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Abstract

The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability
condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-
turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy
cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence
stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid sys-
tems, is formulated to close the dynamic constraint equations of turbulence, allowing the inhomogeneous structural
parameters of turbulence to be optimized. We call this modelthe ‘EMMS-based turbulence model’, and use it to
construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used
to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an
empty room. The numerical results show that the EMMS-based turbulence model improves the accuracy of turbulence
modeling due to it considers the principle of compromise in competition between viscosity and inertia.
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1. Introduction

Turbulence is one of the most important unresolved problemsin classical physics (Feynman et al., 1963). With the
rapid increase of computer capability, numerical simulation of turbulence has attracted considerable attention from
researchers and engineers. Direct numerical simulation (DNS) (Moin and Mahesh, 1998) is the most fundamental and
accurate numerical approach to simulate turbulence. However, the spatial and temporal scales of DNS are limited by
both the Kolmogorov and turbulence time scales, which make it computationally expensive. Compared with DNS,
large eddy simulation (LES) (Meneveau and Katz, 2000) showssome promise, although it is also computationally
expensive. For example, theoretically DNS will be able to simulate a whole generic aircraft configuration in 2080,
while LES will be able to with 90% of the scales resolved in 2045 (Spalart, 2000). This is because the computational
time of DNS and LES increases rapidly as the Reynolds number increases. Therefore, at present there is only one
way to solve engineering turbulence problems; namely, through solution of the Reynolds-averaged Navier-Stokes
(RANS) equations with the aid of turbulence models (Wilcox,1998), which is known as the turbulence model theory.
Although the computational cost of this method is much lowerthan those of DNS and LES, turbulence models derived
from empirical relationships and experimental data simulate turbulent flows with lower accuracy. Thus, to simulate
turbulence better, especially related to practical engineering problems, it is important to improve the current turbulence
model.

In gas-solid riser flows, meso-scale structures existing inthe form of particle clusters or aggregates have con-
siderable effects on flow behavior. To reasonably describe these meso-scale structures and accurately model global
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behaviors, eight structural parameters are introduced andthen interrelated by six equations for conservation of mass
and momentum. However, this does not allow closure, so a stability criterion is proposed to define the steady state
using a compromise between different dominant mechanisms;that is, the energy-minimization multi-scale (EMMS)
model (Li, 1987; Li and Kwauk, 1994; Li et al., 1988). This model, which is equivalent to the turbulence model
for single-phase turbulent flow, has successfully resolvedthe meso-scale structures of gas-solid systems (Ge and Li,
2002; Li et al., 1999a; Li et al., 1990; Liu et al., 2011; Lu et al., 2009; Naren et al., 2007; Nikolopoulos et al., 2010a;
Nikolopoulos et al., 2010b; Qi et al., 2007; Wang et al., 2008; Wang and Li, 2007; Yang et al., 2003; Yang et al.,
2004). In addition, the principles of the EMMS model have also been tested for both gas-liquid systems (Chen et
al., 2009a, b; Ge et al., 2007; Yang et al., 2010; Yang et al., 2007; Yang et al., 2011; Zhao, 2006) and single-phase
turbulent flow (Li et al.,1999b).

In single-phase turbulent flow, Li et al. (1999b) identified acompromise mechanism between inertial and viscosity
effects, and analysis of single-phase turbulent flow in a pipe allowed them to propose a stability condition for turbu-
lence. Wang et al. (2007; 2008) subsequently analyzed the multi-scale structure and energy dissipation process of
turbulence to improve this stability condition. At the sametime, they also verified the rationality of the improved sta-
bility condition by simulating the flow around a cylinder using a particle-based DNS method. The key to establishing
a rational turbulence model lies in understanding the structure of turbulence in computational grids, which is strongly
related to a stability condition. In other words, it is impossible to develop a better model without including a sta-
bility condition. However, none of the current turbulence models consider this point or include a stability condition.
For example, the zero-equation model (Pope, 2000) is the simplest turbulence model, which obeys the Boussinesq
assumption and uses an algebraic equation (i.e., an empirical formula) for mean velocity and geometric length scale
to compute the turbulent viscosity coefficient. Another example is the one-equation model separately proposed by
Kolmogorov (1942) and Prandtl (1945); its core idea is to useroot mean square (RMS) turbulent kinetic energy as
the velocity scale of turbulent fluctuation and then to construct, model and solve the differential equation of turbulent
kinetic energy, where length scale is specified algebraically based on the mean flow. The two-equation model (Pope,
2000) uses a supplementary equation, namely the turbulent energy dissipation rate equation successively developed
by Chou (1945), Davidov (1961), Harlow & Nakayama (1968), and Jones & Launder (1972), to determine the length
scale rather than specifying it empirically, as well as using turbulent kinetic energy to determine the velocity scale.

To improve the current turbulence models, a turbulence stability condition should be introduced. As soon as turbu-
lence sets in, multiple mechanisms lead to its typical nonlinear, non-equilibrium dissipative characteristics (Prigogine
1967). Because of the coexistence of two different mechanisms (viscosity and inertia) in a single-phase flow system,
the variational criterion of single-phase flow cannot be represented only by the extremum tendency for the viscosity
effect or by that for the inertia effect; instead, compromise between these two competing mechanisms plays an im-
portant role in system stability. Although considerable inertial dissipation exists in turbulent flow, viscous dissipation
Wν maintains the same inherent tendency as in laminar flow; thatis, it is minimized (i.e.,Wν → min) even though its
minimum is subject to inertia. During the study of gas-solidtwo-phase flow (Li and Kwauk 1994; Li et al. 1996; Li
et al. 1998), the appearance of a dissipative flow structure was shown to maximize total dissipation. If single-phase
turbulent flow is considered to consist of many turbulent eddies and the interaction of an eddy with its surroundings
is similar to that between gas and particles, the dissipative behavior of these two systems is similar. Therefore, a
tendency to maximum total dissipationWT in turbulent flow could be assumed (i.e.,WT → max). This tendency is,
however, subject to the simultaneous presence of viscosity, and is not realized exclusively. Based on the above con-
sideration, in real turbulent flow, neither viscous nor inertial effects can dominate a system, so they fail to realize
their respective tendencies exclusively; instead, they play a joint role to achieve system stability by compromising
with each other (i.e.,Wν → min|WT→max). In physics, fluid inertial force is the force exerted on a fluid by temporal
fluctuation. Therefore, maximization of turbulent (fluctuating) energy dissipationWte (i.e. Wte → max) is a better
qualitative and quantitative indicator for the effect of inertia thanWT (Wang et al., 2007). As a result, the stability
condition for the evolution of turbulent flow can be characterized byWν → min|Wte→max.

