
Accepted Manuscript

Title: PACAP and VIP signalling in chondrogenesis and
osteogenesis

Author: Tamás Juhász Solveig Lind Helgadottir Andrea
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Main findings presented in this Manuscript are as follows: 13 

 14 

• Elements of VIP and PACAP signalling are present in cartilage and bone cells.  15 

• Exogenous PACAP exerts a positive effect on in vitro cartilage and bone formation. 16 

• PACAP plays a chondroprotective role under oxidative stress. 17 

 18 

 19 

Abstract 20 

Skeletal development is a complex process regulated by multifactorial signalling cascades that 21 

govern proper tissue specific cell differentiation and matrix production. The influence of 22 

certain regulatory peptides on cartilage or bone development can be predicted but are not 23 
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widely studied.  In this review, we aimed to assemble and overview those signalling pathways 24 

which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and 25 

bone formation. We discuss recent experimental data suggesting broad spectrum functions of 26 

these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical 27 

downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key 28 

regulators of chondro- or osteogenesis. Recent experimental data support the hypothesis that 29 

PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an 30 

important role in the inflammatory reactions of surrounding joint tissues. Regulatory function 31 

of PACAP and VIP in bone development has also been proved, however the source of the 32 

peptides is not obvious. Crosstalk and collateral connections of the discussed signalling 33 

mechanisms make the system complicated and may obscure the pure effects of VIP and 34 

PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our 35 

experiments indicate a possible therapeutic application of this neuropeptide.    36 

    37 
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Abbreviations 42 

ALP, alkaline phosphatase; BMP, bone morphogenetic protein; cAMP, cyclic adenosine 43 

monophosphate; CREB, cAMP response element-binding protein; ECM, extracellular matrix; 44 

HH, hedgehog; IHH, Indian Hedgehog; MAPK, mitogen-activated protein kinase; NFAT, 45 

nuclear factor of activated T cells; PAC1, pituitary adenylate cyclase-activating polypeptide 46 

type I receptor; PACAP, pituitary adenylate cyclase polypeptide; PKA, protein kinase A; 47 

PKC, protein kinase C; PP2A, protein phosphatase 2A; PP2B, protein phosphatase 2B; 48 

PTHrP, parathyroid hormone related peptide; Runx2, Runt-related transcription factor 2; 49 

SHH, Sonic Hedgehog; TGFβ, transforming growth factor-β; VIP, vasoactive intestinal 50 

peptide; VPAC, vasoactive intestinal peptide receptor51 
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 52 

Development of skeletal elements is influenced by several regulatory peptides, which may 53 

derive from the evolving tissue or the surrounding nerve terminals. Production of proper long 54 

bone architecture requires a cartilage template and involves time and growth factor dependent 55 

activation of precisely defined regulating mechanisms and signalling cascade systems [1]. 56 

Hyaline cartilage is an avascular and aneural tissue [2] with a uniquely organized extracellular 57 

matrix. Parallel with the bone formation, vessels and nerves penetrate the cartilage template 58 

and release various regulatory factors, which can be responsible for remodelling of cartilage 59 

and initiation of bone matrix production by osteoblasts. During the last decade several 60 

theories have emerged regarding the regulation of the formation of these tissues by different 61 

autocrine and paracrine mechanisms, with presumed involvement of various regulatory 62 

peptides [3-6].  63 

 64 

1. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Vasoactive 65 

intestinal peptide (VIP) 66 

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating 67 

polypeptide (PACAP) are neurohormones and members of the VIP–secretin–GHRH–68 

glucagon superfamily. Originally, both of these short neuropeptides were demonstrated 69 

predominantly released in specific area of central nervous system [7]. VIP consists of 28 70 

aminoacids and is produced by a variety of cells and tissues in addition to neuronal cells. 71 

Among others, specific cells of the intestinal system can produce VIP along with some 72 

immune and endocrine cells. Among its diverse physiological effects, VIP has important 73 

functions in neuronal development and both in innate and acquired immunity [8]. 74 

