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Abstract

Lysosomal storage diseases (LSDs) encompass a wide range of disorders characterized by inborn 

errors of lysosomal function. The majority of LSDs result from genetic defects in lysosomal 

enzymes, although some arise from mutations in lysosomal proteins that lack known enzymatic 

activity. Neuropathological abnormalities are a feature of several LSDs and when severe, represent 

an important determinant in disease outcome. Glial dysfunction, particularly in astrocytes, is also 

observed in numerous LSDs and has been suggested to impact neurodegeneration. This review 

will discuss the potential role of astrocytes in LSDs and highlight the possibility of targeting glia 

as a beneficial strategy to counteract the neuropathology associated with LSDs.
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INTRODUCTION

Lysosomes are essential organelles of eukaryotic cells whose function is degradation and 

recycling of macromolecules that are channeled through endocytosis, phagocytosis, and 

autophagy (Kroemer and Jaattela, 2005). Defects in lysosomal function may curtail 

degradation, which can result in the accumulation of substances within the lysosome. 

Lysosomal storage diseases (LSDs) represent a subgroup of inborn errors of metabolism 

primarily resulting from a deficiency of one or more lysosomal enzymes involved in 

macromolecule degradation, (for review see (Schultz et al., 2011, Cox and Cachon-

Gonzalez, 2012, Platt et al., 2012, Boustany, 2013), although in some LSDs, the function of 

mutated protein(s) has yet to be determined (Bruun et al., 1991, Rakheja et al., 2007). Since 

the discovery of lysosomes by Christian de Duve (De Duve, 1963, 1966), over 60 distinct 

LSDs have been described, with a collective incidence estimated at 1:5,000 live births 

world-wide (Fuller et al., 2006). Roughly two thirds to three quarters of LSDs are 

neuropathic, which can affect multiple brain regions depending on the disease type. A few 

examples of LSDs that are associated with CNS pathology include, Gaucher disease, Krabbe 

disease, Sandhoff disease, Niemann-Pick Type C, and the group of neuronal ceroid 

lipofuscinoses (commonly referred to as Batten Disease; (Prada and Grabowski, 2013). This 
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review will highlight select LSDs that affect the CNS, the neuropathological events 

associated with these disorders, and potential roles of reactive astrocytes in disease 

progression. The various enzymes/proteins that are mutated in the LSDs discussed in this 

review are all expressed in astrocytes, since they play a critical role in lysosomal 

homeostasis/function. However, an intriguing finding is that not all LSDs have dramatic 

CNS pathology, which brings into question the functional importance of mutated genes in 

the brain compared to other organs, even though all nucleated cells contain lysosomes. Even 

within the CNS, neuronal loss/dysfunction in many LSDs is often restricted to specific brain 

regions, which remains another enigma, since typically the mutated gene is ubiquitously 

expressed, although it is possible that differences in expression levels may dictate 

susceptibility. Another variable to consider is the cell type-specific impact of the mutation in 

neurons, astrocytes, microglia, or other populations, such as endothelial cells and how this 

influences pathology via autonomous or non-autonomous pathways. Alternatively, regional 

changes in the expression of other molecules that normally associate with the affected 

protein may be differentially regulated and could conceivably influence neuronal 

susceptibility in LSDs.

LSDs associated with enzyme deficiencies

Gaucher disease

Gaucher disease is caused by a deficiency in glucocerebrosidase (GBA), a lysosomal 

enzyme responsible for the degradation of glucocerebroside, an intermediate in glycolipid 

metabolism (Kampine et al., 1967, Jmoudiak and Futerman, 2005). Nearly 300 GBA 

mutations have been identified, including missense, nonsense, and frameshift mutations in 

addition to deletions, insertions, and complex alleles. Collectively, these mutations have 

been linked to 3 forms of Gaucher disease, classified as Type 1–3 (Grabowski et al., 1985). 

Type 1, also referred to as non-neuronopathic or adult Gaucher disease, is generally late 

onset and represents the most common form, with an ethnic predilection among Ashkenazi 

Jews (Gan-Or et al., 2008). Type 2 has the earliest onset, typically by 3 to 6 months of age, 

with death usually occurring by 2 years. Type 3 is a juvenile disease with an onset in early 

childhood. As a result of GBA deficiency, lysosomes accumulate several glycolipids, 

including glucocerebroside and glucosylsphingosine (Conradi et al., 1984, Farfel-Becker et 

al., 2014). The major cell type affected in Gaucher disease is the macrophage, where 

resident macrophage populations in the spleen and liver have perturbed homeostatic 

functions (Conradi et al., 1988). As a result, there is a marked splenomegaly, which destroys 

hematopoietic cells leading to anemia (Mandlebaum, 1912, Appel and Markowitz, 1971).

