both the standard deviations and the averages of all throughput measures in all models.
Apparently, for the CoV in the (S)V model, the decreasing trend of the standard deviation is dominant for moderate
to heavy traffic loads, while in the (S) D model, the exponential decline of the average throughput as the data traffic
load grows (see also Fig. 4) outweighs the milder decline of the standard deviation. Another general observation that
can be made is that the CoV of the elastic calls’ throughput is generally larger in the models with speech traffic, as the
varying presence of speech traffic provides an additional source of throughput variation, besides the variation that is
due to the competition among elastic calls themselves.

Comparing the CoV curves for the distinct throughput measures, we observe that for the D model, the CoV appears
to be rather insensitive to both the applied throughput measure and the call size distribution. Furthermore, for the
SD model, the CoV of the instantaneous throughput appears to be very close to that of the call-centric throughput,
while the CoV of the time-centric throughput is generally slightly higher. For (S)V model, neither the CoV of the
time-centric, nor the one of the instantaneous throughput appear to be very good approximations for the CoV of the
call-centric throughput, except for very low video traffic loads. For moderate-to-high video traffic loads, the CoV of
the instantaneous throughput, however, still appears to offer the closest approximation among the readily attainable

1 Cf. ‘call-average’.
2 Cf. ‘time-average’.
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Fig. 6. Comparison of the Coefficient of Variation associated with the different considered throughput measures in the V, SV, D and SD models.
The CoV of the instantaneous and time-centric throughput measures in the (S)V and D models are insensitive to the data call size distributions. For
the CoV measures that are not insensitive, the performance induced by three distinct distributions is shown. For those curves, the different applied
shades indicate the assumed call size/duration distributions, as only explicitly presented in the legend for the call-average throughput.

measures. Also, observe that the approximation offers an upper bound and thus, when used for network dimensioning
purposes, is expected to yield conservative guidelines.

5. Concluding remarks

In this paper we have specified, derived and compared, both analytically and numerically, a set of throughput
measures in PS queuing systems modelling a communication link carrying elastic video or data calls. The available
service capacity was either fixed or randomly varying, corresponding to an integrated services network link, where
elastic calls utilise the capacity left idle by prioritised speech traffic. The call-average throughput is arguably the most
appropriate indicator of the experienced average Quality Of Service, which, however, for models involving elastic calls
of the data type, is hard to determine analytically. Among the alternative throughput measures, the newly proposed and
readily analytically derived expected instantaneous throughput is the only measure which excellently approximates
(or is even equal to) the call-average throughput in all considered system models and across the entire range of
considered elastic traffic loads. In particular, for the practically most relevant model integrating speech and data traffic,
other typically applied throughput measures such as the time-average throughput or the ratio of the expected call size
and the expected sojourn time, significantly underestimate the call-average throughput. An intuitive reason for the
generally (near-)perfect fit of the expected instantaneous throughput is that apparently, the throughput an elastic call
experiences immediately upon arrival is an excellent predictor of what the call is likely to experience throughout its
lifetime. Moreover, among the considered alternative throughput measures, the expected instantaneous throughput is
the only measure that is truly call-centric. Considering higher moments, the instantaneous throughput again generally
provides the most adequate predictor for the coefficient of variation of the call-centric throughput, although these
approximations are not always as accurate as in the case of throughput averages.

The analytical evaluation further revealed that the expected call-average throughput of elastic video calls in the
considered PS models is insensitive to both the variability of the available capacity and the call duration distribution,
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while the numerical experiments indicated that this insensitivity property also holds for the data service to a
considerable degree. As seen in [23], the latter insensitivity does not hold if the data performance is measured by
the (conditional) expected sojourn time.
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Appendix A. Proof of Theorem 1

Proof. Define the Laplace–Stieltjes transform of the distribution of xs,v(τ ) by

Xs,v(ζ, τ ) ≡ E
{
exp

{
−ζ xs,v(τ )

}}
, Re(ζ ) ≥ 0, (s, v) ∈ S+

video,

and let X(ζ, τ ) be the vector with the Xs,v(ζ, τ ), ordered lexicographically in (s, v) ∈ S+

video. Using marginal analysis,
we will first derive a differential equation and initial condition for X(ζ, τ ), for τ ≥ 0 and Re(ζ ) ≥ 0. Consider a time
interval of length ∆ > 0,, with ∆ sufficiently small such that the tagged video call cannot terminate within this
time, i.e. ∆ < τ . Condition on all the possible events occurring in this interval, starting in state (s, v) ∈ S+

video.
For notational convenience and readability, the boundary constraints are not explicitly considered. Equations for the
boundary can be derived by analogy with the results below.

