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a b s t r a c t 

The text-independent approach to writer identification does not require the writer to write some pre- 

determined text. Previous research on text-independent writer identification has been based on identi- 

fying writer-specific features designed by experts. However, in the last decade, deep learning methods 

have been successfully applied to learn features from data automatically. We propose here an end-to-end 

deep-learning method for text-independent writer identification that does not require prior identifica- 

tion of features. A Convolutional Neural Network (CNN) is trained initially to extract local features, which 

represent characteristics of individual handwriting in the whole character images and their sub-regions. 

Randomly sampled tuples of images from the training set are used to train the CNN and aggregate the ex- 

tracted local features of images from the tuples to form global features. For every training epoch, the pro- 

cess of randomly sampling tuples is repeated, which is equivalent to a large number of training patterns 

being prepared for training the CNN for text-independent writer identification. We conducted experi- 

ments on the JEITA-HP database of offline handwritten Japanese character patterns. With 200 characters, 

our method achieved an accuracy of 99.97% to classify 100 writers. Even when using 50 characters for 

100 writers or 100 characters for 400 writers, our method achieved accuracy levels of 92.80% or 93.82%, 

respectively. We conducted further experiments on the Firemaker and IAM databases of offline handwrit- 

ten English text. Using only one page per writer to train, our method achieved over 91.81% accuracy to 

classify 900 writers. Overall, we achieved a better performance than the previously published best result 

based on handcrafted features and clustering algorithms, which demonstrates the effectiveness of our 

method for handwritten English text also. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Writer identification has been studied for many years because

it has practical applications for forgery detection and forensic sci-

ence. Since the mid-1960s, computational approaches have been

developed for writer identification. A review of the state-of-the-art

methods for writer verification and identification from the 1960s

to the 1980s can be found in Plamondon and Lorette [23] . In the

early days, this research was focused on using offline signatures

to identify the writer [5,11] because the signatures were consid-

ered as individual signs from the past. Yoshimura et al. proposed

a text-dependent writer identification method using handwritten

text [33,34] . Due to the difficulty of collecting multiple signature
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atterns and the availability of large databases of handwritten text

rom the early 20 0 0s, there have been many studies on writer

dentification employing handwritten text. Srihari et al. [29] ar-

ued that the individuality of handwritten text is appropriate for

he writer identification task and machine learning algorithms can

e trained for this task with a large number of writers. 

There are two main approaches for writer identification: text-

ependent and text-independent. The text-dependent approach

emands the same text to be written while the text-independent

pproach does not require any particular text. The writer identifi-

ation research so far has focused on deciding whether the given

andwritten characters are written by the person whose handwrit-

en sample patterns in the same categories are available. The prob-

em with this approach is that we cannot always find the sam-

le patterns in the same categories as the target patterns. The

ext-independent approach does not require collecting the same

ategory patterns, which is useful in situations like forensic sci-

nce. However, the text-independent approach is more compli-
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ated than the text-dependent approach because it must extract

riter-specific features regardless of signatures, specified letters, or

ymbols to be compared. In the research presented here, we focus

n solving the text-independent writer identification task. 

Recently, Sreeraj and Idicula [28] reviewed both the text-

ependent and text-independent writer identification methods

rom the late 1990s to 2010. These methods employed textual

eatures [24] , edge-based features [8] and allograph features [6] .

n addition, they reviewed many approaches for writer identifi-

ation based on extracted features: for instance, cosine similarity

1] , k -nearest neighbor [17] and clustering methods [6,7] . Among

hese methods, the approach by Bulacu and Schomaker [6] pro-

ides the theoretical foundation for writer identification based on

andwritten text, where each handwriting pattern is described by

 two-level psychomotor process. In this approach, the handwrit-

en patterns are produced from a sophisticated sequence of think-

ng and hand movements, which are characteristic of each writer

epending on his/her cognitive system, nervous system, muscle

ystem, gender, age, schooling, and so on. Therefore, each writer

as his/her allographs whenever he/she writes a letter which sug-

ests that it is possible to identify a person based on his/her writ-

ng behavior. Bulacu and Schomaker [6] conducted experiments

n the handwriting databases with 900 writers using their hand-

rafted features and clustering methods. The best accuracy results

chieved were 80% when using a single handcrafted feature and

7% when using combined features. 