The turbulence stability condition is a more physically reliable and accurate alternative to improve current tur-
bulence models because it is a control mechanism of objective existence rather than being derived from empirical
relationships and experimental data. In this paper, based on the two-phase concept of turbulence and estimation of the
difference in density between turbulent and non-turbulenteddies (i.e., the laminar fluid), the structure of turbulence
is separated and some constraint equations are constructedwith basic principles such as mass conservation and force
balance. Subsequently, the energy contained in turbulenceis separated into different parts according to the homo-
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geneous isotropic turbulence theory (Batchelor, 1982; Pope, 2000), and each energy component is also quantified.
The turbulence stability condition is then introduced to close the constructed constraint equations, allowing the inho-
mogeneous structural parameters of turbulence to be optimized. Finally, by introducing these optimized parameters
into the current turbulence model, the ‘EMMS-based turbulence model’, which considers both flow structure and the
turbulence stability condition, is proposed. This new turbulence model can effectively represent the coexistence of
laminar and turbulent regions in turbulence on each mesh (grid), rather than the a priori assumption that all complex
flows are fully turbulent flows as in traditional turbulence models.

Here, we develop a new turbulence model that considers both flow structure and the turbulence stability con-
dition; i.e., the EMMS principle of turbulence. The rest of this paper is organized as follows: Section 2 presents
the EMMS-based turbulence model including some preliminary knowledge, constraint equations of turbulent eddies,
energy decomposition and its quantification in turbulence,the turbulence stability condition, the physical basis and
a summary of the EMMS-based turbulence model. Section 3 discusses the results obtained using the EMMS-based
turbulence model, and the accuracy of numerical examples isimproved using the EMMS-based turbulence model.
Some conclusions are drawn in Section 4.

2. The EMMS-based turbulence model

2.1. Preliminary knowledge

• A physical picture of the turbulent eddy cascade(Pope, 2000). The turbulent eddy cascade can be described
as follows: the external force acting on a fluid sustains the motion of large-scale eddies, which are unstable
and break up to produce smaller ones. These smaller turbulent eddies undergo a similar breakage process to
produce even smaller turbulent eddies. The energy loss at each hierarchy of turbulent eddies can be divided into
two parts (Xu, 1986): one is the energy transferred at each step from the large turbulent eddies to the smaller
ones through their breakage process, and the other is the energy dissipated into heat by the molecular viscosity
of the fluid, which occurs inside the turbulent eddies as theybreak up. Large turbulent eddies have a very
high Reynolds number, which reflects the small effect of viscosity, so the transferred energy is greater than that
dissipated. This situation is reversed for smaller turbulent eddies. Because external energy is only supplied to
the large turbulent eddies, an energy cascade is formed (Pope, 2000): the external energy injected into large
turbulent eddies is sequentially transferred to increasingly smaller ones until it is dissipated into internal energy.
If external energy is supplied continuously to the large turbulent eddies or they have sufficient stored energy,
energy balance may be possible; namely, the input energy equals the output energy, so the fluid motion is steady.

• The two-phase concept of single-phase turbulence.The “conditional sampling” technique (Antonia et al., 1975;
Shepherd and Moss, 1982) can be used to discriminate turbulent and non-turbulent zones of flow. This allows
turbulence to be considered as the combination of the motions of two fluids, defined as the “turbulent fluid” and
“non-turbulent fluid”, along with their interaction (see the two-phase concept of turbulence in Fig. 1). These
two fluids coexist in one space, either sharing the space or occurring in the space with their own probability.
The fluids are treated as two interpenetrating continua (Fan, 1988; Spalding and Malin, 1984), so turbulent fluid
can become non-turbulent fluid by energy dissipation, and non-turbulent fluid can become turbulent through the
entrainment of turbulent fluid. At each location, the amountof each phase present is characterized by its volume
fraction, and the volume fraction of turbulent fluid is interpreted as the intermittency factor of turbulence in that
position (Fan, 1988; Spalding and Malin, 1984). Overall, this concept separates the structure of turbulence, and
allows us to consider the structure of turbulence to help improve the current turbulence model.

• Estimation of the difference in density between turbulent and non-turbulent eddies.The main characteristic of
turbulent flow is the existence of many turbulent eddies of different size. Trolinger et al. (2002) noted that
turbulent eddies have a great influence on the transient density distribution of flow. They estimated that the
density of a turbulent eddy region with concentrated vorticity was less than that of the surrounding fluid (i.e.,
the non-turbulent fluid), so the density of fluid between adjacent turbulent eddies was relatively high.
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Figure 1: The two-phase concept of turbulence.

2.2. The constraint equations of turbulent eddies

In general, the inhomogeneous flow structure of turbulence takes on the existence of turbulent eddies of different
size as well as the volume fraction of turbulent eddies in theflow. The size and volume fraction of turbulent eddies
are influenced by the operating conditions, which determinethe characteristics of the whole fluid flow. Therefore,
the equivalent diameter and volume fraction of turbulent eddies can be regarded as the inhomogeneous structural
parameters that describe the characteristics of turbulence. Specifically, turbulence as a whole can be characterized
by the following inhomogeneous structural parameters: theequivalent diameter of turbulent eddiesde, the volume
fraction of turbulent eddiesf , the superficial velocity of turbulent eddiesUe and the superficial velocity of laminar
flow Ul .

Based on the estimation of the difference in density betweenturbulent and non-turbulent eddies, the density of
turbulent eddiesρ e is less than that of the laminar componentρ l . For simplicity, it is assumed thatρ e = 0.99ρ l . The
coefficient will be discussed further later. Moreover, it isalso assumed that the input energy is equal to the output
energy; namely, the fluid motion is steady. Therefore, for this steady state, the turbulent eddies are balanced by forces.
That is, the drag force equals the buoyant force:

π
6

d3
e (ρ l −ρ e)g=CD,eddy

π
4

d2
e

ρ l

2
u2

s (1)

whereg is gravity acceleration, andus is the slip velocity between turbulent eddies and the laminar component. That
is to say,

us =
Ue

f
−

Ul

1− f
(2)

Additionally, in Eq. (1),CD,eddy is the drag coefficient of turbulent eddies, and the specific expressions can refer to
those for a bubble (Lo et al., 2000; Yang et al., 2007); namely,

CD,eddy=CD0,eddy(1− f )4 (3)

where

CD0,eddy=
4
3

gde

U2
T

ρl −ρe

ρl

UT =
µ l

ρ lde
M−0.149

o (J−0.857)

Mo =
gµ4

l (ρ l −ρe)

ρ2
l σ3
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J =

{

0.94H 0.757 2< H ≤ 59.3

3.42H 0.441 H > 59.3

H =
4
3

EoM−0.149
o

( µ l

0.0009

)−0.14

Eo =
d2

e (ρ l −ρe)g
σ

Eq. (1) clearly shows that once the operating conditions (i.e.,Ue andUl) are given and the equivalent diameter
of turbulent eddiesde is appointed, the volume fraction of turbulent eddiesf will be determined exclusively for a
turbulent system. Because the inlet velocity is

Uin = (1− f )Ul + fUe (4)

once the inlet velocityUin is given, the parametersUe, Ul , de and f can be determined uniquely. For simplicity, we
assumeUe andUl to be given first and then determinede and f .