  PACAP was originally isolated from ovine hypothalamus extracts and later two 75 

bioactive forms were identified: a shorter, 27 amino acid (PACAP 27) and a longer 38 amino 76 
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acid (PACAP38) form [9]. The N-terminal region of the polypeptide is evolutionary 77 

conserved and shows a high homology with that of VIP [7]. PACAP is a pleiotropic 78 

neuropeptide with various effects in the central nervous system, including trophic effects 79 

during neuronal development and protective effects in neuronal regeneration. This protective 80 

effect is one of its most promising features for therapeutic use, even if considering the short 81 

half-life in vivo [10,11]. In the last decade, increasing amount of evidence has emerged 82 

regarding the important roles of PACAP in peripheral organs such as uterus [12], ovary [13], 83 

testis [14], moreover its presence has been proved in human milk [15]. Nonetheless, only 84 

sporadic data exist about its function in skeletal elements [16-18]. 85 

PACAP and VIP can be ligands of three main receptors; PAC1, VPAC1 and VPAC2. 86 

PACAP binds to PAC1 with the highest affinity, while the latter two attract PACAP and VIP 87 

with equal affinity [19]. All of the three receptors are well characterized G protein coupled 88 

receptors, the activation of which induces elevation of intracellular cAMP levels activating 89 

protein kinase A (PKA) [7]. The so called “canonic “signalling activation may lead to the 90 

nuclear translocation of CREB transcription factor and consequent activation of the 91 

expression of various genes. PACAP binding is also able to control the MAPK pathways, 92 

such as ERK and p38 kinases [7]. The versatility of PACAP/VIP receptor induced signal 93 

transduction indicates its multifactorial regulation, implying a vast array of signalling 94 

connections. This includes, for example, activation of IP3 receptors inducing the release of 95 

Ca2+ from endoplasmic reticulum (ER) [20]. The elevation of ic. Ca2+ concentration activates 96 

various Ca2+ dependent signalling molecules such as classical PKCs, MAPK [21] or protein 97 

phosphatases like PP2B [22]. The diversity of the developmental function is also hallmarked 98 

by the fact that PACAP receptor activation may crosstalk with other signalling pathways such 99 

as TGFβ [23], BMP [24], Hedgehog [25] and Notch signalisation [26].  Moreover, the general 100 
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protective and regenerative effects of PACAP originate from its antiapoptotic function [27] 101 

and its ability to decrease inflammatory reactions [28].  102 

 103 

2. Regulation of chondrogenesis focused on VIP and PACAP  104 

As articular cartilage has very poor regeneration capacity, the exploration of new 105 

strategies to improve replacement or reconstruction of cartilage is very important. Currently, 106 

no effective or curative treatment is available for degenerative cartilage diseases such as 107 

osteoarthritis. The signalling pathways of proper cartilage development are still under 108 

investigation since plenty of the molecular signalling puzzles have neither been solved nor 109 

locked in their adequate positions. 110 

 Chondrogenic differentiation is a multistep process involving rapid proliferation and 111 

condensation of chondroprogenitor cells. Formation of chondrogenic nodules and cartilage 112 

specific extracellular matrix production both are required for proper hyaline cartilage 113 

development [29]. Transcription factors of the SoxE family such as Sox5, Sox6 and Sox9 are 114 

essential for the induction of mRNA expression of cartilage matrix-specific proteins (e.g. 115 

COL2A1, aggrecan core protein). Sox9 is one of the pivotal signalling elements of 116 

chondrogenesis, therefore, its regulation by reversible phosphorylation can be a key 117 

momentum of the proper differentiation cycle. Sox9 promoter is known to be regulated by the 118 

CREB that binds to a CRE site upstream of Sox9 [30]. We have demonstrated that Sox9 and 119 

CREB transcription factors are phosphorylated by PKA during cartilage formation [31,32]. 120 

Moreover, a quite complex regulatory mechanism and synergism between Sox9 function and 121 

the cAMP–PKA–CREB pathway was published in both mature and differentiating 122 

chondrocytes which includes BMP pathway connections [33].  Finally, we have shown that 123 

the activation of signalling elements phosphorylated by PKA can be equilibrated by a few 124 