There are two kinds of handwritten text patterns: online pat-

erns (time series of pen trajectories to write text) and offline pat-

erns (handwritten text images). Consequently, there are online

nd offline methods of writer identification. Moreover, two kinds

f features are usually employed for writer identification: local fea-

ures and global features. For offline writer identification, local fea-

ures are extracted from sub-regions of an image based on local

escriptors such as scale-invariant features transform (SIFT) [9,31] ,

ocal binary pattern (LBP), local phase quantization (LPQ) [2] , and

ontour features [27] . Global features are extracted from an input

mage at the document level and paragraph level using ink width

4] , structural features [21] , and texture features [1,13] . Moreover,

here are several studies on combining local and global features

6,10,29] . 

The approach presented in this paper deals with offline writer

dentification using the trained features from Convolutional Neu-

al Networks (CNNs). The main contributions of this paper are the

ub-region level and character level local feature extractors, three

ggregation methods to form global features and a sampling mech-

nism for training a CNN. Our method not only uses isolated char-

cters as inputs to the CNN but is also able to work well with sub-

mages extracted from handwritten text pages. Moreover, the ef-

ectiveness of our method is demonstrated by experimenting with

oth the Japanese and the English handwriting databases. 

The rest of this paper is organized as follows: Section 2 presents

 brief survey of recent research on text-independent writer iden-

ification using CNNs. Section 3 presents the details of our method,

hich incorporates local feature extraction, feature aggregation to

orm global features and a sampling mechanism. Section 4 presents

xperimental results demonstrating the efficacy of our proposed

ethod on Japanese and English handwriting databases. In this

ection ( Section 4 ), our method is compared with the best existing

pproach that uses handcrafted features and clustering methods on

nglish databases. Finally, Section 5 presents our conclusions and

uggestions for future research. 

. Related works 

This section briefly reviews related works specific to the text-

ndependent approach. As it requires writer-specific features, sev-
ral local features for offline writer identification have been pro-

osed to be extracted at the character level. Previous studies fo-

used on writer-specific features from the texture. Bensefia et al.

1] proposed morphological grapheme-based features extracted 

rom the graphical fragments of handwritten patterns. Bulacu et al.

8] proposed edge-based features combined with the connected-

omponent contours and curvatures of handwritten samples. The

ontour and curvature features were also used by Siddiqi and Vin-

ent [27] to extract writer-specific local information on orientation

nd shape. 

Due to their superior performance on image classification and

atching tasks, LBP and SIFT descriptors were employed to extract

riter-specific local features. Bertolini et al. [2] employed the LBP-

ased and LPQ-based local features, which yielded an improved

erformance on both the writer verification and the identification

asks. Christlein et al. [9] and Wu et al. [31] employed SIFT descrip-

ors to extract scale and orientation features at the SIFT key-points,

hich resulted in a higher accuracy compared with the edge-based

nd the contour features. 

Bulacu and Schomaker [6] proposed a combination of texture-

evel and allograph-level features. For texture-level features, they

onsidered probability distribution functions (PDFs) computed 

rom contours, connected components, gray-scale images and bi-

ary images. For the allograph features, they employed a common

odebook of shapes to represent the writer-specific probability dis-

ribution of ink-trace fragments (graphemes) due to the assump-

ion that individual stochastically writes graphemes. 

Besides, many global features have been studied to obtain dis-

riminative information of individual writers at the document and

he text-line levels. Marti et al. [21] proposed several structural

eatures based on the width, slant and height of the three main

riting zones for each text line. By gathering these extracted

lobal features from every text line to identify the writer of a page,

heir system achieved 90.7% accuracy for identifying 20 writers

rom 100 pages. Brink et al. [4] proposed quill features based on

ixel contours to represent the ink-trace width, which achieved a

igh enough accuracy to be used by domain experts. In addition,

here were several studies on combining local and global features

6,10] . 

Previous research on writer identification used various classi-

ers such as distance-based classifier, Support Vector Machines

SVM) [15] , Hidden Markov Model (HMM) [25] , Fuzzy based clas-

ifier [30] and so on. For example, approaches employing distance-

ased classifiers use different metrics like Euclidean distance [7] ,

hi-square and Hamming distance [6] , Bhattacharyya distance [27] ,

tc. 

Neural Network-based techniques have also been applied to

riter identification in recent years; for example Fiel and Sablat-

ig [14] , Christlein et al. [10] . These techniques used the merit of

NNs to address the problem of feature extraction automatically,

ecause hand-crafted features are difficult to define as mentioned

bove. During the last decade, deep learning techniques have been

uccessfully applied to many recognition tasks [12,16,18] because

hey are effective in learning relevant features automatically. This

uggests that these techniques can also be applied to extract effec-

ive writer-specific features from handwritten patterns automati-

ally. 