2.3. Energy decomposition and its quantification in turbulence

Similar to gas-solid and gas-fluid systems, turbulence is also a typical complex system, exhibiting the common
characteristics of multi-scale structure. The multi-scale structures of the two former systems have already been pre-
liminarily analyzed (Li and Kwauk, 1994; Yang et al., 2007; Zhao, 2006). However, the same work for turbulence
has not been reported. In view of this current research situation, we decided to analyze the multi-scale structure of
turbulence according to the turbulent eddy cascade. As mentioned above, when the input energy is equal to the out-
put energy, the motion of turbulence is steady. Here, we onlyanalyze the multi-scale structure of turbulence in this
flow state. Compared with laminar flow, the main characteristic of turbulence is the existence of turbulent eddies of
different size as well as their breakage. Therefore, we can analyze the multi-scale structure of turbulence according to
the different size of the turbulent eddies. The mode of energy dissipation varies with the size of a turbulent eddy. The
energy contained in turbulence can be classified as follows (a diagram showing energy decomposition in turbulence
is shown in Fig. 2):

• Total energy of turbulence WT. To maintain the fluid in a turbulent state, external energy needs to be supplied
continuously. The energy supplied to generate turbulence in a volume of fluid per unit mass and per unit time
is called the total energy of turbulence and labeled asWT.

• Energy storage of energy-containing eddies Wst. Most energy of turbulence is stored in turbulent eddies of large
size (although normally not the largest size of turbulent eddies). The energy contained in smaller turbulent
eddies is much lower than that in larger ones because of strong viscous dissipation. Therefore, the large turbulent
eddies that store most of the energy of turbulence are calledenergy-containing eddies, and their corresponding
size is called the energy-containing range. The energy-containingeddies obtain energy directly from the average
motion of fluid or the generating device of turbulence (e.g.,an oscillating grid). Without doubt, the motion
of these turbulent eddies is directly related to the external conditions, which leads to the generation of non-
isotropic turbulent eddies. Moreover, it has been pointed out previously that for large turbulent eddies, there is
only transfer energy without dissipated energy (Pope, 2000). Therefore, the transfer energy that is transferred to
smaller turbulent eddies is just the energy stored in the energy-containing eddies. The energy-containing eddies
are non-isotropic and the violent oscillations of their surfaces can be regarded as a measure of the energy stored
in the energy-containing eddies, which is called the energystorage of energy-containing eddies and labeled as
Wst.

• Energy dissipation of the inertial subrange We inertia. Once the energy is stored in the energy-containing eddies,
it begins to be transferred to smaller turbulent eddies through breakage of the energy-containing eddies. When a
certain hierarchy of turbulent eddies is reached, there is not only transfer energy but also dissipated energy. This
is because the Reynolds number decreases as the size of the turbulent eddies decreases, which means that the
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Figure 2: Diagram showing energy decomposition in turbulence.

inertia effect becomes progressively weaker and the viscosity effect becomes stronger. Specifically, the energy
loss of turbulent eddies of size equal to or smaller than thatof this certain hierarchy of turbulent eddies can
be divided into two parts: one is the energy transferred to smaller turbulent eddies through the breakage of the
current turbulent eddy, and the other is the energy dissipated into internal energy by molecular viscosity. The
latter mainly occurs inside the current turbulent eddy as itbreaks up. Furthermore, we think that the inertial
subrange starts from this hierarchy, and holds until another certain hierarchy of turbulent eddies is reached, from
which there is only the energy dissipated by molecular viscosity but no energy transferred by inertia effect. In
the inertial subrange, the first part of energy loss (i.e., the transfer energy) for each hierarchy of turbulent eddy
will be dissipated by molecular viscosity in the dissipation range. Therefore, in the inertial subrange, all of
the energy loss is energy dissipated inside the turbulent eddies during their breakage. We call this the energy
dissipation of the inertial subrange,We inertia.

• Energy dissipation on the Kolmogorov scale (i.e., dissipation range) We Kolmogorov. As the breakage of turbulent
eddies proceeds, their size will progressively decrease, so the viscosity effect becomes stronger. From a certain
hierarchy of turbulent eddies, there is only the viscosity effect without the inertia effect. At this point, the
turbulent eddies are located in the dissipation range. The size of this certain hierarchy of turbulent eddy is called
the minimum size of the inertial subrange, and labeled asλmin (Tennekes and Lumley, 1972). The minimum
size of the dissipation range is indicated by the Kolmogorovscaleη (Pope, 2000), so the region[η ,λmin] is
the dissipation range. In the dissipation range, all the kinetic energy of turbulent eddies will be transformed
to internal energy by molecular viscosity, so we call this part the energy dissipation on the Kolmogorov scale
(i.e., dissipation range)We Kolmogorov. In fact,We Kolmogorov is the transfer energy from large turbulent eddies to
smaller ones through their breakage in the inertial subrange.

• Energy dissipation on the molecular scale Wν . The energy storage of energy-containing eddiesWst, the energy
dissipation of the inertial subrangeWe inertia and the energy dissipation on the Kolmogorov scaleWe Kolmogorov

are the modes of energy action induced by the existence of turbulent eddies. Turbulence contains not only
turbulent eddies but also a laminar component. The laminar component will also consume part of the energy
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in the system. The nature of this energy is identical to that of the energy consumption in fully laminar flow;
namely, this energy is dissipated into internal energy by molecular viscosity and is not related to the structure
of turbulent eddies. Therefore, we label the energy dissipated in the laminar component of turbulence by
molecular viscosity asWν and call it the energy dissipation on the molecular scale. Here, ν indicates typical
viscosity dissipation, just like that in fully laminar flow.

So far, we have decomposed the energy of turbulence into different parts according to the characteristic size of
turbulent eddies. In the following, how to quantify the different energy components of turbulence will be considered.

2.3.1. Total energy of turbulence WT

The total energy of turbulence in a volume of fluid per unit mass and per unit timeWT can be regarded as the sum
of the energy storage of energy-containing eddiesWst, the energy dissipation of the inertial subrangeWe inertia, the
energy dissipation on the Kolmogorov scaleWe Kolmogorov and the energy dissipation on the molecular scaleWν ,

WT =Wν +We Kolmogorov+We inertia+Wst (5)

In a gas-fluid system, energy is mainly supplied by the expansion work of bubbles when they pass through the
liquid layer. Based on this recognition, Bhavaraju et al. (1978) expressed the total energy consumption of gas-fluid
systems as

WT =
ln(P1/P2)

P1/P2−1
Ugg (6)

Here,P1 andP2 are the pressure at the top and bottom of reactor, respectively, andUg is the superficial velocity of
bubbles. When Eq. (6) is used for a micro-control volume or inrough research, it can be assumed thatP1 = P2 . Then,
the total energy consumption of a gas-fluid system can be rewritten as

WT =Ugg (7)

As mentioned above, the density of turbulent eddies is lowerthan that of the laminar component. Therefore, if we
regard a turbulent eddy as a kind of “bubble”, Eq. (7) can be used as an approximate measure of the total energy of
turbulence, namely

WT =Ueg (8)

whereUe is the superficial velocity of turbulent eddies.