In terms of the CNS, the neuronopathic form of Gaucher disease has been associated with 

neurodegeneration in layer V of the cerebral cortex, lateral globus pallidus, various thalamic 

nuclei, and hippocampal CA2-CA4 regions (Conradi et al., 1984, Wong et al., 2004, Farfel-

Becker et al., 2014). It is currently not well understood why these particular brain regions 

are selectively targeted given the ubiquitous expression of GBA; however, the collective 

evidence clearly indicates that it is not due to storage material accumulation (Vitner et al., 

2012, Farfel-Becker et al., 2014, Vitner et al., 2014). The neuronopathic forms of Gaucher 

disease are also characterized by microglial proliferation, astrocytosis, and a robust 
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neuroinflammatory response (Vitner et al., 2012, Vitner and Futerman, 2013). A mouse 

model of Gaucher disease where GBA was selectively deleted in neurons and glial cells 

resulted in increased expression of the lysosomal enzyme cathepsin D in reactive astrocytes 

(Vitner et al., 2010a), which may represent a compensatory mechanism to offset GBA 

deficiency. However, the consequences of exaggerated cathepsin D expression in this model 

and the overall functional role that astrocytes play in Gaucher disease still remains to be 

identified. Interestingly, although the disease is known to target macrophage functions in the 

periphery, little information is available regarding the impact of GBA deficiency in 

microglia, although it has been shown that wild type microglia cannot rescue 

neurodegeneration associated with Gaucher disease (Enquist et al., 2007).

Krabbe disease

Krabbe disease, also known as globoid cell leukodystrophy (GLD), results from β-

galactocerebrosidase deficiency, which catalyzes the hydrolysis of galactose from several 

sphingolipids, including galactosylceramide, lactosylceramide, and galactosylsphingosine, 

to generate ceramide and sphingosine (Andrews and Cancilla, 1970, Andrews et al., 1971). 

β-galactocerebrosidase loss leads to the accumulation of the toxic glycosphingolipid 

psychosine (Suzuki and Suzuki, 1985). Krabbe disease is an early onset LSD, with 

symptoms typically presenting around 6 months of age and mortality occurring by 2 years 

(Wenger et al., 1997). Krabbe disease primarily affects the CNS, resulting in extensive 

demyelination of cerebral white matter tracts leading to spasticity, ataxia, blindness, 

seizures, and severe dementia (Husain et al., 2004, Kohlschutter, 2013). The neuropathology 

associated with Krabbe disease has been attributed, in large part, to the abnormal 

accumulation of psychosine in the brain (Igisu and Suzuki, 1984b, a, Cantuti Castelvetri et 

al., 2013). The disease is typified by abnormal axonal transport and severe axonal loss, 

which is accompanied by astrogliosis (Jesionek-Kupnicka et al., 1997, Castelvetri et al., 

2011). Metabolic alterations in astrocytes have been reported in a mouse model of Krabbe 

disease, which included increased glutamine levels and upregulation of lactate-specific 

monocarboxylic acid transporters (Meisingset et al., 2013). Additionally, primary astrocytes 

isolated from Krabbe disease mice displayed increased prostaglandin receptor (DP1 and 

DP2) expression (Mohri et al., 2006) and IL-6 production was elevated in reactive astrocytes 

in the CNS (LeVine and Brown, 1997). However, the functional significance of these 

alterations in astrocyte properties in Krabbe disease and how they may impact neuron 

survival or function remain unknown.

Microglial activation has also been reported in patients with Krabbe disease, which is 

consistent with a prominent neuroinflammatory response (Smith et al., 2014). This robust 

inflammatory response likely results from pronounced cell loss and release of danger-

associated molecular patterns (DAMPs) from damaged/dying neurons that can trigger 

inflammatory pathways, which in turn, further exacerbate neuron damage. Indeed, 

psychosine has been reported to exert inflammatory and apoptotic effects in glia (Giri et al., 

2002).
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Sandhoff disease

Sandhoff disease is caused by a deficiency in β-hexosaminidases A and B, resulting in the 

excessive lysosomal accumulation of GM2 gangliosides and oligosaccharides containing 

glucosamine residues (Itoh et al., 1984). There are three forms of Sandhoff disease, namely 

infantile, juvenile, and adult onset (O’Dowd et al., 1986). The infantile form is the most 

aggressive and typically presents between 2–9 months age, with death occurring before 3 

years (O’Dowd et al., 1986). The juvenile form of Sandhoff disease is less common than the 

infantile variant, with clinical symptoms evident between the ages of 3–10 years, which 

include organomegaly, bone deformations, and CNS manifestations, such as speech 

disabilities, cerebral ataxia, and severe psychomotor disturbances (O’Dowd et al., 1986). 