For the writer identification task, Fiel and Sablatnig [14] em-

loyed CNNs as local feature extractors. In their approach, the last

ully connected layer is eliminated because the layer just above it

xtracted adequate features to identify the writer. Then, the mean

ector for the input image is computed using all its local feature

ectors, which is used for identifying the writer based on Chi-

quare distance. This method requires a preprocessing step for im-

ge binarization and normalization, so its performance depends on

he database and the preprocessing method. 
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Fig. 1. Overview of our method. 
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Christlein et al. [10] presented another strategy: after extract-

ing local features from CNNs, they are used to form global features

based on Gaussian Mixture Models (GMM) super-vector encoding.

This combination method performed better than that of Fiel and

Sablatnig [14] . Moreover, CNNs achieved a better performance than

the traditional local descriptors such as SIFT. 

Yang et al. [32] proposed an end-to-end online text-

independent writer identification system, which generates many

artificial patterns from a single original online character pattern

by dropping one or more strokes. The artificial patterns formed by

the same original pattern are fed into CNNs to get a probability

distribution of each character. Then, the average distributions of

all the character patterns in the document are computed and used

for identifying the writer. Even though this system achieved a

high accuracy, it requires many character patterns in documents

to make the averages reliable. Moreover, its DropSegment method

is difficult to apply for offline handwritten text patterns. 

As mentioned above, the systems of Christlein et al. [10] and

Fiel and Sablatnig [14] have two separate training steps: feature ex-

traction and encoding, where CNNs are pre-trained and employed

for local features extraction. That is, the pre-trained CNNs are fixed

during the second step while training the encoder, which reduces

the performance of the whole system because the CNNs are not

updated. Therefore, we propose to use an end-to-end network for

writer identification, where the CNN-based feature extractor and

the neural network-based classifier are connected and trained to-

gether. However, the most notable difference of our approach com-

pared to others is our sampling and feature aggregation methods. 

3. Proposed method 

3.1. Basic approach 

We propose here an end-to-end method based on deep learn-

ing, which extracts features using CNNs and combines the ex-

tracted features from handwritten text images of multiple charac-

ters to retain writer-specific features while reducing character class

specific features as shown in Fig. 1 . 

First, handwritten square images of an individual writer are

randomly sampled to form n -tuple images. We employ square

shape images since Kanji (Chinese characters) have square shape

and the square shape is rather standard for extracting features in

a sub-region for Kanji and Western alphabets. 

Secondly, every image from n -tuple images is fed to a CNN local

feature extractor. Due to the difficulty of handcrafting good fea-
ures to classify writers, the proposed method uses CNN for au-

omatically learning writer-specific features from handwriting pat-

erns. By using a new way of organizing training samples as n -

uple images, a CNN is able to extract text-independent writer-

pecific features. 

Thirdly, the extracted local features are aggregated by a global

eature aggregator in different ways, for example based on the av-

rage or the maximum. By forming global features from multiple

haracter images, we expect that the writer specific features such

s structure, balance, slant, ligature, serif, and so on could be ob-

ained independently from the text. 

Fourthly, the aggregated features are fed to a softmax classi-

er (fully connected layer consisting of N fc units which equals the

umber of writers) to make a prediction. 

As all the components (local feature extractor, global feature ag-

regator and classifier) of the proposed network are differentiable,

he whole network can be trained by the stochastic gradient de-

cent algorithm, which helps to discover not only the local features

ut also the global features that are hard to define by handcrafted

eatures. 

Our approach incorporates both local and global features, which

re text independent, i.e., character category invariant. We consider

wo levels of local features: the sub-region level and the character

evel. The sub-region level, extracted from sub-regions of a char-

cter image, captures writer-specific features in writing strokes,

hich are directly related to the psychomotor process to identify

he writer. The character level, extracted from a character image,

aptures features related to writing styles such as character bal-

ncing, character layouts or stroke combinations. 

.2. Local feature at the sub-region level 

We use the model illustrated in Fig. 2 (a) for extracting features

rom sub-regions in a character image. Each convolution layer uses

 kernel size of 5 × 5, stride step of 2 and padding size of 2. Each

ax-pooling layer uses a kernel size of 2 × 2 and stride step of 2.

e use 4 stages of processing: in each stage, a convolutional layer

s followed by a max-pooling layer to produce the 4 × 4 feature

aps from a 64 × 64 input image. Each column in these feature

aps can be considered as the features from a sub-region of an

nput character image as shown in Fig. 2 (b). Specifically, each col-

mn of the 4 × 4 feature maps represents the features extracted

rom a 16 × 16 sub-region of the entire character image. These lo-

al features (at the sub-region level) of each character image are

xtracted as a 4 × 4 × 1024-dimensional matrix. 