2.3.2. Energy storage of energy-containing eddies Wst

In the range of energy-containing eddies, the surfaces of turbulent eddies are extremely unstable, which differs
considerably from the situation of particles moving in gas but has some similarities to bubbles moving in liquid. In
fact, there are some discrepancies between bubbles and turbulent eddies that move in liquid and the laminar regions of
turbulence, respectively. Besides translational motion in the main direction of flow, there are some complicated sec-
ondary motions that occur in turbulent eddies, such as the violent oscillations of their surfaces. The energy contained
in these secondary motions may be viewed as the energy storage of energy-containing eddiesWst, which is also the
total stored energy that can be transferred to smaller turbulent eddies.

Because the surface motion of turbulent eddies is extremelycomplicated, until now it has been impossible to
directly compute the energy storage of energy-containing eddies. However, the resistant forceFD,eddy during the
motion of turbulent eddies is composed of two parts, namely,the one caused by the body of turbulent eddiesFD,particle

(we assume that it equals the drag force of solid particles ofthe same shape as the turbulent eddies), and that caused
by the violent oscillations of the surfaces of turbulent eddiesFD,surf. That is to say,

FD,eddy= FD,particle+FD,surf (9)

When the eddies pass through laminar regions, the work of turbulence per unit mass can be expressed as

WT =
ne

(1− f )ρ l + f ρe
FD,eddy·us (10)
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wherene denotes the number of turbulent eddies of sizede per unit volume. During this process, the energy stored in
the violent oscillations of the surfaces of turbulent eddies can be expressed as

Wst =
ne

(1− f )ρ l + f ρe
FD,surf ·us (11)

If there is no surface oscillation, then there is no energy storage in the surface of turbulent eddies. Therefore, the
energy storage in the surface of turbulent eddies should only be related to the forceFD,surf and the forceFD,particle can
be excluded. Furthermore, from Eqs.(10)-(11) we obtain

Wst

WT
=

FD,surf

FD,eddy
=

FD,eddy−FD,particle

FD,eddy
(12)

namely

Wst =WT
FD,surf

FD,eddy
=WT

FD,eddy−FD,particle

FD,eddy
(13)

Therefore, according to the discrepancy of drag force between solid particles and turbulent eddies (assuming that the
solid particles have the same shape as the turbulent eddies), the energy storage of energy-containing eddiesWst can be
approximated.

When turbulent eddies move in the laminar regions, their received resistant force can be approximated as

FD,eddy=CD,eddy
π
4

d2
e

ρ l

2
u2

s (14)

Here,CD,eddy is the drag coefficient of turbulent eddies and is assumed to equal that of bubbles (Yang et al., 2007).
FD,particle is the resistant force of solid particles that have the same shape as the turbulent eddies, and can be approxi-
mated as

FD,particle=CD,particle
π
4

d2
e

ρ l

2
u2

s (15)

whereCD,particle is the drag coefficient of solid particles and can be calculated by the Schiller and Naumann (1935)
equation:

CD,particle=







24
Re

(

1+0.15Re0.687
)

Re≤ 1000

0.44 Re> 1000
(16)

Substituting Eqs. (14)-(15) into Eq. (13), the energy storage of energy-containing eddies can be finally expressed as

Wst =WT
CD,eddy−CD,particle

CD,eddy
(17)

2.3.3. Energy dissipation of the inertial subrange We inertia

It is known that the energy dissipation of the inertial subrangeWe inertia mainly arises from the viscous dissipation
occurring inside the turbulent eddies during their breakage. To quantify this energy consumption, we first have to
develop a model for breakage of turbulent eddies, and determine the viscous dissipation inside the turbulent eddies
during their breakage.

If we regard turbulent eddies as a kind of “drop/bubble”, it is possible to use the current breakage model for a
drop/bubble to represent the breakage of turbulent eddies (Lasheras et al., 2002; Liao and Lucas, 2009). We believe
that the breakage of a turbulent eddy is caused by collision with another turbulent eddy that is equal to or smaller than
the initial turbulent eddy and has sufficient kinetic energy. Turbulent eddies that are larger than the initial turbulent
eddy merely transport it, similar to the assumption made forthe breakage of a drop/bubble (Luo and Svendsen, 1996).
Following the work of Luo and Svendsen (1996), the breakage model of a turbulent eddy with a diameterde can be
expressed as follows:

Ωe(de) =

∫ de

λmin

ωe,λ (de,λ )Pe(de| fBV ,λ )dλ (18)
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Here,ωe,λ (de,λ ) is the arrival (bombarding) frequency of turbulent eddies with a size betweenλ andλ +dλ onto
the initial turbulent eddy of sizede. Pe(de| fBV ,λ ) is the probability of the initial turbulent eddy of sizede breaking
into two smaller turbulent eddies when the initial turbulent eddy is hit by an arriving turbulent eddy of sizeλ that has
a kinetic energy greater than or equal to the minimum energy required to induce breakage of the initial turbulent eddy.
fBV is the volume ratio of the smaller turbulent eddy to its mother turbulent eddy (i.e., the initial turbulent eddy of
sizede)). Here, only binary breakage of the initial turbulent eddyis considered (Hagesaether et al., 2002).

Similar to gas kinetic theory, the collision frequency density can be determined as (Luo and Svendsen, 1996):

ωe,λ (de,λ ) =
π
4
(de+λ )2 ūλ ṅλ ne (19)

whereṅλ denotes the number of turbulent eddies with size betweenλ andλ + dλ per unit volume, and ¯uλ is the
turbulent velocity of turbulent eddies of sizeλ .

In the inertial subrange, the theory of isotropic turbulence can be used, so the mean turbulent velocity of turbulent
eddies of sizeλ is

ūλ = β 1/2(ελ )1/3 (20)

whereβ = 2 andε is the dissipation rate of turbulent kinetic energy (Wang etal., 2003). The number density of
turbulent eddies of sizeλ is (Luo and Svendsen, 1996)

ṅλ =
0.822(1− f )

λ 4 (21)

and the number density of initial turbulent eddies of sizede is (Vankova et al., 2007)

ne =
0.1(2π)3

d4
e

(22)

Substituting Eqs. (20)-(22) into Eq. (19), the collision frequency density is finally expressed as

ωe,λ (de,λ ) = 0.923(1− f )
0.1(2π)3

d4
e

ε1/3 (de+λ )2

λ 11/3
(23)

Most drop/bubble breakage models based on surface energy only take into account the energy constraint and predict a
maximum breakage probability whenfBV approaches zero (Luo and Svendsen, 1996; Tsouris and Tavlarides, 1994).
Wang et al. (2003) imposed both energy and capillary constraints. When a drop/bubble of sizede is hit by a turbulent
eddy of sizeλ with kinetic energy ofe(λ ), the daughter drop/bubble size has a minimum because of the capillary
pressure and a maximum caused by the increase of surface energy. However, all of the above work neglects a part of
energy consumption: the viscous dissipation inside a drop/bubble during its breakage (Vankova et al., 2007).