Neuropathological abnormalities associated with Sandhoff disease include prominent 

cerebellar atrophy and ventricular dilatation. Histologically, neurons harbor membranous 

cytoplasmic bodies (MCBs) formed by the accumulation of GM gangliosides and other 

lipopigments in the lysosome (Itoh et al., 1984). Lectin staining has revealed the prominent 

accumulation of complex carbohydrates, such as N-acetylglucosamine, in astrocytes (Alroy 

et al., 1988) and MCBs are also observed in children with Sandhoff disease (Itoh et al., 

1984). Astrogliosis is a prominent feature of Sandhoff disease, although the functional 

implications of reactive astrocytes remain unknown (Myerowitz et al., 2002). An earlier 

report examining primary astrocytes isolated from a mouse model of Sandhoff disease 

demonstrated increased proliferation that was associated with elevated ERK phosphorylation 

and sphingosine-1-phosphate (S1P) synthesis (Kawashima et al., 2009). These changes in 

astrocytes were dependent on GM2 ganglioside accumulation within the lysosome. 

Additionally, a direct relationship between S1P metabolism and reactive astrocytosis has 

been reported in a mouse model of Sandhoff disease, where the deletion of sphingosine 

kinase (which synthesizes S1P) or sphingosine-1 phosphate receptor reduced astrocyte 

proliferation and reactive astrocytosis (Wu et al., 2008). Interestingly, S1P has recently 

emerged as a key neuroinflammatory mediator in multiple sclerosis and is being explored as 

a potential therapeutic target to attenuate disease severity (Brinkmann, 2009, Graler, 2010, 

Chun and Brinkmann, 2011). Accordingly, astrocytes from Sandhoff disease mice produced 

the chemokine macrophage-inflammatory protein 1α (MIP-1α) (Wu and Proia, 2004), which 

when deleted improved the neurological status and lifespan of these animals (Wu and Proia, 

2004). These observations support a pathological role for astrocytes in neuronal dysfunction 

and Sandhoff disease progression.

Multiple sulfatase deficiency

Multiple sulfatase deficiency (MSD) is caused by a mutation in sulfatase modifying factor 1 

(Sumf1) that results in post-translational defects in lysosomal sulfatases and the pathological 

accumulation of mucopolysaccharides (Austin, 1973, Eto et al., 1980). There are three types 

of MSD, namely neonatal, late-infantile, and juvenile (Busche et al., 2009). The infantile 

form of MSD is the most aggressive, with symptoms beginning soon after birth. Clinical 

manifestations include coarsened facial features, ichthyosis, deafness, splenomegaly, and 

hepatomegaly (Burk et al., 1984, Macaulay et al., 1998, Diaz-Font et al., 2005). Children 

with MSD develop leukodystrophy, leading to movement disorders and developmental delay 

with occasional seizures (Guerra et al., 1990, Incecik et al., 2013). The late-infantile form is 

the most common type of MSD. These children have normal cognitive development in early 

Rama Rao and Kielian Page 4

Neuroscience. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



childhood but experience a rapid decline in motor and cognitive abilities that are attributed 

to progressive leukodystrophy (Kohlschutter, 2013). Neuroimaging studies have revealed 

periventricular lesions extending into the corpus callosum and brain stem (Guerra et al., 

1990). MSD is also typified by extensive demyelination, with the accumulation of 

metachromatic material composed of cholesterol and galactolipid pigments in CNS glia and 

peripheral macrophages (Annunziata et al., 2007). A recent study demonstrated that the 

targeted deletion of Sumf1 in astrocytes using a Cre-Lox mouse model resulted in severe 

lysosomal storage material deposition and cortical neuron loss in vivo (Di Malta et al., 

2012b). Sumf1-deficient astrocytes also failed to promote the survival and function of wild 

type neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. This 

study was the first to demonstrate that astrocytes play a key role in MSD neuropathology (Di 

Malta et al., 2012b); however, the mechanisms responsible for astrocyte-mediated neuronal 

dysfunction and death remain to be identified.