Ser/Thr protein phosphatases such as PP2A and PP2B [34,35].  Since the regulation of these 125 
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cartilage specific signalling pathways are cAMP or Ca2+ dependent it could be a question of 126 

interest whether PACAP/VIP neuropeptides have any signalisation connection with proper 127 

hyaline cartilage formation. 128 

Only sporadic data exist on the functions of regulatory peptides in chondrogenesis. 129 

Role of various regulatory peptides such as VIP are well known in inflammatory diseases; 130 

moreover, VIP is a promising agent in the therapeutic treatment of rheumatoid arthritis [11]. 131 

Although the articular cartilage is aneural, the surrounding synovial membrane is rich in nerve 132 

endings, which may release VIP into the synovial cavity and subsequently induce anti-133 

inflammatory processes [36]. About the functions of PACAP in the adult joints we still have 134 

exiguous knowledge despite the fact that PACAP-positive nerve endings have been described 135 

in cartilage canals of porcine epiphyseal cartilage more than 15 years ago [37]. Our laboratory 136 

was the first to demonstrate that the mRNAs of preproPACAP as well as PAC1, VPAC1 and 137 

VPAC2 receptors are expressed in chicken “high density” chondrogenic cell cultures. 138 

Furthermore, we have shown the expression of the PAC1 receptor protein in 139 

chondroprogenitor cells [17] and increased extracellular matrix synthesis was detected during 140 

PACAP administration suggesting the positive effect of this neuropeptide in cartilage 141 

development. Our findings suggested the presence of PACAP-related autocrine and/or 142 

paracrine effects in cartilage itself, reflecting on a possible new signalling mechanism in the 143 

regeneration of hyaline cartilage [38,39]. Although the receptors of VIP were expressed by 144 

chondrogenic cells in our experiments, others found that this neuropeptide did not influence 145 

the matrix production of chondrocytes and synovial cells [40] suggesting certain tissue 146 

specific effects of these neuropeptides. Classical downstream targets of PAC1 receptor 147 

activation such as PKA, PKC and MAPK signalling cascades play essential role in 148 

chondrogenesis [32,35,41]. It has been published that PKA phosphorylates CREB and Sox9 149 

transcription factors [32], the latter one being a key regulator of chondrogenesis [42]. PACAP 150 
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administration into the medium of chondrogenic cell cultures increased the phosphorylation 151 

both of Sox9 and CREB, and enhanced matrix production of the differentiating cells was also 152 

observed [17] (Fig 1.). PAC1 receptor activation can be responsible for the elevation of 153 

intracellular Ca2+ concentration via regulating Ca2+ dependent phosphatases such as PP2B 154 

(also known as calcineurin). This enzyme is one of the positive regulators of in vitro 155 

chondrogenesis [35,41,43]. Therefore, we investigated the involvement of this Ser/Thr 156 

phosphatase in PACAP signalling pathways and connection between PP2B activity and 157 

PACAP signalling was proved [17] (Fig 1.), similarly to chromaffin cells [44]. These in vitro 158 

results indicated that the presence of PACAP is essential for proper cartilage formation, 159 

however the phenotype of PACAP KO mice [45] did not show any dramatic macroscopical 160 

morphological alteration of skeleton. Although the analysis of the genetically modified 161 

animals has not been completed yet, our initial observations suggested alterations in the 162 

composition of the cartilage extracellular matrix and in the expression of various signalling 163 

molecules in the knee joints of PACAP KO mice (our unpublished data). In the reproductory 164 

organ system of these mice, the lack of PACAP gene resulted in reduced fertility and altered 165 

mating behaviour of females [46], moreover the maturation [47] and the morphology [48] of 166 

gonadal cells showed notable differences.  The complex phenotypic changes raise the 167 

possibility of multiple crosstalk of PACAP signalling with developmental pathways 168 

connected to various morphogens, as well as certain compensatory mechanisms of PACAP 169 

signalling cascades. For instance MAPK and Wnt signalling both play important roles in the 170 

proper cartilage formation and tissue patterning [49] and a PACAP-independent PAC1 171 

receptor activation has been directly linked to the regulation of Wnt/β-catenin pathways [50]. 172 