EDIS =
π
6

d3
eτD =

π
6

d3
e

[(

ηDε1/3d1/3
e

√

ρ l

ρe

)

/de

]

=
π
6

ηDε1/3d7/3
e

√

ρ l

ρe

(24)

Here,τD is the viscous stress inside the breaking drop/bubble, which is estimated as proposed by Davies (1985), and
ηD is the viscosity of the drop/bubble.

Because we regard turbulent eddies as a kind of drop/bubble,when a turbulent eddy collides with another turbulent
eddy of equal or smaller size, the condition for the initial oscillating deformed turbulent eddy to break is that the kinetic
energy of the bombarding turbulent eddye(λ ) of sizeλ exceeds the increase in surface energy required for breakage.
Meanwhile, the dynamic pressure 0.5ρeū2

λ must exceed the capillary pressureσ/r, whereσ denotes the interfacial
tension of turbulent eddies andr is their radius of curvature. Moreover, the kinetic energy of bombarding turbulent
eddies must also provide the energy dissipated inside the initial turbulent eddy during its breakage. That is to say,

e(λ )≥ max

(

cf BV πd2
e σ ,

πσλ 3

3de fBV
1/3

)

+EDIS (25)
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It should be noted that this breakage mechanism of turbulenteddies involves breakage caused by collision with
eddies of equal or smaller size, which does not mean that the energy of the smaller turbulent eddies will be transferred
to the larger ones. If this occurred, it would contradict thepicture of the turbulent eddy cascade, which is that energy
is transferred from the larger turbulent eddies to smaller ones. In fact, the increase in surface energy required for the
breakage of large turbulent eddies is still transferred from the larger turbulent eddies, which is the first part of energy
loss for each hierarchy. Finally, the transfer energy enters the dissipation range and becomes the kinetic energy of
turbulent eddies.

To determine the energy contained in turbulent eddies of different size, a distribution function of kinetic energy
for turbulent eddies is required. The normalized exponential energy density function (Hagesaether et al., 2002) is
regarded as a suitable model for the kinetic energy of turbulent eddies, namely

pe(χ) = exp(−χ) (26)

whereχ = e(λ )
ē(λ ) . Consequently, the probability density function for a turbulent eddy of sizede to break with a breakage

fraction fBV when it is hit by another turbulent eddy of equal or smaller sizeλ can be expressed as follows

P̃e(de| fBV ,λ ) = pe

[

e(λ )≥ max

(

cf BV πd2
e σ ,

πσλ 3

3de fBV
1/3

)

+EDIS

]

(27)

Furthermore, according to probability theory, the probability of this current turbulent eddy breaking is

Pe(de| fBV ,λ ) =
∫ 0.5

0
P̃e(de| fBV ,λ )d fBV (28)

Substituting Eqs. (23) and (28) into Eq. (18), the breakage model of a turbulent eddy of sizede is obtained as follows

Ωe(de) =

∫ de

λmin

∫ 0.5

0
ωe,λ (de,λ )Pe(de| fBV ,λ )d fBVdλ (29)

Therefore, in a volume of turbulent fluid per unit mass, the viscous dissipation occurring inside a turbulent eddy
during its breakage is finally expressed as

We inertia=

∫ de

λmin

∫ 0.5

0

1
(1− f )ρl + f ρe

ωe,λ (de,λ )Pe(de| fBV ,λ )EDISd fBVdλ (30)

2.3.4. Energy dissipation on the Kolmogorov scale We Kolmogorov

The mean velocity of turbulent eddies of sizeλ in the inertial subrange of isotropic turbulence has been expressed
by Eq. (20). We assume that this expression is also valid in the dissipation range of isotropic turbulence. Therefore,
the mean kinetic energy ¯e(λ ) of a turbulent eddy of sizeλ in the dissipation range can be given as

ē(λ ) = ρ l
π
6

λ 3 ū2
λ
2

=
πβ
12

ρ lε2/3λ 11/3 (31)

There is no breakage of turbulent eddies in the dissipation range, so all of the energy contained in these turbulent
eddies will be transferred into internal energy by molecular viscosity. That is, the energy dissipation on the Kol-
mogorov scaleWe Kolmogorov can be regarded as the sum of the kinetic energy of turbulent eddies in the dissipation
range. This kind of energy is instantaneously and completely transferred into internal energy. Meanwhile, to main-
tain the existence of the dissipation range, a new compensatory kinetic energy supplying the turbulent eddies in this
subrange is received continuously from the inertial subrange through the breakage of turbulent eddies. Therefore,

We Kolmogorov=

∫ kη

kλmin

ē(λ )dne (32)

where dne denotes the number density of turbulent eddies with size betweende andde+dde in the dissipation range,
andkη andkλmin

are the wave numbers corresponding to sizeη andλmin respectively.
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The minimum size of turbulent eddiesλmin in the inertial subrange should be taken as the upper limit ofthe
dissipation range. Here,λmin = 60η is assumed because the range[η ,60η ] is regarded as the dissipation range. A
way to obtain a more precise value ofλmin still needs to be developed. Meanwhile, the number density of turbulent
eddies dne within a given size range can be obtained by integrating the energy spectrum, namely (Vankova et al.,
2007)

dne

dk
= 0.1k2 (33)

wherek is the wave number and equals 2π/λ .
Based on Eqs. (31)-(33), in a volume of turbulent fluid per unit mass, the energy dissipation on the Kolmogorov

scaleWe Kolmogorov can be finally expressed as

We Kolmogorov=
∫ λmin

η

πβ
12

ρ l ε2/3λ 11/30.1
(2π)3

λ 4

f
(1− f )ρ l + f ρe

dλ (34)

Figure 3: Compromise between inertial and viscosity effects of turbulence in space and time.

2.4. A stability condition for turbulence

When the turbulence in a pipe is considered, the boundary layer near the pipe wall is dominated by viscosity, while
the internal region shows inviscid characteristics because inertia dominates. When viscosity dominates, the principle
of least viscous dissipation (Lamb, 1932) or minimum entropy production (Prigogine, 1945) can be applied. Then, our
question is: when the effect of inertia dominates, what kindof mechanism should be used? Li et al. (1999b) assumed
a tendency of maximum total dissipationWT in turbulent pipe flow. They also pointed out that for all realcases of
turbulence in a pipe, neither viscosity nor inertia could exclusively dominate the system; they had to compromise
with each other in realizing their respective intrinsic tendencies. This is the so-called turbulence stability condition,
which is based on an extremum control mechanism. Finally, byassuming a general expression for both laminar and
turbulent flow in a pipe, they calculated the radial velocityprofiles of water and air in a pipe at differentRebased
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on the turbulence stability condition. They compared the results with experimental data obtained by von Karman
(1939) and Bejan (1982), which demonstrated that the turbulence stability condition allowed reasonable analysis of
the turbulence in a pipe.