Xs,v(ζ, τ ) ≡ E
{
exp

{
−ζ xs,v(τ )

}}
= λspeech∆ exp[−ζ(rvideoβvideo (s, v) (∆ − O (∆))

+ rvideoβvideo (s + 1, v) O (∆))]Xs+1,v(ζ, τ − ∆)
+ sµspeech∆ exp[−ζ(rvideoβ video (s, v) (∆ − O (∆))
+ rvideoβvideo (s − 1, v) O (∆))]Xs−1,v(ζ, τ − ∆)
+ λvideo∆ exp[−ζ(rvideoβ video (s, v) (∆ − O (∆))
+ rvideoβvideo (s, v + 1) O (∆))]Xs,v+1(ζ, τ − ∆)
+ (v − 1) µvideo∆ exp[−ζ(rvideoβvideo (s, v) (∆ − O (∆))
+ rvideoβvideo (s, v − 1) O (∆))]Xs,v−1(ζ, τ − ∆)
+ (−λspeech∆ − sµspeech∆ − λvideo∆ − (v − 1) µvideo∆)
× exp [−ζrvideoβvideo (s, v)∆] Xs,v(ζ, τ − ∆)

+

(
1 − ζrvideoβvideo (s, v)∆ +

∞∑
j=2

(−ζrvideoβvideo (s, v)∆) j

j !

)
Xs,v(ζ, τ − ∆)+ o(∆).

Rearranging terms and letting ∆ ↓ 0 gives the system of differential equations

∂Xs,v(ζ, τ )

∂τ
= λ speech Xs+1,v(ζ, τ )+ sµspeech Xs−1,v(ζ, τ )

+ λvideo Xs,v+1(ζ, τ )+ (v − 1) µvideo Xs,v−1(ζ, τ )

+
(
−λspeech − sµspeech − λ video − (v − 1) µvideo

)
Xs,v(ζ, τ )

− ζrvideoβvideo (s, v) Xs,v(ζ, τ ),

using the continuity of Xs,v(ζ, τ ) in τ . This system of differential equations may equivalently be written in the matrix
notation as follows:

∂

∂τ
X(ζ, τ ) =

(
Q?video − ζrvideoBvideo

)
X(ζ, τ ). (17)
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The initial condition

X(ζ, 0) = 1, (18)

simply reflects the fact that the transfer volume xs,v(0) of a video call with a duration of zero seconds equals zero bits:

X(ζ, 0) =
(
E
{
exp

{
−ζ xs,v(0)

}})
(s,v)∈S+video

= 1.

The existence and uniqueness of a solution X(ζ, τ ) to the system of differential equations (17) with initial condition
(18) follows from e.g. [8, Chapter 1, Section 8]. The unique solution is readily observed and verified to be given by

X(ζ, τ ) = exp
{
τ
(
Q?video − ζrvideoBvideo

)}
1. (19)

Using this closed-form expression for the Laplace–Stieltjes transform of the distribution of xs,v(τ ), an explicit
expression of the conditional expected transfer volume and, consequently, the conditional expected video throughput
can now be derived. Recall that π?video ≡

(
π?video(s, v), (s, v) ∈ S+

video

)
is the equilibrium probability distribution

vector corresponding to the Markov chain with one permanent video call, i.e. π?videoQ
?
video = 0, while γ video ≡(

γvideo(s, v), (s, v) ∈ S+

video

)
is the unique solution to the system of linear equations given by (7) and (8). The existence

of a vector γ video that satisfies (7), and its uniqueness up to a translation along the vector 1, are guaranteed by results in
Markov reward chain theory. Interpreting γ video as the vector of relative rewards in a Markov reward chain governed
by the infinitesimal generator Q?video and with immediate reward vector 1