Notch signalling activation plays a crucial role in chondrogenesis [51] and exerts modulatory 173 

function in osteoarthritis [52] Recently, crosstalk of G protein coupled receptors and Notch 174 

signalling has been reported in bacterial LPS induced macrophages [53]. SHH pathway is 175 
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another essential positive chondroregulatory pathway [54] and it can be inhibited by PACAP 176 

activation [55].  177 

Recently we have demonstrated a chondro-protective effect of PACAP in chondrogenic 178 

cell cultures where the administration of the neuropeptide compensated the harmful effects of 179 

oxidative stress. It has been shown that PACAP can prevent the harmful effects of cerebral 180 

ischemia or oxidative stress induced apoptosis in the central nervous system [56]. PACAP 181 

deficient mice showed higher sensitivity to injury during retinal ischemic conditions, axonal 182 

lesion, intestinal inflammation or oxidative stress of the kidneys [57]. The presence of 183 

PACAP/VIP had preventing role in rheumatoid arthritis [58,59], and cardioprotective effects 184 

of these peptides have also been demonstrated [60].  In the light of these data, the cartilage 185 

protecting effect of PACAP was predictable; however the exploration of the molecular 186 

background of this phenomenon has only started yet. In chicken chondrogenic cells, the 187 

addition of PACAP 1-38 during oxidative stress prevented the inhibition of cartilage matrix 188 

production by free oxygen radicals and the increased activity of PKA seemed to take part in 189 

this compensatory effect [17]. The addition of the neuropeptide also exerted effect on matrix 190 

metalloproteinase (MMP) expression in chondrogenic cell cultures in the presence of reactive 191 

oxygen species (our unpublished data). Similar results have been published in alveolar cells 192 

where both VIP and PACAP were able to decrease the expression of certain MMPs and 193 

reduced the activation and expression of caspase3 [61]. VIP and its receptors are expressed in 194 

synovial fibroblasts [62] and it enables the release of inflammatory factors either by these 195 

cells or immunocompetent cells residing in the surrounding synovial tissues [63]. Finally, 196 

PACAP has been shown to have modulatory effects on inflammatory processes of rheumatoid 197 

arthritis [64]. These data all strongly suggest that PACAP is a promising future therapeutic 198 

agent in inflammatory and degenerative joint diseases [65].    199 

 200 
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3. VIP and PACAP in osteogenic signalling cascades 201 

Similarly to chondrogenic differentiation, proper osteogenesis requires high spatial and 202 

temporary organization supported by complex bone specific developing mechanisms and 203 

signalling. Development of this skeletal tissue involves differentiation of osteoblasts from 204 

osteoprogenitors. It is followed by an initial deposition of a bone specific organic ECM 205 

abundant in collagen type I completed with certain bone specific matrix components such as 206 

osteocalcin or osteonectin. This osteoid undergoes calcification then meaning deposition of 207 

calcium hydroxyapatite crystals in the bone matrix with active contribution of osteoblasts. 208 

Differentiation of osteoblast is regulated by three main signalling cascades such as BMP, 209 

WNT and Hedgehog cascades [66-68]. BMPR activation subsequently induces the 210 

phosphorylation of Smad1/5 and with the help of Smad4 the complex is translocated into the 211 

nuclei of osteogenic cells and initiates expression of bone specific genes such as the 212 

transcription factor osterix, alkaline phosphatase (ALP) or collagen type I [69,70].  The 213 

expression of BMPs is regulated by CREB transcription factor activated via PKA signalling 214 

pathways [70]. On the other hand a well balanced expression of hedgehog signalling elements 215 

governed by another bone specific transcription factor, Runx2 is also essential for proper long 216 

bone formation [71]. Runx2 can be directly phosphorylated by PKA [72] and subsequently 217 

activates the expression of bone specific signalling elements or ECM components. This 218 

complex signalisation involves broad spectrum crosstalk opportunities with the PACAP/VIP 219 

signalisation, further highlighting the significance of neuropeptide signalling in bone 220 

formation and regeneration.   221 

During endochondral ossification, after the invasion of vessels and nerves into the cartilage 222 

template osteoprogenitor cells start to migrate into the diaphysis of the developing long bone 223 

and differentiate into osteoblasts. This process can also be regulated by neuropeptides [73].  224 