Wang et al. (2007; Wang, 2008) extended the work of Li et al. (1999b) and proposed that the compromise between
viscosity and inertia might be of general relevance to fluid flow. They thought that the dissipation associated with a
time-averaged flow field might characterize the viscosity effect, while the dissipation associated with the temporal
variation of velocity (i.e., fluctuation) might characterize the inertia effect. It has been already reported that on the
micro-scale, flow could be either viscosity-dominated inside a turbulent eddy or inertia-dominated at the interface
between turbulent eddies (Li and Kwauk, 2003), while on the macro-scale, flow was dominated by inertia in the core
region, and viscosity in the wall region. Therefore, Wang etal. (2007; Wang, 2008) used the maximization of turbulent
dissipationWte as a more general and appropriate index of the effect of inertia on turbulent flow thanWT; that is, they
extended the turbulence stability condition. Finally, to verify their improved turbulence stability condition, Wanget
al. performed DNS of the flow around a cylinder using a macro-scale particle method (Ma et al., 2006). Statistical
data for viscous and turbulent dissipation validated the correctness of their work (Fig. 3).

Concerning the separation of energy of turbulence into different components, the energy dissipation of the inertia
effect includes the energy dissipation of the inertial subrangeWe inertia and the energy dissipation on the Kolmogorov
scaleWe Kolmogorov, namely

Wte =We Kolmogorov+We inertia (35)

In contrast, the energy storage of energy-containing eddiesWst is not transformed into internal energy at the current
time, but is later transferred to smaller turbulent eddies,so it does not belong to the energy dissipation of the inertia
effectWte. The dissipation of the viscosity effect in the turbulence stability condition is just the energy dissipation
on the molecular scaleWν for the laminar component. Then, under the current energy decomposition framework, the
turbulence stability condition of Li et al. (1999b; Wang et al., 2007; Wang, 2008) can be expressed as

Wν → min|Wte→max (36)

Figure 4: The physical basis of the EMMS-based turbulence model.

2.5. Physical basis and summary of the EMMS-based turbulence model
As depicted schematically in Fig. 4, the physical basis of the EMMS-based turbulence model is described by

multi-scale analysis, which resolves the system into threebasic scales: molecular scale, eddy scale and vessel scale;
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Table 1: Summary of the formulae of the EMMS-based turbulence model

Constraint equation of turbulent eddies:

π
6 d3

e (ρ l −ρ e)g=CD,eddy
π
4 d3

e
ρ l
2 u2

s

Total energy of turbulence:

WT =Ueg

Energy decomposition of turbulence:

WT =Wν +We innertia+We Kolmogorov+Wst

Energy dissipation in the inertial subrange:

We inertia=
∫ de

λmin

∫ 0.5
0

1
(1− f )ρl+ f ρe

ωe,λ (de,λ)Pe(de| fBV ,λ)EDISd fBVdλ

Energy dissipation on the Kolmogorov scale:

We Kolmogorov=
∫ λmin

η
πβ
12 ρ l ε2/3λ11/3 0.1 (2π)3

λ4
f

(1− f )ρ l+ f ρe
dλ

Turbulence stability condition:

Wν → min|Wte→max

Table 2: Summary of other expressions used to close the EMMS-based turbulence model

ρe = 0.99ρ l us =
Ue
f − Ul

1− f

Wst =WT
CD,eddy−CD,particle

CD,eddy
η = (µ l/ρ l)

3/4

ε1/4

ε =WT −Wν λmin = 60η

ωe,λ (de,λ) = 0.923(1− f ) 0.1(2π)3

d4
e

ε1/3 (de+λ)2

λ11/3

P̃e(de| fBV ,λ) = pe

[

e(λ)≥ max
(

cf BV
πd2

e σ , πσλ3

3de fBV
1/3

)

+EDIS

]

EDIS = π
6 ηD ε1/3d7/3

e

√

ρ l
ρe

cf BV
= f 2/3

BV +(1− fBV)
2/3−1

CD,particle=







24/Re
(

1+0.15Re0.687
)

Re≤ 1000

0.44 Re> 1000

CD,eddy=CD0,eddy(1− f )p CD0,eddy=
4
3

gde
U2

T

ρ l−ρe
ρ l

J =

{

0.94H 0.757 2< H ≤ 59.3

3.42H 0.441 H > 59.3

UT = µ l
ρ l de

M−0.149
o (J−0.857) H = 4

3EoM−0.149
o

( µ l
0.0009

)−0.14

Eo =
d2

e(ρ l−ρe)g
σ Mo =

gµ4
l (ρ l−ρe)

ρ2
l σ3
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that is, the micro-, meso- and macro-scales, respectively.This physical description allows the overall concept of the
EMMS-based turbulence model to be easily understood, as well as the logical relationships among different specific
parts such as the inhomogeneous structural parameters of turbulence, the constraint equations of turbulent eddies,
and the turbulence stability condition. Specifically, we first decompose the flow system from the aspects of scale and
control mechanism, and then describe different control mechanisms as a corresponding extremum tendency where the
compromise between these tendencies forms the stability condition of the system. Mathematically, this formulation
can be expressed as a multi-objective variational problem in which each control mechanism is a conditional extremum
subject to the other control mechanisms, so dynamic constraint equations at different scales are related to form a closed
model. In Fig. 4, the turbulence stability condition plus five conservation constraint equations are used to produce the
variational criterion, leading to the EMMS-based turbulence model. Table 1 summarizes the formulae of the EMMS-
based turbulence model, which is a mathematical description for the physical basis of the model. Other relevant
expressions used to close the EMMS-based turbulence model are summarized in Table 2.

Figure 5: Flow chart describing solution of the EMMS-based turbulence model.
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2.6. Flow chart describing the EMMS-based turbulence model

A flow chart outlining the EMMS-based turbulence model is presented in Fig. 5. For a given flow system, the
inhomogeneous structural parameters of the flow state can becomputed in advance using the EMMS-based turbulence
model with the traverse method. A mesh table is then established, which is convenient to incorporate into computa-
tional fluid dynamics (CFD). This allows two inhomogeneous structural parameters,de and f , to be optimized. The
flow chart can be summarized as follows:

1) Input initial data such as the superficial velocity of turbulent eddiesUe, the superficial velocity of the laminar
componentUl , the interfacial tension of turbulent eddiesσ , the density of turbulent eddiesρe, and the density of
the laminar componentρl .

2) Estimate a value for the equivalent diameter of turbulenteddiesde.
3) Calculate the volume fraction of turbulent eddiesf using Eq. (1), the total energy of turbulenceWT using Eq. (8),

and the energy storage of energy-containing eddiesWst using Eq. (17).
4) Estimate a value for the energy dissipation on the molecular scaleWν .
5) Calculate the energy dissipation of the inertial subrangeWe inertia using Eq. (30), and the energy dissipation on

the Kolmogorov scaleWe Kolmogorov using Eq. (34).
6) If the total energy of turbulenceWT computed by Eq. (8) is equal to the sum of the energy dissipation on the

molecular scaleWν , the energy dissipation on the Kolmogorov scaleWe Kolmogorov, the energy dissipation of the
inertial subrangeWe inertia and the energy storage of energy-containing eddiesWst, namely

WT =Wν +We Kolmogorov+We inertia+Wst,

then go to step 7); otherwise, adjust the value ofWν and go to step 5).
7) If the sum ofWe Kolmogorov andWe inertia is its maximum value, so

max
(

We Kolmogorov+We inertia
)

is true, then go to step 8); otherwise, adjust the value ofde and go to step 3).
8) Output the optimized value for the volume fraction of turbulent eddiesf and that for the equivalent diameter of

turbulent eddiesde.