.3. Local features at the character level 

For extracting features at the character level, we use 3 blocks

f a convolutional layer followed by a max-pooling layer to pro-

uce 8 × 8 feature maps from a 64 × 64 input image as illustrated

n Fig. 3 . These feature maps are then fed to a fully connected

ayer to extract features of the entire image of the input charac-

er. Consequently, these local features (at the character level) of

ach character are extracted and represented by a 1 × 1 × 1024-

imensional matrix. In summary, the sub-region level local feature

xtractor receives a square input image and returns a local feature

f size 4 × 4 × 1024 as shown in Fig. 2 . The character level local

eature extractor also receives a square input image and returns a

ocal feature of size 1 × 1 × 1024 as shown in Fig. 3 . Thus, both the

ub-region level and the character level local features can be gen-

ralised as L × L × D shapes. 
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(a) The model architecture consists of 4 blocks of a convolution layer followed by a max-pooling layer with the numbers of filters being 32, 64, 256, and 
1024, respectively. The red block in each convolution layer indicates the convolution kernel.

(b) The red block of CONV1 is the extracted features from the 16x16 sub-region of an input image. Each red block of other convolution layers indicates the 
features from the red block of its previous convolution layer. Each green block in the convolution layer shows the bounding box from which the sub-region 

image features could be extracted.

Fig. 2. CNN model for extracting sub-regions level local features. 

Fig. 3. CNN model for extracting character level local features. 

After three convolution and pooling blocks, the extracted features are fed to a fully connected layer FC4 to get the character level local features. 
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.4. Global features from multiple characters 

Local features from a single character image may not contain

nough information for identifying the writer. Therefore, we con-

ider extracting global features for writer identification by aggre-

ating local features. Instead of using the whole document or para-

raph, we extract global features from multiple character images.

lobal features such as structural features, slant, and so on may

ary from one text image to another, but we expect that they can

e extracted reliably from multiple character images. 

Fig. 4 shows three aggregation methods for obtaining global

eatures from n -tuple images, which are fed to CNNs to extract lo-

al features. The local feature vector of each image is of the size

 × L × D . Next, an aggregation method is applied to get a global

eature vector. 
e  
We consider two basic methods for combining the local fea-

ures (features extracted from the sub-region level and the char-

cter level) to form global features (features from multiple charac-

ers) as shown in Fig. 4 . One is “Average Aggregation” (AA), which

orks by computing the average of all the values along the depth

f n local feature vectors, as shown in Eq. (1) . 

lobal _ feature [ d ] 
1 ≤d≤D 

= 

1 

n L 2 

( 

n ∑ 

t 

L ∑ 

i 

L ∑ 

j 

local _ featur e t [ i, j, d ] 

) 

(1) 

here global_feature [ d ] is the d th element of the global feature

ector. The local_feature t is the t th extracted local feature vector

mong n extracted local feature vectors from n -tuple images. For

A, each element of the global feature vector is computed by av-

raging all values of n local feature vectors at depth d . Thus, AA
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Fig. 4. Three aggregation methods to form the global features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Randomly sampled training images. 
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produces more robust global features compared with the local fea-

tures. 

The other method is “Max Aggregation” (MA), which works

by selecting the maximum value along the depth dimension, as

shown in Eq. (2) . 

global _ feature [ d ] 
1 ≤d≤D 

= max 
1 ≤t≤n ;1 ≤i, j≤L 

{ local _ featur e t [ i, j, d ] } (2)

MA selects the most relevant local feature from all the elements

of n local feature vectors at depth d for writer identification. 

For the AA method, the common features shared among dif-

ferent characters or their sub-regions are made more robust by

averaging the local features. On the other hand, the MA method

can discover relevant features that may not appear in all the lo-

cal features in some dimension. The difference between these two

methods suggests that combining them may result in a better ag-

gregation. We also consider incorporating the method of “Average

of K-Max Aggregation” (AKMA), which computes the average of K

largest values from all the elements of n local feature vectors at

depth d , to yield a global feature as shown in Eq. (3) . 

global _ feature [ d ] 
1 ≤d≤D 

= 

1 

K 

K ∑ 

k 

(
K − max 

1 ≤t≤n ;1 ≤i, j≤L 
{ l ocal _ f eatur e t [ i, j, d] } 

)
(3)

where the K -max function yields K maximum values among all the

n local feature vectors at depth d . 

Fig. 4 shows three aggregation methods to form a global fea-

ture. The global features of these three aggregation methods have

the same shape of 1 × 1 × 1024, which is an instance of the general

R × C × D global shape. 