LSDs associated with other lysosomal defects

Niemann-Pick Type C

Niemann-Pick type C (NPC) is caused by mutations in one of two genes, NPC1 or NPC2, 

which manifest as severe abnormalities in lipid trafficking (Lloyd-Evans and Platt, 2010). 

Both NPC1 and NPC2 are predicted to encode proteins involved in cholesterol homeostasis, 

which accounts for cholesterol and glycosphingolipid accumulation within the lysosome 

(Palmer et al., 1985, Sokol et al., 1988, Zervas et al., 2001a, Zervas et al., 2001b, Zhou et al., 

2011, Mengel et al., 2013, Platt et al., 2014). NPC affects both peripheral organs and the 

CNS, with symptoms ranging from splenomegaly and hepatomegaly to neurological 

abnormalities, including psychomotor disturbances, ataxia, and seizures (Lloyd-Evans and 

Platt, 2010, Mengel et al., 2013). Neuroimaging studies have revealed diffuse cerebral 

atrophy and white matter changes (Palmer et al., 1985). In chronic progressive cases, 

neurofibrillary tangles similar to those in Alzheimer’s disease (AD) have been reported 

(Ohm et al., 2003). Astrocyte and microglial activation is also associated with NPC (Patel et 

al., 1999, German et al., 2002, Suzuki et al., 2003), where astrocytes exhibit reduced gap 

junction communication and mitochondrial dysfunction (Saez et al., 2013). Increased levels 

of IL-1β as well as increased ApoE, a genetic risk factor for Alzheimer’s disease, have been 

reported in animals models of NPC (Yan et al., 2014). Consistent with this study, increased 

expression of amyloid precursor protein (APP) as well as β- and γ-secretase were found in 

reactive astrocytes in mice with NPC disease (Kodam et al., 2010) suggesting an association 

between NPC and AD.

Neuronal ceroid lipofuscinosis (NCL)

Neuronal ceroid lipofuscinosis (NCL), commonly referred to as Batten disease, represents a 

family of disorders caused by mutations in ceroid lipofuscinosis (CLN) genes (Getty et al., 

2007, Aberg et al., 2009). To date, mutations in 14 different CLN genes have been identified 

that are broadly classified into infantile, late-infantile, juvenile, and adult onset forms (Aberg 

et al., 2009, Lebrun et al., 2011). The childhood forms of Batten disease are characterized by 

blindness, behavioral deficits, seizures, and progressive cognitive and motor impairment that 

leads to premature death (Sinha et al., 2004, Cotman et al., 2013). A histopathological 
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hallmark of all NCLs is the lysosomal accumulation of autofluorescent lipopigments and 

proteins; however, the structural presentation of inclusion material varies according to each 

disease type (Palmer et al., 1986). Biochemical characterization of storage material has also 

identified lipophilic proteins, including subunit C of mitochondrial ATP synthase (SCAMS, 

primarily in Juvenile NCL) or sphingolipid pigments (in other forms of NCL) (Pardo et al., 

1994, Goebel et al., 1999, Fossale et al., 2004).

Infantile NCL (INCL) is the most aggressive NCL form, with a life expectancy of 2–6 years 

(Hawkins-Salsbury et al., 2013). INCL is caused by a mutation in CLN1, which encodes for 

palmitoyl protein thioesterase (PPT1), an enzyme responsible for the cleavage of long-chain 

fatty acid residues on several proteins containing cysteine moieties (Vesa et al., 1995, 

Hofmann et al., 1997). Clinical symptoms of INCL can manifest as early as 6 months of age, 

which rapidly progress to severe motor and cognitive deficits, seizures, and premature death 

(for review see (Cotman et al., 2013). Late-infantile NCL (LINCL) is caused by mutations in 

CLN2 that encodes the lysosomal enzyme tripeptidyl peptidase I (TPPI), which cleaves 

tripeptides from the terminal amine groups of partially unfolded proteins (Sleat et al., 1997, 

Sleat et al., 1999). Juvenile NCL (JNCL) results from mutations in the CLN3 gene (for 

review see (Cotman et al., 2013). The precise function of CLN3 remains unknown; however, 

based on functional analysis in yeast and mammalian cell culture models, CLN3 has been 

predicted to regulate lysosomal acidification, endocytic and vesicle trafficking, and proper 

maintenance of mitochondrial function (Pearce et al., 1999, Kim et al., 2003, Luiro et al., 

2004). Similar to INCL and LINCL, JNCL also presents with visual impairment, seizures, 

and progressive cognitive and motor decline, but with an advanced onset, typically between 

5–10 years of age (Cotman et al., 2013). Astrocyte and microglial involvement in NCLs will 

be discussed in more detail in a later section.