During the elongation of long bones PACAP positive nerve fibers penetrate the bone matrix 225 
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[37]. VIP positive sympathetic nerve endings were also identified releasing these 226 

neuropeptides [74]. As an interesting observation, receptor composition and effects of VIP 227 

exhibited differences in cells of bones developed in different ways (i.e. membraneous or 228 

endochondral). Moreover, the direct communication of sympathetic nerve fibers with 229 

osteoblasts showed an embryonic origin dependent response and signalisation, suggesting that 230 

the innervation of periosteum by peptidergic fibers plays important function both in bone 231 

regeneration and formation [75]. The role of PACAP and VIP in osteogenesis was further 232 

supported by the observations where MC3T3 E1 mouse calvaria derived osteoblast cell line 233 

[76] and UMR-106 cells isolated from rat osteosarcoma [16] were shown both expressing the 234 

receptors for these neuropeptides. Accumulation of cAMP in osteoblasts is proved to be as a 235 

result of combined activation of PACAP and VIP and regulates diverse signalling pathways 236 

influencing osteoblast differentiation. In line with this, presence of certain neuropeptides was 237 

shown to be elevated after bone fracture, indicating their importance in successful 238 

regeneration [77]. A recent report demonstrated release of various neuropeptides from 239 

periosteal nerve endings resulting in enhancement of intercellular communication and 240 

increased metabolic activity of osteoblasts [78]. As it was described above, osteogenic 241 

transformation, bone matrix production and mineralization are regulated by multiple 242 

signalling cascades [79], where the activation of MAPK and PKA plays essential roles. Runx2 243 

is one of the key transcription factors which governs osteoblast differentiation [80] and it is 244 

regulated by PKA signalling pathways [81]. We have demonstrated that the administration of 245 

PACAP into the medium of UMR-106 cell line enhanced the nuclear translocation of Runx2  246 

and increased expression of collagen type I, ALP and osterix genes was observed (Fig. 2.). 247 

Interestingly, the phosphorylation of CREB by PKA was not remarkably increased after 248 

PACAP addition in this ostesarcoma derived cell line [16] (Fig 2.).  BMP signalling pathway 249 

is another fundamental regulator of osteogenesis and crosstalk with Runx2 has been reported 250 
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[83]. Moreover, the TGFβ/BMP pathways are activated by PACAP or VIP [24]. Indeed, the 251 

administration of PACAP increased the expression of BMPs in UMR-106 cells and 252 

expression of BMPR1, one of its major receptors, became also elevated. As a consequence of 253 

BMPR activation, a pronounced elevation of the nuclear presence of Smad1 transcription 254 

factor was detected under the effect of PACAP administration [16] (Fig 2.). VIP can also be 255 

regulated by TGFβ/BMP signalling pathways as Smads may activate VIP expression [85] 256 

suggesting a complex reciprocal signalling with numerous compensatory escape routes during 257 

bone development [16].  258 

PACAP and VIP may directly activate ERK1/2 e.g. during adipogenesis [86] or in osteoblast 259 

cells [87], furthermore CREB phosphorylation is regulated by the MAPK system in MC3T3 260 

cells [88]. Additionally, intracellular Ca2+ concentration can be elevated by PACAP [89] or 261 

VIP [90], resulting in an activation of classical PKCs and ERK both influencing osteoblast 262 

differentiation [91]. Nonetheless, PACAP treatment of UMR-106 cells did not alter the Ca2+ 263 

concentration of these osteoblast cells, and activation of classical PKCs was not detected, in 264 

our experiments [16] (Fig 2.). Ca2+ influx can be evoked by PACAP [92] and the presence of 265 

PACAP and VIP is able to decrease the Ca2+ entry via L- and N-type calcium channels in 266 

neurons [93]. It is known that the administration of PACAP affects Ca2+ oscillation [94] and 267 

alters the Ca2+ related vesicular transport of chromaffin cells [95]. Besides this dynamic 268 

alteration of intracellular Ca-homeostasis, PACAP also exerts effects on matrix 269 

mineralisation. We found that addition of PACAP elevated the deposition of inorganic matrix 270 

components in the ECM of UMR-106 cells [16]. Moreover, an altered mineralisation was 271 

detected during tooth formation of PACAP deficient mice [96], suggesting a yet unknown 272 

connection between PACAP and Ca2+ release of osteoblasts, ameloblasts and/or odontoblasts. 273 