η
rvideo

(
Bvideo1 −

(
π?videoBvideo1

)
1
)

with η
is the maximum rate of change in the Markov chain, and understanding that the long-term average rewards are zero,
1
η
π?videorvideo

(
Bvideo1 −

(
π?videoBvideo1

)
1
)

= 0, [36, Theorem 3.1, page 167] can be applied after a uniformisation
of the continuous-time Markov chain. A translation of γ video along the vector 1 indeed does not alter the solution,
since for any α ∈ R, Q?video

(
γ video + α1

)
= Q?videoγ video, or equivalently,

[
I − exp

{
τQ?video

}] (
γ video + α1

)
=[

I − exp
{
τQ?video

}]
γ video, which readily follows from using the Taylor expansion of exp

{
τQ?video

}
. The single

degree of freedom that exists in choosing γ video in expression (7), is used to normalise γ video as in (8).
The vector of conditional expected transfer volumes x̂(τ ) is then obtained by taking the derivative of X(ζ, τ ) with

respect to ζ , and subsequently setting ζ = 0.

x̂(τ ) = −
∂

∂ζ
X(ζ, τ )

∣∣∣∣
ζ=0

= −
∂

∂ζ

∞∑
k=0

((
τQ?video

)
+ (−ζ τrvideo Bvideo)

)k
k!

1

∣∣∣∣∣
ζ=0

= −

(
∞∑

k=1

k−1∑
i=0

(
τQ?video

)k−i−1
(−τrvideoBvideo)

(
τQ?video

)i
k!

)
1 =

(
∞∑

k=1

(
τQ?video

)k−1

k!

)
τrvideoBvideo1

= τ
(
π?videorvideoBvideo1

)
1 +

(
∞∑

k=1

(
τQ?video

)k−1

k!

) [
τrvideoBvideo1 − τ

(
π?videorvideoBvideo1

)
1
]

= τ
(
π?videorvideoBvideo1

)
1 −

(
∞∑

k=1

(
τQ?video

)k−1

k!

)
τQ?videoγ video

= τ
(
π?videorvideoBvideo1

)
1 +

(
I −

∞∑
k=0

(
τQ?video

)k
k!

)
γ video

= τ
(
π?videorvideoBvideo1

)
1 +

[
I − exp

{
τQ?video

}]
γ video

where after the third equality sign, only those matrix cross-products appear that remain after differentiating the terms
in the preceding expression, and setting ζ to 0. The subsequent equality sign uses Q?video1 = 0, so that all terms with
i > 0 disappear. A similar argument is used to obtain the fifth equality. Eq. (7) is used for the sixth equality.

Finally, the conditional expected throughput vector is given by

x̂(τ )
τ

= rvideo
(
π?videoBvideo1

)
1 +

1
τ

[
I − exp

{
τQ?video

}]
γ video. �



176 R. Litjens et al. / Performance Evaluation 65 (2008) 152–180

Appendix B. Proof of Theorem 2

Proof. The stationary joint distribution π
(
s, v,ϑ speech,ϑvideo

)
of the number of speech (S) and video calls (V )

present in the system, and the associated residual call durations Θ speech ≡ (Θspeech (1) , . . . ,Θspeech (S)) and
Θvideo ≡ (Θvideo (1) , . . . ,Θvideo (V )), is given by (see e.g. [13]):

π
(
s, v,ϑ speech,ϑvideo

)
= Pr{S = s, V = v,Θ speech ∈

[
ϑ speech,ϑ speech + dϑ speech

]
,

Θvideo ∈ [ϑvideo,ϑvideo + dϑvideo]}

= G
(
ρspeech, ρvideo ,C

) {ρs
speech

s!

ρvvideo

v!

s∏
s′=1

(
Φspeech

(
ϑspeech

(
s′
))

µ−1
speech

dϑspeech
(
s′
))

×

v∏
v′=1

(
Φvideo

(
ϑvideo

(
v′
))

µ−1
video

dϑ video
(
v′
))}

,

for (s, v) ∈ S = S (C) ≡
{
(s, v) ∈ N0 × N0 : s + vβmin

video ≤ C
}
, ϑ speech,ϑvideo ≥ 0, where the vectors dϑ speech and

dϑvideo consist of the infinitesimally small elements

G
(
ρspeech, ρvideo ,C

)
≡

 ∑
(s,v)∈S(C)

ρs
speech

s!