NEURODEGENERATION IN LSDs

Many LSDs are associated with neurodegeneration, which manifests as moderate to severe 

neuronal death in multiple brain regions, including the thalamus, cerebral cortex, 

hippocampus and cerebellum (Folkerth, 1999, Prada and Grabowski, 2013). Neuron loss is 

usually accompanied by reactive astrocytosis that has been suggested to further exacerbate 

neuronal abnormalities (Jesionek-Kupnicka et al., 1997, Vitner et al., 2010b). While the 

mechanisms responsible for neurodegeneration in many LSDs is not completely understood, 

the abnormal accumulation of lysosomal storage material due to defective degradation 

mechanisms was originally thought to contribute to neuronal loss in LSDs (Kiselyov et al., 

2007, Settembre et al., 2008, Lieberman et al., 2012) as well as in other neurodegenerative 

disorders typified by protein aggregation, such as AD and Parkinson’s Disease (PD) 

(Matsuda and Tanaka, 2010, Tan et al., 2014). However, this possibility has recently been 

called into question in LSDs based on the finding that lysosomal storage material 

accumulation is typically widespread in neurons throughout the brain, yet only select neuron 

populations die. Nevertheless, neurons are post-mitotic and unable to eliminate unwanted 

organelles and macromolecules by cell division. Therefore, neurons rely heavily on 

functional lysosomes to efficiently clear these substances by a process referred to as 

autophagy. Autophagy delivers cytosolic components to lysosomes by enveloping them into 

autophagosomes, which fuse with lysosomes to facilitate the degradation of vesicle contents 

Rama Rao and Kielian Page 6

Neuroscience. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Nixon, 2006, Lieberman et al., 2012). Autophagic defects have been reported in several 

LSDs, including Pompe disease, MSD, NPC, Gaucher disease, and NCLs (Lieberman et al., 

2012), which have been suggested to contribute to neurodegeneration. Additionally, 

lysosomal membrane permeability (LMP) has been demonstrated in several LSDs, including 

late-infantile NCL (Micsenyi et al., 2013) and mucopolysaccharidosis type I (Pereira et al., 

2010). Aberrant autophagy has been suggested as a link to LMP, which has been shown to 

enhance protein aggregates and may trigger neurodegeneration (Rodriguez-Muela et al., 

2015).

Several lines of evidence also support mitochondrial dysfunction in CNS cells in various 

LSDs, including Gaucher disease, MSD, NPC, and mucopolysaccharidoses (Yu et al., 2005, 

Osellame and Duchen, 2014). In addition, perturbed mitochondrial Ca2+ homeostasis has 

also been observed in the aforementioned LSDs, including decreased Ca2+ buffering 

capacity and reduced ATP production as well as mitochondrial fragmentation (Kiselyov et 

al., 2007, de Pablo-Latorre et al., 2012, Chandrachud et al., 2015). A reduction in 

mitochondrial membrane potential and concomitant decrease in ATP was shown in a mouse 

model of NPC1 (Yu et al., 2005). Decreased oxygen consumption and mitochondrial 

electron transport chain enzymes have been reported in neurons from a mouse model of 

JNCL (CLN3−/−) (Luiro et al., 2006). Similarly, enlarged mitochondria were observed in a 

cerebellar neuronal granular cell line derived from JNCL mice (Fossale et al., 2004); 

however, it should be noted that this cell type is not lost in the disease. Mitochondrial 

dysfunction in astrocytes has also been observed in several LSDs, including Gaucher, GM1-

gangliosidosis, and NPC (Takamura et al., 2008, Osellame and Duchen, 2014). Therefore, 

mitochondrial abnormalities may represent a common feature of LSDs, raising the 

possibility that an energy crisis could be one mechanism responsible for the 

neurodegenerative process. The nature and purported functions of reactive astrocytes in the 

context of LSDs will be discussed in greater detail in the following section.

DO REACTIVE ASTROCYTES CONTRIBUTE TO NEURONAL LOSS IN LSDs?