3. Results and discussions

3.1. Results for the EMMS-based turbulence model

In this paper, the superficial velocity of the laminar componentUl was fixed at 0.001 m/s, while the superficial
velocity of turbulent eddiesUe was varied from 0.01 to 3.0 m/s. Here, we took a turbulent jet emerging from an orifice
into a tank for example and thought that the still fluid in the tank was the non-turbulent eddies, soUl was chosen as
a small value near 0. Meanwhile, the moving fluid emerging from the orifice was regarded as the turbulent eddies.
The density of the laminar component wasρl = 1000 kg/m3, and the density of turbulent eddies wasρe = 0.99ρ l =
990 kg/m3. The surface tension of turbulent eddies was fixed at that of awater drop, namelyσ=0.075 N/m, and the
viscosity coefficient of the laminar component wasµ = 1.00374×10−3 Pa·s, which was also used for the turbulent
eddies.

Fig. 6 presents the results obtained for the inhomogeneous structural parametersf andde for different inlet veloc-
ity Uin optimized by the EMMS-based turbulence model. Fig. 6(a) reveals that asUin increases, the volume fraction
of turbulent eddiesf increases correspondingly. WhenUin is small, the flow state is laminar almost everywhere, so
the volume fraction of turbulent eddiesf increases rapidly with increasingUin. WhenUin is large, the flow state
is turbulent eddies almost everywhere, so the volume fraction of turbulent eddiesf increases only slightly asUin

increases further andf finally approaches 1. Fig. 6(b) indicates that the equivalent diameter of turbulent eddiesde

first decreases with increasingUin, and then begins to increase slightly. WhenUin is small, the flow state is lami-
nar almost everywhere, so a small increase ofUin will readily decrease the minimum size of turbulent eddies (i.e.,
the Kolmogorov scaleη), which leads to the decrease of the equivalent diameter of turbulent eddiesde. When the
minimum size of turbulent eddies is reached, the dissipation rate of turbulence becomes large, which leads to extra
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Figure 6: The results of EMMS-based turbulence model

energy transfer in the inertial subrange and forces more energy to be transferred into the dissipation range. Based on
this understanding, the equivalent diameter of turbulent eddiesde will increase slightly asUin increases (see the right
side of the lowest peak). In fact, this slight increase is only for the equivalent diameter of turbulent eddiesde, and the
minimum size of turbulent eddies always decreases a little asUin increases.

3.2. Numerical examples improved by the EMMS-based turbulence model

To validate the EMMS-based turbulence model, two numericalexamples, namely, lid-driven cavity flow and
turbulent flow with forced convection in an empty room, were simulated and the calculated results compared with
experimental data.

In general, the effective kinematic viscosityνeff is expressed as

νeff = ν0+νt (37)

whereν0 is the kinematic viscosity of a fluid andνt is turbulent kinematic viscosity.
To make the effective kinematic viscosityνeff contain the information of inhomogeneous structural parameters,

we rewrote it according to the two-phase concept of turbulence:

νeff = (1− f )ν0+ f νt (38)
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including the inhomogeneous structural parameterf . Theoretically, traditional turbulence models can be improved by
incorporating those turbulent structural parameters. In the following, a zero-equation model(Chen and Xu, 1998) and
the standardk-ε model (Launder and Spalding, 1974) were improved to simulate lid-driven cavity flow and turbulent
flow with forced convection in an empty room, respectively. The EMMS-based turbulence model is referred to the
turbulence models improved by incorporating turbulent structural parameters and itsνeff is calculated by Eq.(38).

The pressure-implicit with splitting of operators (PISO) algorithm, which is part of the open source CFD software
package OpenFOAM (OpenCFD and Ltd, 2009), was used to solve the Navier-Stokes equations.

3.2.1. Lid-driven cavity flow
Lid-driven cavity flow is a classical benchmark problem for the evaluation of numerical methods (Botella and

Peyret, 1998). Therefore, we simulated a two-dimensional lid-driven cavity flow incorporating the EMMS-based
turbulence model. First, a zero-equation model (Chen and Xu, 1998) was revised. The benchmark data obtained by
Ghia et al. (1982) was used as the reference solution.

Fig. 7 shows the simulated geometry of lid-driven cavity flow, in which the upper wall moves at a constant velocity
of U = 1.0 m/s toward positivex direction and the other walls are fixed with no-slip boundaryconditions.

Figure 7: Diagram of lid-driven cavity flow.

The computed velocity is compared with the reference solution at the sections ofx= 0.5 andy= 0.5 for Reynolds
numbersReof 1000, 5000, 7500 and 10000 in Fig. 8. Our simulated resultsagree well with the reference solution at
relatively low Reynolds number (Re≤5000). Even for relatively large Reynolds number such asRe=7500 and 10000,
our computed results are in reasonable agreement with the reference solution; some discrepancy emerges especially
at the section ofy= 0.5 near the position ofx= 0.05 (see Fig. 8(b)).

Fig. 9 shows the streamline patterns of our computed resultsin the cavity for the four different Reynolds numbers.
As the Reynolds number increases, the primary, secondary and even tertiary corner vortices can be captured. When
Re=1000, secondary vortices only appear in the lower left and right corners. WhenRe=5000, besides secondary vor-
tices appearing at the same place, an additional secondary vortex also emerges in the upper left corner. Meanwhile,
tertiary vortices can be observed in the lower left and rightcorners below the corresponding secondary vortices. When
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Figure 8: Comparison of computed velocity at different Reynolds number with the benchmark data of Ghia et al. (1982) at sections of (a)x= 0.5,
and (b)y= 0.5.

Re=7500 and 10000, similar phenomena to those forRe=5000 are still observed, except that the tertiary vorticesbe-
come larger. However, whenRe=7500 and 10000, the tertiary vortices become distorted compared with the reference
solution (Ghia et al., 1982).

The standardk-ε model was also used to determine this lid-driven cavity flow to provide another reference solution.
The streamline patterns calculated by the two models atRe= 10000 are compared in Fig. 10. The standardk-ε model
fails to predict the tertiary vortices in the lower left and right corners, whereas our proposed model successfully
captures them. Specially, it should be noted that in currentEMMS-based turbulence model zero-equation model was
used to computeνt. Usually, zero-equation model is thought to be inferior to the standardk-ε model, but here the
results of the EMMS-based turbulence model are better than those of the standardk-ε model, further illustrating
the advantages of our work. The main reason for this is that the EMMS-based turbulence model includes turbulent
structural parameters. Generally speaking, the standardk-ε model regards the whole fluid in the cavity as turbulent
state. However, near the walls especially the corners, the viscosity effect dominates the system rather than the inertia
effect, so the fluid should be close to laminar flow instead of fully turbulent flow. It would obtain an unphysical
solution in these sub-regions if the standardk-ε model is used. In contrast, the EMMS-based turbulence modelcan
treat it well due to that the flow everywhere has been considered as the coexistence of laminar and turbulent fluids, so
the tertiary vortices in the lower left and right corners as well as the secondary vortex in the upper left corner can be
captured successfully.