3.5. Random sampling of training patterns 

We assume that each writer provides at least Ns samples. For

every training epoch, we need to prepare the training data by iter-

ating the following steps p times. 

Step 1: Prepare m sets of n -tuples from Ns images ( m is the

greatest integer less than or equal to Ns / n ), where each n -

tuple contains n images as shown in Fig. 5 . 

Step 2: Randomly shuffle all Ns images. 

Step 3: Go to Step 1. 

Thus, the prepared data contains m sets of n -tuple images p

times as shown in Fig. 5 . After all the n -tuples of the prepared

data are used to train the network, we move to the next epoch. 
The training epochs are repeated until there is no improvement

n the validation accuracy. By reordering images of n -tuples in each

teration, and in each epoch, the network layers are trained to ex-

ract writer-specific features without text dependency. 

. Experiments 

.1. Databases 

.1.1. JEITA-HP database 

We employed the JEITA-HP handwritten Kanji character pat-

ern database (hereafter, JEITA-HP), which is prepared by Hewlett-

ackard Japan and distributed by Japan Electronics and Informa-

ion Technology Industries Association (JEITA) [19] . The JEITA-HP

atabase consists of Dataset A and Dataset B, containing hand-

ritten character patterns from 480 and 100 writers, respectively.

n JEITA-HP, for each writer, there are 3306 handwritten samples

patterns) belonging to 3,214 categories including 2,965 Kanji, 82

iragana, 10 numerals, and 157 other categories (English alphabet,

atakana and symbols). Every writer wrote twice for each Hiragana

nd numeral category and once for each of the other categories,

hich resulted in 3306 = 2 × (82 + 10) + 2965 + 157 samples. In

ur experiments, we used Kanji character patterns only from the

riters in the Dataset A. First, we randomly split 2,965 Kanji char-

cter categories into 3 subsets as follows: 2,0 0 0 categories for the

raining set, 400 categories for the validation set and the remain-

ng categories for the testing set. The validation set is used to stop

he training process earlier to avoid overfitting the network. 

As the number of writers and the number of training samples

re different for each experiment, we randomly selected writers as

ell as samples from the training set at the beginning of each ex-

eriment. In the experiments described in Sections 4.3.1 , 4.3.2 and

.3.3 , we chose 100 writers at random ( N writers = 100) while in Sec-

ion 4.3.4, we chose a variable number of writers N writers to ver-

fy the performance of our network. For each writer, we randomly

elected a subset of samples ( N character_img ) for training, instead of

sing all the 20 0 0 samples in the training set. Thus, the selected

ubset is different for each experiment. 

.1.2. Firemaker and IAM databases 

In order to validate our method for English, and to compare our

pproach with the handcrafted-feature-based approach of [6] , we

mployed the Firemaker and IAM databases of handwritten text. 

For the Firemaker database provided by 250 writers, there

re four subsets which are collected by different requirements

26] . The first subset contains the text-copying pages using nor-

al handwriting which was used as the training and validation

ets. The second subset contains the text-copying pages using only

ppercase characters, which is unusual for handwritten text and
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Fig. 6. Sub-images extraction from a handwritten text page in the Firemaker and 

IAM databases. 
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Table 1 

Accuracy (%) of local features and different aggregation methods on the 

JEITA-HP testing set. 

Aggregation Sub-region level features Character level features 

None 48.47 40.16 

AA 99.97 99.78 

MA 92.00 91.78 

AKMA ( K = 10) 99.53 98.56 

AKMA ( K = 20) 99.89 99.45 

AKMA ( K = 40) 99.82 99.78 

AKMA ( K = 50) 99.86 99.80 
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herefore was not used in our experiments. The third subset con-

ains forged text, where the writers were asked to write in a differ-

nt style, which was also not used in our experiments. The fourth

ubset contains free handwritten text to describe the content of

 given cartoon which was used as the testing set. Thus, for each

riter, we used his/her text-copy page for training/validating and

ree handwritten text page for testing. 

In the IAM database provided by 650 writers, the character pat-

erns provided by each writer ranged from 1 page (350 writers) to

9 pages (1 writer) [22] . Due to this imbalance in the number of

atterns from the writers, we tried to balance it as follows. For

he writers who provided only one page, their pages were divided

oughly into two halves: the first half for training/validation and

he second half for testing. For the writers who provided two or

ore pages, only the first two pages were selected: the first page

as used for training/validation and the second page for testing.

ence, 350 writers had a half page and other 300 writers had one

age for training. 