ρvvideo

v!

−1

,

and where Φspeech and Φ video denote the complementary cumulative distributions of the speech and video call
durations, respectively.

As the arrival process is a Poisson process, the joint distribution π•

video

(
s, v,ϑ speech,ϑvideo

)
of

(S, V,Θ speech,Θvideo) upon admission of a tagged video call can readily be obtained as the conditional distribu-
tion seen by an arriving call, given that it is admitted. Invoking PASTA to obtain the distribution seen by an arriving
call, we obtain

π•

video

(
s, v,ϑ speech,ϑvideo

)
= Pr{S = s, V = v,Θ speech ∈

[
ϑ speech,ϑ speech + dϑ speech

]
,

Θvideo ∈ [ϑvideo,ϑvideo + dϑvideo] | s + vβmin
video ≤ C − βmin

video}

= G
(
ρspeech, ρvideo ,C − βmin

video

)
×

{
ρs

speech

s!

ρvvideo

v!

s∏
s′=1

Φspeech
(
ϑspeech

(
s′
))

µ−1
speech

v∏
v′=1

Φvideo
(
ϑvideo

(
v′
))

µ−1
video

}
,

for (s, v) ∈ S
(
C − βmin

video

)
, where v excludes the newly admitted tagged video call.

Observe that π•

video

(
s, v,ϑ speech,ϑvideo

)
is equal to the stationary joint distribution of the number of speech and

video calls and their residual call durations in a corresponding system with capacity C − βmin
video instead of C , or

equivalently, in the original system, but with one permanent video call (where v excludes this call). Hence the
system state remains stochastically identical throughout the duration of the tagged video call. The associated (partially
deconditioned) system state distribution π•

video (s, v) is given by

π•

video (s, v) =

∫
∞

ϑspeech(1)=0

∫
∞

ϑ speech(s)=0
· · ·

∫
∞

ϑ video(1)=0

∫
∞

ϑvideo(v)=0
π•

video

(
s, v,ϑ speech,ϑvideo

)
= G

(
ρspeech, ρvideo ,C − βmin

video

){ρs
speech

s!

ρvvideo

v!

}
, (20)

for (s, v) ∈ S
(
C − βmin

video

)
. Since the throughput of the tagged video call is completely determined by the distribution

of the number of speech and other video calls present during its lifetime, as given in (20), it is now immediately
clear that the conditional call-average throughput Rc

video (τ ) of the tagged video call is independent of its duration
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τ , i.e. Rc
video (τ ) = Rc

video, for all τ ≥ 0. In particular, it is equal to the expected instantaneous video throughput
experienced upon admission, which inherits its insensitivity from the insensitivity of π?video (see also Section 3.1.3).
Note that the stationary probability π•

video (s, v) is given in expression (20), where v excludes the tagged (permanent)
video call, is readily verified to be equivalent to the conditional probability π∗

video (s, v + 1) given in expression (6),
where v includes the newly admitted video call. �

Appendix C. Proof of Theorem 3

Proof. For the extreme cases of infinitesimally small or infinitely large video traffic loads, it is readily argued that
the call- and time-average video throughput measures are identical. Under an extremely light video traffic load
(ρvideo ↓ 0), a (rarely) occuring system state (s, v) ∈ S+

video must have v = 1, almost surely, for both the original
stochastic process, and the modified process with one permanent video call. As a consequence, the time-average
video throughputs of both processes are identical, and hence so are the call- and time-average video throughputs of
the original process. We thus have that

lim
ρvideo↓0

Rt
video = lim

ρvideo↓0
Rc

video

as can readily be verified from (10) and (11).
Alternatively, an infinitely heavy video traffic load (ρvideo → ∞, assuming βmin

video > 0 for stability) leads to a
(complete or near) crowding out of speech calls, and implies the everlasting presence of vmax (0) =

⌊
Ctotal/β

min
video

⌋
≥ 1

video calls, and hence again the performance of the original and the modified process are the same. In particular, all
video throughput measures are identical, so that

lim
ρvideo→∞

Rt
video = lim

ρvideo→∞
Rc

video.