Reactive astrocytosis occurs in response to a variety of insults/stimuli, which can accompany 

either acute (i.e. traumatic brain injury, cerebral ischemia) or chronic neurological 

conditions (i.e. AD, PD, and LSDs; for review see (Burda and Sofroniew, 2014, Pekny and 

Pekna, 2014). While several studies have reported extensive neuronal loss in humans and 

animal models of LSDs (Folkerth, 1999, Prada and Grabowski, 2013), the involvement of 

other CNS cells, particularly astrocytes, in the pathogenesis of LSDs have not been 

extensively investigated. Reactive astrocytosis is a common sequelae in a large number of 

LSDs; however, its functional consequences remain unclear. It is possible that astrocytes 

respond to neuronal dysfunction in a protective manner in an attempt to restore homeostasis. 

Alternatively, activated astrocytes may exacerbate neuron loss by diverting their homeostatic 

functions (i.e. glutamate uptake and metabolism, pH/ion buffering) towards other pathways 

that are not conducive to neuron survival, as they also express the same genes that are 

mutated in neurons. Numerous signals can elicit reactive astrocytosis; however, in the 

context of LSDs, danger-associated molecular patterns (DAMPs) released from damaged or 

dying cells appear to represent the most physiological relevant stimuli to trigger astrocyte 

acitvation (Vincent et al., 2007).
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Upon activation, astrocytes undergo a morphological transformation and alter their gene 

expression profiles. A major hallmark of reactive astrocytosis is increased expression of the 

intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin (for 

review, see (Hol and Pekny, 2015). The precise function of augmenting these proteins is not 

clear; however, studies have shown that both GFAP and vimentin participate in limiting the 

extent of CNS damage by sequestering affected areas following stroke or spinal cord injury 

(Pekny et al., 1999, Li et al., 2008). Along these lines, a recent study has reported that 

reactive astrocytes play a protective role in infantile NCL (Macauley et al., 2011). 

Specifically, CLN1/GFAP/vimentin triple mutant mice displayed more aggressive disease 

progression than WT animals, which correlated with increased neuroinflammation 

(Macauley et al., 2011, Shyng and Sands, 2014). Because of the selectivity of GFAP and 

vimentin to astrocytes, protective responses were predicted to be astrocyte-derived; however, 

it remains possible that additional factors may have contributed to the accelerated disease 

phenotype in these mice. For example, it is known that astrocytes display a significant 

degree of crosstalk with neurons and even microglia (Bezzi et al., 2001, Liu et al., 2011). 

Therefore, if astrocyte function was impacted by the loss of GFAP and vimentin in the 

context of CLN1 mutation, this would have worsened neuron survival and contributed to 

more aggressive disease, although this possibility remains speculative.

Despite the fact that numerous LSDs are typified by reactive astrocytosis, the stimuli 

responsible for astrocyte activation are not completely known. Although intrinsic changes 

resulting from the accumulation of lysosomal material could be one trigger, it is possible 

that non-autonomous signals from neighboring cells, such as neurons or microglia, could 

drive astrocyte activation by sensing DAMPs released from dysfunctional or dying cells 

(Figure 1). This possibility is feasible, since inflammatory mediators and other DAMPs are 

known to induce reactive astrocytosis in various neurological conditions (Vincent et al., 

2007). Relevant to LSDs, microglia in a mouse model of Juvenile Batten Disease (JNCL) 

have been shown to exist in a “primed” state, producing exaggerated levels of numerous 

proinflammatory mediators in response to DAMPs, whereas wild type microglia were 

relatively non-responsive (Xiong and Kielian, 2013). By extension, these microglial-derived 

inflammatory mediators can trigger astrocyte activation to establish a perpetual 

inflammatory cycle that can induce neuronal death under chronic conditions. Indeed, CLN3 

mutant neurons were more susceptible to cytokine-induced death compared to WT neurons 

(Xiong and Kielian, 2013). It will be important to investigate the other consequences of 

CLN3 deficiency for astrocytes and microglia and the potential consequences this may have 

for neurons. This will be achieved with the use of CLN3 conditional knockout mice that are 

currently in development, where CLN3 is selectively excised in astrocytes or microglia using 

glial-specific Cre-deleter lines.