For preprocessing pages from the Firemaker and IAM databases,

e employed the Otsu binarization method. The handwritten text

n these two databases is written cursively, which is difficult to

egment and separate into individual characters. However, our

ethod is designed to extract writer-specific features based on the

ub-regions of characters, which means that we do not require

solated characters as input. Therefore, we do not need to seg-

ent the handwritten text in the Firemaker and IAM databases.

nstead, as shown in Fig. 6 , we extracted N sub_img sub-images of

 sub_img × k sub _ img pixels from the binarized page based on the

andwritten text probabilities. In order to extract the probability

f every pixel as shown in the left image of Fig. 6 , we applied a

2 × 32 average filter on the binarized page image, and then nor-

alized the obtained values into [0,1] range. Using the probabili-

ies in the left image, we sampled 50 0 ( N sub_img = 50 0) sub-images

f size 64 × 64 ( k sub_img = 64). Note that each of these 500 sub-

mages could be an isolated character, a sub-region of a character,

r sometimes even sub-regions of several characters. Similar to the

xperiments on JEITA-HP, we randomly selected writers and train-

ng samples from the training set based on the number of writers

 N writers ) and the number of sub-images ( N sub_img ), because these

alues were different in each experiment. 

.2. Parameters 

In the experiments of Section 4.3.2 , we employed different sizes

f n -tuples to find the optimum value of n . Then, we employed

he best size of 20-tuples for later experiments. Besides, the num-

er of character images for training ( N character_img ) is optimized by

he experiments describes in Section 4.3.3 . For the Firemaker and

AM databases, the value of N sub_img was taken to be 500 as men-

ioned in Section 4.1.2 . The value of m for m -sets is the greatest

nteger less than or equal to N character_img / n for the experiments on
he JEITA-HP database. For the experiments on the Firemaker and

AM databases, it was the greatest integer less than or equal to

 sub_img / n . In all of the following experiments, the number of the

raining and evaluation iteration was set to 20 for each writer (i.e.,

 = 20) to prepare training patterns for each epoch. 

We implemented our network by Tensorflow and executed the

raining process on a Graphics Processing Unit (GPU) for reducing

he training time by the batch size of 10. Thus, a mini-batch con-

ained n -tuples by 10 writers. We also employed the Adam opti-

izer [20] to train our network, with the learning rate as 10 −4 , β1 

s 0.9 and β2 as 0.999. The training process was stopped earlier

f there was no improvement in the validation accuracy after 20

pochs. 

For evaluating our method on the Firemaker and IAM databases,

e sampled a single n -tuple from the handwritten test page by

ach writer and fed it to the trained network to identify the writer.

e made this evaluation process for different n -tuples from the

age five times and simply took their average to identify the writer

named as five n -tuples) as presented in Section 4.4.1 . 

.3. Experiments on the JEITA-HP database 

In the following subsections, we present our experimental re-

ults on the JEITA-HP database. First, each local feature was used

o build the writer identification model for evaluating its perfor-

ance. Secondly, the three aggregation methods mentioned above

ere employed on each local feature to evaluate their individual

erformances. These two steps are presented in Section 4.3.1 . 

Thirdly, the hyper-parameters, which consist of the tuple size

 n ), the number of character images for training ( N character_img )

nd the number of writers ( N writers ) were optimized as shown in

ections 4.3.2 , 4.3.3 and 4.3.4 , respectively. According to the results

rom these sections, we chose the best hyper-parameters for later

xperiments on the Firemaker and IAM databases ( Section 4.4 ). 

.3.1. Experiments on local features and aggregation methods 

To compare the local features and global features with differ-

nt aggregation methods, experiments were conducted using 500

raining characters of each writer to identify 100 writers. The re-

ults are shown in Table 1 . The first row shows the results of local

eatures as there was no applied aggregation. The following rows

how the results with aggregations, that is, global features. The

lobal features are much better than the local features and the

ub-region level features are better than the character level fea-

ures. The average aggregation method achieved the best accuracy

f 99.97%. Therefore, in the following experiments, we only applied

he average aggregation method to form global features from local

eatures. 

The value of K in AKMA method was set to be 10, 20, 40 and

0 for the sub-region level features as well as the character level

eatures. The AKMA method achieved a higher accuracy than the

A method for both the sub-region and character level features

s it preserves more information from local features than the MA

ethod. The average aggregation can keep all the information from
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Fig. 7. Accuracy (%) with different tuple sizes n on the JEITA-HP testing set. 

Fig. 8. Accuracy (%) with different number of training characters on the JEITA-HP 

testing set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Accuracy (%) with different number of writers on the JEITA-HP testing set. 
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the local features so that its accuracy is always the highest in all

the experiments. 