3.2.2. Turbulent flow with forced convection in an empty room
In this example, the standardk-ε model was also revised, rather than a zero-equation model asin section 3.2.1.
The geometry used for this numerical example is shown in Fig.11 with the following parameters: the width of

the empty room wasH= 3.0 m, the length of the empty room wasW= 3H, the inlet length of fluid washin= 0.056H,
which was located in the upper left corner of the empty room and the output length of fluid washout= 0.16H, which
was located in the lower right corner of the empty room. Basedon an inlet velocity of flowU= 0.455m/s and the
kinetic viscosity of fluidν= 1.53×10−5m2/s, the corresponding Reynolds number at the inlet was 5000. Nielsen’s
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Figure 9: Streamline patterns for different Reynolds number calculated using the EMMS-based turbulence model.
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Figure 10: Comparison of the streamline patterns predictedby the EMMS-based turbulence model and the standardk-ε model atRe=10000.

experimental data (Nielsen et al., 1978) was used as the reference solution.
Fig. 12 shows the predicted flow patterns in the room with the standardk-ε model and the EMMS-based turbulence

model respectively. From Fig.12(a) we see that the secondary flow in the upper right and lower left corners can not be
captured. However, from Fig.12(b) we can see that these two secondary flows are successfully predicted. The reason
is that: near the walls especially the corners, the viscosity effect dominates the system rather than the inertia effect,
so in these sub-regions we should not use the standardk-ε model because it regards the whole fluid in the room as
turbulent state; however, the simulation results suggest that the EMMS-based turbulence model has the ability to deal
with this correctly.

Figure 11: Geometry used for the forced convection example.

The computed velocity profiles at vertical section ofx = H and horizontal section ofy = 0.972H are presented
in Fig. 13. Each profile is also compared with Nielsen’s experimental data as well as the calculated results by using
the standardk-ε model. From Fig.13(a) we can see that the results of EMMS-based turbulence model are in good
agreement with experimental data. Additionally, comparedwith the calculated results of the standardk-ε model, there
is a little accuracy improvement in the results of EMMS-based turbulence model. Further, from Fig.13(b) we can see
that the results of EMMS-based turbulence model are closer to experimental data than those of the standardk-ε model,
and the accuracy improvement is obvious. Meanwhile, considering that the standardk-ε model can not capture the
secondary flow in the upper right and lower left corners whilethe EMMS-based turbulence model can do these (see
in Fig.12), it can be concluded that our work is valid to improve the accuracy of turbulence modeling.
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Figure 12: Predicted flow patterns in the room.

Figure 13: Comparison of computed velocity profile with experimental data at different sections: (a)x= H; (b) y= 0.972H
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4. Conclusions

We proposed an EMMS-based turbulence model in which single-phase flow is regarded as a mixture of turbulent
and non-turbulent fluids, and the turbulence stability condition is quantified to close turbulent dynamic equations,
allowing us to optimize the inhomogeneous structural parameters of turbulence. This meant that the corresponding
turbulent viscosity coefficient could be constructed, improving the numerical simulation of turbulence. This is because
that: the traditional turbulence models regard the whole fluid as fully turbulent state, but it is indeed unphysical near
the walls especially the corners where the viscosity effectdominates, so the fluid flow in these sub-regions should
be close to laminar flow rather than turbulent flow; in contrast, our EMMS-based turbulence model can deal with
this successfully due to its physical basis revealing that complex flows can be viewed as a mixture of turbulent and
non-turbulent fluids. To validate the effectiveness of the developed model, we used it to simulate two benchmark
problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room. The numerical results
show that the developed model can indeed improve the accuracy of numerical simulation of turbulence and capture
the detailed structure of turbulence such as secondary and tertiary vortices. This improvement is related to the model
considering the governing principles of meso-scale structure.

However, the model still possesses some limitations. For example, the density of turbulent eddies was assumed to
beρe= 0.99ρ l, the superficial velocity of the laminar componentUl was fixed at 0.001 m/s, the rotation and interaction
of turbulent eddies were not considered, and the heterogeneous structural parameterde was not included. We will
attempt to address these problems to further improve the EMMS-based turbulence model in the future.

Notation

ē(λ ) mean kinetic energy, J/(kgs)

F resistant force, kgm/s2

g gravitational acceleration, m/s2

CD drag coefficient

de equivalent diameter of turbulent eddies, m

EDIS viscous dissipation inside the drop/bubble during its breakage, J/(kgs)

f volume fraction of turbulent eddies

fBV volume ratio of a smaller turbulent eddy produced by breakage of a large one

k wave number

L mixing length, m

ne number density of initial turbulent eddies of sizede

P1 pressure at the top of reactor, kg/(ms2)

P2 pressure at the bottom of reactor, kg/(ms2)

Pe probability of a current turbulent eddy breaking into two smaller turbulent eddies

r radius of curvature of turbulent eddies, m

Re Reynolds number

U local mean velocity, m/s

Ue superficial velocity of turbulent eddies, m/s

Ug superficial velocity of bubbles, m/s
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Uin inlet velocity, m/s

Ul superficial velocity of laminar flow, m/s

u slip velocity between the turbulent eddies and laminar fluid, m/s

Wν energy consumption of molecular viscosity per unit mass andper unit time, J/(kgs)

Wst energy stored in the energy-containing eddies per unit massand per unit time, J/(kgs)

Wte turbulent dissipation per unit mass and per unit time, J/(kgs)

WT total energy consumption per unit mass and per unit time, J/(kgs)

ūλ turbulent velocity of turbulent eddies of sizeλ , m/s

ṅλ number density of turbulent eddies of sizeλ

Greek Letters

η Kolmogorov scale, m

ηD drop/bubble viscosity, m2/s

λmin minimum size of the inertial subrange, m

µ viscosity coefficient of the laminar component of turbulence, kg/(ms)

ν kinematic viscosity, m2/s

ν0 intrinsic kinematic viscosity of the fluid, m2/s

νeff efficient kinematic viscosity, m2/s

νt turbulent kinematic viscosity, m2/s

ωe,λ arrival frequency of turbulent eddies

ρe density of turbulent eddies, kg/m3

ρl density of laminar flow, kg/m3

σ interfacial tension of turbulent eddies, s−1

τD viscous stress inside a breaking drop/bubble, s−1

Subscripts

λ size of turbulence eddies

eff effective

e eddies

l laminar

t turbulent

Abbreviations

CFD Computational Fluid Dynamics
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DNS Direct Numerical Simulation

EMMS Energy-Minimization Multi-Scale

LES Large Eddy Simulation

OpenFOAM Open Source Field Operation And Manipulation

PISO Pressure Implicit with Splitting of Operators

RANS Reynolds-Averaged Navier-Stokes
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