In terms of the potential molecular mechanisms whereby LSDs alter astrocyte properties and 

how these changes affect neuronal survival or function, we can look to other 

neurodegenerative diseases for examples, since as mentioned above, common themes have 

recently emerged. For example, various signaling pathways have been shown to contribute to 

reactive astrocytosis in acute and chronic neurological conditions (Pekny and Nilsson, 2005, 

Burda and Sofroniew, 2014). These include JAK/STAT3 signaling and ERK1/2 

phosphorylation (Sriram et al., 2004). Notably, JAK/STAT3 activation was observed in a 
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mouse model of Sandhoff disease (Hexb−/−) that was mediated by microglial-derived TNF-α 

production. Inhibition of TNF-α in Hexb/Tnf-α double knockout mice significantly inhibited 

astrocyte activation and reduced neuronal death. These changes coincided with significantly 

increased lifespan, enhanced sensorimotor coordination, and improved neurological 

function. Interestingly, these improvements in Hexb/Tnf-α double knockout animals were 

not accompanied by alterations in ganglioside accumulation in neurons (Abo-Ouf et al., 

2013). Likewise, increased ERK phosphorylation was shown in a sheep model of infantile 

NCL, where reactive astrocytes are a prominent feature and associated with aggressive 

neurodegeneration (Kanninen et al., 2013).

Many LSDs have been associated with defects in autophagy (Kiselyov et al., 2007, 

Settembre et al., 2008, Lieberman et al., 2012), which could represent another pathway to 

induce astrocytosis, since cells are unable to clear cellular debris (Lee et al., 2009, Di Malta 

et al., 2012b). In addition, autophagic inhibition could lead to cytoplasmic DAMP release 

from damaged/senescent organelles to trigger astrocyte activation (Figure 1). Consistent 

with this tenet, increased lactosylceramide (LacCer), a glycolipid shown to be dysregulated 

in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple 

sclerosis, was shown to activate astrocytes and cause neurodegeneration (Chen et al., 1999). 

Inhibition of excessive LacCer formation not only reduced astrocytosis but also diminished 

neurodegeneration in these animals (Chen et al., 1999). Numerous LSDs, including NPC, 

GM1 gangliosidosis, acid lipase deficiency, and mucopolysaccharidoses, are typified by 

lysosomal LacCer accumulation (Di Malta et al., 2012b) and it is intriguing to consider 

whether this could represent a mechanism to trigger astrocyte activation. Finally, an 

autophagic block could also create nutrient and energy stresses on the cell that could elicit 

reactive astrocytosis.

Additional molecules that accumulate within astrocytes in various LSDs may also contribute 

to astrocyte activation and associated pathology. For example, ceramide species known to 

accrue in select LSDs can induce reactive astrocytosis (Bassi et al., 2006) by activating NF-

κB (Calatayud et al., 2005) and MAPKs (Oh et al., 2006). In addition, ceramides have well-

described pro-apoptotic activity (Jatana et al., 2002, Oh et al., 2006), which could contribute 

to astrocyte loss during more advanced stages of disease, although this remains speculative 

and has not yet been demonstrated in any LSD to date. Cathepsin D is another molecule that 

is elevated in astrocytes during Gaucher disease and was implicated in astrocyte dysfunction 

(Choi et al., 2002). Furthermore, astrocytes from Sandhoff disease mice have been shown to 

possess inflammatory activity via chemokine production (Wu and Proia, 2004) that may 

amplify CNS inflammation and collateral neuronal damage. To date, only a few studies have 

directly demonstrated a role for reactive astrocytes in neurodegeneration in select LSDs. As 

mentioned earlier, a recent report showed that targeted deletion of Sumf1 (mutation in MSD) 

in astrocytes using a Cre-Lox mouse model resulted in severe lysosomal storage and induced 

cortical neuron loss in vivo (Di Malta et al., 2012b, a). Sumf1-deficient astrocytes also failed 

to promote the survival and function of wild type neurons, suggesting a non-cell autonomous 

mechanism for neurodegeneration. Indirect evidence also suggests that astrocyte dysfunction 

in LSDs may exert detrimental effects on neurons. Such information has been largely 

derived from targeted gene therapy, where the re-insertion of deficient genes into astrocytes 

was shown to limit neurodegeneration. For example, NPC1 gene transduction into astrocytes 
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was shown to enhance survival, decrease neuronal cholesterol accumulation, and reduce 

neurodegeneration in a NPC mouse model (Zhang et al., 2008). Likewise, retroviral-

mediated transduction of the human GBA gene into astrocytes and oligodendrocytes in 

Twitcher mice was shown to correct the neuronal phenotype in these animals (Luddi et al., 

2001).