Now assume that 0 ≤ ρvideo < ∞. Then, from (10) and (11), we have

Rc
video ≤ Rt

video ⇐⇒ rvideo

∑
(s,v)∈S+video

 π (s, v − 1)∑
(s′,v′)∈S+video

π (s′, v′ − 1)

βvideo (s, v)

≤ rvideo

∑
(s,v)∈S+video

 π(s, v)∑
(s′,v′)∈S+video

π(s′, v′)

βvideo (s, v)

⇐⇒

 ∑
(s,v)∈S+video

ρs
speechρ

v−1
video

s! (v − 1)!
βvideo (s, v)

 ∑
(s,v)∈S+video

ρs
speech ρ

v
video

s!v!


+ −

 ∑
(s,v)∈S+video

ρs
speechρ

v
video

s!v!
βvideo (s, v)

 ∑
(s,v)∈S+video

ρs
speechρ

v−1
video

s! (v − 1)!

 ≤ 0

⇐⇒

vmax−1∑
v=0

ρvvideo

C−βmin(v+1)∑
s=0

ρs
speech

s!v!
βvideo (s, v + 1)

vmax−1∑
w=0

ρwvideo

C−βmin(w+1)∑
s=0

ρs
speech

s! (w + 1)!


−

vmax−1∑
v=0

ρvvideo

C−βmin(v+1)∑
s=0

ρs
speech

s! (v + 1)!
βvideo (s, v + 1)


×

vmax−1∑
w=0

ρwvideo

C−βmin(w+1)∑
s=0

ρs
speech

s!w!

 ≤ 0.
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Recognising that the LHS is a polynomial in ρ of degree 2 (vmax − 1) = 2
(⌊

C/βmin
video

⌋
− 1

)
, the above condition can

be written in the following form:

2(vmax−1)∑
k=0

ρk
video

∑
v+w=k

ζv,w ≤ 0, (21)

where the coefficients ζv,w, v,w,= 0, . . . , vmax − 1, are given by

ζv,w =

C−βmin
video(v+1)∑
s=0

ρs
speech

s!v!
βvideo (s, v + 1)

C−βmin
video (w+1)∑
s=0

ρs
speech

s! (w + 1)!


−

C−βmin
video(v+1)∑
s=0

ρs
speech

s! (v + 1)!
βvideo (s, v + 1)

C−βmin
video(w+1)∑
s=0

ρs
speech

s!w!


=

1
v!w!

(
1

w + 1
−

1
v + 1

)C−βmin
video(v+1)∑
s=0

ρs
speech

s!
βvideo (s, v + 1)

C−βmin
video(w+1)∑
s=0

ρs
speech

s!

 .
Note that ζv,v = 0, v = 0, . . . , vmax − 1, so that the coefficients for ρ0 and ρ2(vmax−1) vanish.

Observe that since ρvideo ≥ 0, a sufficient condition for (21) is that all coefficients
∑
v+w=k ζv,w ≤ 0,

k = 1, . . . , 2vmax − 1. To this end, we will show that ζv,w + ζw,v ≤ 0, where we take v < w without loss of
generality, i.e.,

ζv,w + ζw,v ≤ 0

⇐⇒

(
1

w + 1
−

1
v + 1

)C−βmin
video(v+1)∑
s=0

ρs
speech

s!
βvideo (s, v + 1)

C−βmin
video(w+1)∑
s=0

ρs
speech

s!


+

(
1

v + 1
−

1
w + 1

)C−βmin
video(w+1)∑
s=0

ρs
speech

s!
βvideo (s, w + 1)

C−βmin
video(v+1)∑
s=0

ρs
speech

s!

 ≤ 0

or, equivalently,

C−βmin
video(v+1)∑
s=0

ρs
speech
s! βvideo (s, v + 1)

C−βmin
video(v+1)∑
s=0

ρs
speech
s!

≥

C−βmin
video(w+1)∑
s=0

ρs
speech
s! βvideo (s, w + 1)

C−βmin
video (w+1)∑
s=0

ρs
speech
s!