4.3.2. Experiments on the tuple size 

The following experiments determined the optimum size n for

n -tuples. The value of n was varied from 1 to 50 for both the

sub-region level features (SF) and character level features (CF) as

shown in Fig. 7 . We employed 500 characters for each of the

100 writers and applied the average aggregation method as it was

found to be the most efficient aggregation method. The SF pro-

duced a better recognition rate than the CF and achieved a better

identification rate even for smaller n -tuples. With an input from

only 10 character images, our method achieved a writer identifica-

tion accuracy of 99.09%. The highest identification rate was 99.97%,

which was achieved by applying SF with 20 character images. 

4.3.3. Experiments on the number of training patterns 

To determine the fewest characters required for training, we

varied the number of training characters ( N character_img ) from 10

to 10 0 0 for each writer to identify 100 writers. In these exper-

iments, we used 20-tuples ( n = 20) and the average aggregation

method on sub-region level features as these hyper-parameters

were confirmed in the experiments described above. The results

are presented in Fig. 8 . Despite using only 50 characters for train-

ing, our method achieved a performance of 92.80%, which suggests

that it can extract text-independent writer-specific features using

a small number of training samples. The performance is improved

by increasing the number of training samples in later experiments:

when we increased the number of training samples to 100, an ac-

curacy of 97.52% was obtained. 
.3.4. Experiments on the number of writers 

In these experiments, we varied the number of writers ( N writers )

rom 2 to 400, used 20-tuples ( n = 20), 100 training characters

nd the average aggregation method on sub-region level features.

ig. 9 shows the results of these experiments, with the orange line

howing the mean accuracy in each experiment. The variance is

hown by the yellow shaded area between the upper and lower

lack lines. The performance falls gradually as the number of writ-

rs increases. Our method achieved an accuracy of 93.82% using

nly 100 training characters for identifying 400 writers. Moreover,

e repeated each experiment 20 times to obtain the variance. As

hown in Fig. 9 , the variances are approximately 1 point, which

ndicates that the training method could learn writer-specific fea-

ures independent of the text. 

.4. Experiments on the Firemaker and IAM databases 

We now present our experiments on the Firemaker and IAM

atabases with the best hyper-parameters from the above experi-

ents. We reused the optimized tuple size from JEITA-HP database

o train the network from the beginning for each experiment

n the Firemaker and IAM databases. In addition, we compared

he performance of our method with an existing state-of-the-art

ethod based on handcrafted features and clustering [6] . 

.4.1. Performance on handwritten English text 

For evaluation, a single n -tuple is sampled from each writer and

ed into the trained network, as our method does not require a

arge page or many characters for identifying writers during the

valuation process. We achieved the top-1 accuracy of 92.38% and

op-10 accuracy of 97.67% for 250 writers from the Firemaker test-

ng set. For 650 writers from the IAM testing set, we achieved

ccuracy figures of 90.12% (top-1) and 97.82% (top-10). Using 20-

uples ( n = 20), our method achieved a performance of 91.81% for

00 writers from the combined databases of Firemaker and IAM. 

As the samples of the Firemaker and IAM databases are cur-

ively handwritten text, the extracted sub-images from them usu-

lly contain connected characters or sub-regions of connected

haracters, which requires the network to represent features of

onnected characters in addition to the features of isolated char-

cters. Therefore, the performance on the Firemaker and IAM

atabases (92.38% for 250 writers) seems lower than on the JEITA-

P database (94.62% for 200 writers and 94.02% for 300 writers).

here may be another reason for a reduced performance on hand-

ritten English databases. The hyper-parameters were optimized

or handwritten Japanese text in JEITA-HP, which might not be op-

imal for English. 

In addition, we employed five 20-tuples of sub-images for each

est page to evaluate our method which gives better results than
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Table 2 

Writer identification accuracy (%) on the Firemaker and IAM databases. 