As a possible mechanism for PACAP induced extracellular Ca2+ accumulation during 274 

osteogenesis, calcitonin gene-related protein was proved to effect on osteoclast function [97] 275 
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and the presence of PACAP decreased the matrix-resorption and consequent Ca-release by 276 

these cells [95,96].  277 

Hedgehog signalling is of key importance amongst the regulatory mechanisms of bone 278 

and cartilage development [71]. A well defined balance between Indian Hedgehog (IHH) and 279 

Parathyroid Hormone Related Peptide (PTHrP) is essential for proper long bone formation, 280 

regulation of proliferation and matrix production of osteoblasts via the activation of Runx2 281 

transcription factor [98]. PTHrP directly communicates with PKA signalling inducing the 282 

activation of CREB and NFAT factors in osteoblasts [99]. In UMR-106 cells the application 283 

of PACAP elevated the expression of PTHrP without altering the IHH expression [16]. Sonic 284 

Hedgehog (SHH) pathway is known to be regulated by PACAP signalling [55] and the 285 

activation of PKA downregulates the function of Gli1, which consequently decreases the 286 

proliferation [25]. In PACAP KO mice, enhanced SHH signalling was detected during tooth 287 

development [94]. On the contrary, exogenous administration of PACAP elevated the 288 

expression of SHH and a more pronounced nuclear presence of Gli1 was found in rat UMR-289 

106 cells [16]. This contradiction may stem from the osteosarcoma origin of UMR cells, as 290 

malignant cells can exhibit alterations of various signalling mechanisms. Although we do not 291 

have data about the possible function of VIP in osteogenesis, previous results suggest that 292 

multifactorial signalling pathways of these regulatory peptides exert modulatory effect on 293 

matrix production and differentiation in bone development [100].   294 

 295 

Conclusion 296 

Regulatory pathways of PACAP and VIP form a complex signalling network indicating the 297 

communication of a huge variety of signalling cascades accomplishing and supporting the 298 

diverse functions of these regulatory peptides. Different compensatory mechanisms can 299 

switch on or off upon activation or inactivation of certain signalling cascades in the 300 
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interconnected system, which can obscure the physiological function of PACAP and/or VIP 301 

during chondrogenesis and osteogenesis. Better understanding of the functions of these 302 

neurohormones during skeletal development may help us to find possibilities for their 303 

therapeutic application in various skeletal diseases.  304 
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 638 

Figure 1. Signalling pathways of PACAP induced chondrogenesis. The increased 639 

concentration of cAMP level elevates PKA activity. Phosphorylated form of the downstream 640 

targets of PKA such as CREB and Sox9 translocate into the nucleus of chondrogenic cells and 641 

induce the gene expression of collagen type II., aggrecan and various GAG such as hyaluronic 642 

acid. Activation of PAC1 receptor can also elevate the intracellular Ca2+ concentration leading 643 

to increased PP2B, PKC or MAPK signalling activity. The elevated expression and nuclear 644 

presence of PP2B regulated NFAT4 are also responsible for the augmented matrix production. 645 

 646 

Figure  2.  Multiple regulation connections’ of PACAP signalling pathways in osteogenic 647 

differentiation.  PACAP binding to its receptors elevates the intracellular cAMP concentration 648 

and activates PKA in osteoblast cells. CREB, the canonical downstream target of the kinase is 649 

not significantly activated (arrows crossed by red lines) but the nuclear localisation of Runx2 650 

is elevated. Although the cAMP regulated pathway is active the presence of the neuropeptide 651 

does not result in a Ca2+ concentration increase, subsequently the Ca2+ dependent signalling 652 

pathways are not activated (arrows crossed by red lines). PACAP also induces the expression 653 

of BMPs which may crosstalk via the nuclear activity of Smad1with Runx2 transcription 654 

factor. SHH binding to PTCH1 receptor can induce the nuclear translocation of Gli1 655 

transcription factor which is suppressed by the increased activation of PKA.  656 

  657 

 658 

 659 

 660 
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