,

i.e.,

E
{
βvideo

(
SC−βmin

video(v+1), v + 1
)}

≥ E
{
βvideo

(
SC−βmin

video(w+1), w + 1
)}
,

where Sx is a random variable distributed as the queue length in a standard Erlang loss model with capacity x and
traffic load ρ speech. Observe that we have effectively reduced the inequality Rc

video ≤ Rt
video for the SV model to a set

of inequalities for a speech-only model, i.e. for the standard Erlang loss model.

To complete the proof, we will show that βvideo

(
SC−βmin

video(v+1), v + 1
)

is almost surely non-increasing in v, for

v = 0, . . . , vmax − 1. Substituting y = C − βmin
video (v + 1), we have that

βvideo

(
SC−βmin

video(v+1), v + 1
)

= βvideo

(
Sy,

C − y

βmin
video

)
,

which we will demonstrate to be almost surely non-decreasing in y, by comparing the above expression for
y, y + βmin

video ∈
[
0,C − βmin

video

]
, where the lower (upper) bound corresponds with v = vmax − 1 (v = 0). First
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observe that the sample paths of the Erlang loss model with capacity y and y + βmin
video can readily be compared.

Clearly, for an identical input of interarrival times and call lengths, it must be that the sample path of the system with
capacity y + βmin

video is never below that of the system with capacity y. In fact, starting with an empty system, the
sample paths coincide until a call is blocked in the system with capacity y. Then, during the period that the system
with capacity y is full, it may be that one or more additional calls are admitted to the system with capacity y + βmin

video.
Note that at most βmin

video additional calls can be accepted. The sojourn times of the additional calls are independent of
the sojourn times of the other calls in the system with capacity y + βmin

video, which are also present in the system with
capacity y. Hence, with probability 1,

Sy ≤ Sy+βmin
video

≤ Sy + βmin
video and Sy ≤ y.

Combining these results with the fact that y + βmin
video ≤ C and, in general, for a, b ∈ R, it holds that if a ≥ b > ε,

then
(

a−ε
b−ε

)
≥

a
b , implies that

C − Sy+βmin
video

C −
(
y + βmin

video

) ≥
C −

(
Sy + βmin

video

)
C −

(
y + βmin

video

) ≥
C − Sy

C − y
,

with probability 1. Recall that

βvideo

(
Sy,

C − y

βmin
video

)
= min

{
βmax, βmin

video
C − Sy

C − y

}
,

so that

βvideo

(
Sy+βmin

video
,

C −
(
y + βmin

video

)
βmin

video

)
≥ βvideo

(
Sy,

C − y

βmin
video

)
,

with probability 1, which completes the proof. �

Appendix D. Proof of Corollary 1

Proof. The proof follows from manipulating the inequality proven in Theorem 3, using expressions (10) and (11),
and relating it to the derivative of the time-average video throughput expression (11) with respect to ρvideo :

Rc
video ≤ Rt

video ⇐⇒

 ∑
(s,v)∈S+video

π (s, v − 1) βvideo (s, v)

 ∑
(s,v)∈S+video

π (s, v)


−

 ∑
(s,v)∈S+video

π (s, v) βvideo (s, v)

 ∑
(s,v)∈S+video

π (s, v − 1)

 ≤ 0

⇐⇒

∑
(s,v)∈S+video

π (s, v − 1) βvideo (s, v)∑
(s,v)∈S+video

π (s, v)

−

 ∑
(s,v)∈S+video

π (s, v) βvideo (s, v)

 ∑
(s,v)∈S+video

π (s, v − 1)


 ∑
(s,v)∈S+video

π (s, v)

2 ≤ 0

⇐⇒
∂Rt

video

∂ρvideo
≤ 0. �
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[1] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, J.W. Roberts, Statistical bandwidth sharing: A study of congestion at flow level, in:
Proceedings of SIGCOMM ’01, San Diego, USA, 2001.

[2] N. Benameur, S. Ben Fredj, F. Delcoigne, S. Oueslati-Boulahia, J.W. Roberts, Integrated admission control for streaming and elastic traffic,
in: Proceedings of the 2nd International Workshop on Quality of Future Internet Services, Coimbra, Portugal, 2001.

[3] J.L. van den Berg, R. Litjens, J.F. Laverman, HSDPA flow level performance: The impact of key system and traffic aspects, in: Proc. of
MSWIM ’04, Venice, Italy, 2004.
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