Database Firemaker IAM Firemaker + IAM 

Number of writers 250 650 900 

HF-single Top-1 81 81 80 

Top-10 92 94 92 

HF-comb Top-1 83 89 87 

Top-10 95 97 96 

Our method Top-1 92.38 

(1.08) 

90.12 91.81 

(0.88) (0.69) 

Top-10 97.67 

(0.79) 

97.82 98.07 

(0.50) (0.51) 

Top-1 by five 

20-tuples 

93.56 

(0.91) 

93.14 94.75 

(0.70) (0.81) 

t  

c  

c  

t

4

 

a  

t  

w  

h  

d  

o  

t  

p  

u  

i  

a  

p  

c  

c  

c  

i

 

t  

w

σ

w  

t

t  

w  

m  

Z  

t  

Z

 

t  

t  

o  

a  

1  

f  

c

5

 

w  

c  

g  

s  

f  

c  

d  

i  

h  

e  

w  

a  

g  

w

 

e  

b  

a  

s  

t  

u  

d  

n  

p  

p

 

I  

f  

H  

p  

o  

l  

m  

e

C

A

 

N

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

he top-1 accuracy by a single 20-tuple (94.75% for five 20-tuples

ompared with 91.81% for single 20-tuple). This suggests that we

an extract and use more n -tuples of sub-images to achieve a bet-

er accuracy of writer identification in practice. 

.4.2. Comparison with previously published results 

Table 2 shows a comparison between the method of Bulacu

nd Schomaker [6] and our method. Bulacu and Schomaker [6] ob-

ained results from 50 identification tests on random selections of

riters. They mentioned that “For the size of the data sets used

ere, the writer identification percentages are 3–4 percent confi-

ence interval at a 95 percent confidence level” . Hence, the results

f HF-single and HF-comb based recognizers shown in Table 2 are

he average results with standard variation from 3% to 4% at a 95

ercent confidence level. On the other hand, our method was eval-

ated 20 times on the test data so that the results of our network

n Table 2 are the average identification rates with variances. For

ll the experiments on the English databases, the top-1 and top-10

erformance of our method is higher than the best single hand-

rafted feature (HF-single) and even the best combination of hand-

rafted features (HF-comb) in [6] . This suggests that our network

an represent writer-specific features for a large number of writers

ndependent of text and language. 

In order to verify statistical significance of the difference be-

ween the performance of their method and that of our method,

e consider the following Eqs. (4) and (5) . 

ˆ = 

SD 

2 
our _ method 

20 

+ 

SD 

2 
pre v _ method 

50 

(4) 

here SD prev_method is the normalized standard variance to [0,1] of

heir method while SD our_method is that of our method. 

rue _ di f f erence = Ac c our _ method − Ac c pre v _ method ± Z α/ 2 

√ 

ˆ σ (5)

here Acc prev_method is the normalized accuracy to [0,1] of their

ethod while Acc our_method is that of our method. Z α /2 is the

 score at the (1- α) confidence level. Here, we verify the

rue_difference at 95% confidence level (thus, α = 0.05) with

 α/ 2 = 1.96. 

For the Firemaker and IAM databases, we obtained

rue_difference and confirmed that it is greater than 0. Hence,

he null hypothesis is rejected which implies that the performance

f our method is significantly different with α = 0.05 from Bulacu

nd Schomaker’s method. As shown in Table 2 , the top-1 and top-

0 results (in boldface) of our method are significantly different

rom the results of HF-comb on the Firemaker database and on a

ombination of the Firemaker and IAM databases. 

. Conclusions 

We presented here a CNN-based method for text-independent

riter identification. Local features were extracted from the whole
haracter patterns as well as their sub-regions, which were ag-

regated into global features by three different methods. Random

ampling was applied to create a large number of training patterns

rom a limited number of samples for CNN during the training pro-

ess. This method learned writer-specific features automatically in-

ependent of the text through end-to-end training and achieved an

dentification rate of 99.97% on the JEITA-HP database of Japanese

andwritten character patterns for the task of identifying 100 writ-

rs. Moreover, our method achieved an accuracy rate of 92.80%,

hen trained by only 50 characters for 100 writers and 100 char-

cters for 400 writers. This approach overcomes the difficulties of

athering handwritten character patterns in the same category for

riter identification. 

In the experiments on English databases (Firemaker and IAM),

ven though the number of writers was 900 and there was an im-

alance of handwriting patterns among the writers, our method

chieved an accuracy of 91.81%, which is higher than the existing

tate-of-the-art methods based on handcrafted features and clus-

ering (80% when using a single handcrafted feature and 87% when

sing combined features). The high performance on the English

atabases with a large number of writers suggests that the trained

etwork represents the writer-specific features and plays an im-

ortant role in solving the text-independent writer identification

roblem. 

We plan to expand the scope of this method in the future.

n our experiments, we used the best hyper-parameters tuned

or handwritten Japanese characters to handwritten English text.

owever, the accuracy can be improved by tuning the hyper-

arameters for English. It would also be interesting to evaluate

ur writer identification method for other languages or multiple

anguages [3] . In addition, it would be challenging to apply the

ethod for identifying unknown writers or registering new writ-

rs. 
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