Additionally, several lines of evidence indicate that reactive astrocytosis precedes neuronal 

loss in some LSDs, including various forms of Batten disease. For example, studies have 

shown early prominent astrocyte activation, as indicated by increased GFAP expression, in 

JNCL mouse models that predates neuronal loss in these mice that is not evident until 

around 12 months of age (Pontikis et al., 2004, Burkovetskaya et al., 2014). Likewise, a 

sheep model of variant late-infantile NCL (CLN6) displays overt astrocyte activation in 

several brain regions prior to any neurodegeneration (Oswald et al., 2005). Astrocyte 

activation also precedes neuron loss in other NCL forms, including CLN1 and CLN8 disease 

(Macauley et al., 2009, Kuronen et al., 2012).

Recent evidence suggests that astrocytes express functional neurotransmitter receptors that 

actively participate in synaptic transmission at the tripartite synapse (Perea et al., 2009) and 

also influence neuronal synapses by releasing gliotransmitters (Perea et al., 2009, Araque et 

al., 2014). One proposed mechanism for astrocyte gliotransmitter release is through 

hemichannels (HCs; for review see (Bosch and Kielian, 2014, Montero and Orellana, 2015). 

A HC is composed of a hexameric ring of connexin proteins and constitutes one-half of a 

gap junction channel. HCs form gap junctions when they align with adjacent HCs in 

neighboring cells; however, HCs can also be formed by pannexins that are incapable of 

forming gap junctions (Saez and Leybaert, 2014). HCs have been reported to open under 

both physiological and pathological conditions to facilitate the release of various small m.w. 

metabolites and gliotransmitters from astrocytes, including ATP, glucose, glutathione, 

glutamate, GABA, and D-serine (Giaume et al., 2013, Abudara et al., 2014, Abudara et al., 

2015, Montero and Orellana, 2015). Transient HC opening may provide a mechanism for 

fine tuning changes in intracellular and extracellular molecular gradients across the astrocyte 

membrane; however, chronic HC activity can have catastrophic consequences by dissipating 

CNS chemical gradients that require a significant energetic cost to establish (Saez et al., 

2013, Bosch and Kielian, 2014). For example, opening of connexin 43 hemichannels in 

astrocytes and subsequent release of ATP and glutamate has been shown to induce neuronal 

death during hypoxic conditions (Orellana et al., 2011a), in an in vitro slice culture model of 

Alzheimer’s disease (Orellana et al., 2011b), as well as during HIV and bacterial infection 

(Karpuk et al., 2011, Orellana et al., 2014). In the context of LSD, astrocyte HC activity was 

transiently increased in acute brain slices derived from a mouse model of JNCL at an early 

postnatal age (1 month) that significantly preceded neuronal loss, which occurs around 12 

months in this model (Burkovetskaya et al., 2014). Interestingly, the expression of astrocyte-

specific glutamate transporters and glutamine synthetase was significantly decreased with 

increasing age of CLN3 mutant mice, suggesting a decline in astrocyte function. This 

possibility was reinforced by electrophysiological findings in acute brain slices, 

demonstrating abnormalities in resting membrane potential and conductance in CLN3 

mutant astrocytes (Burkovetskaya et al., 2014). It is noteworthy that in light of these 

changes, astrocytes in the CLN3 mutant mouse were shown to be activated as typified by 
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increased GFAP expression. Blockade of HC activity using the novel carbenoxolone-based 

inhibitor INI-0602 enhanced gap junction communication and led to significant reductions 

in lysosomal storage material in the brains of CLN3 mutant mice (Burkovetskaya et al., 

2014). Collectively, this supports the premise that astrocyte dysfunction likely influences 

neuropathology in LSDs, although it remains to be determined whether this is a universal 

phenomenon or restricted to specific LSDs.

SIMILARITIES BETWEEN LSDs AND PARKINSON’S DISEASE

While LSDs are a distinct class of disorders resulting from inborn errors in lysosomal 

metabolism, neuropathological similarities between LSDs and PD exist (for review see 

(Deng et al., 2014). For example, clinical symptoms such as bradykinesia, rigidity, and 

tremors characteristic of PD are also found in some of the LSDs, including JNCL (Aberg et 

al., 2000, Valadares et al., 2011). Further, extensive reports describing astrocyte activation 

(Schneider and Denaro, 1988, Blunt et al., 1992, Renkawek et al., 1999, Episcopo et al., 

2013) and dysfunction in PD, including aberrant autophagy (Osellame et al., 2013), 

proteasomal defects (Jansen et al., 2014) and neuroinflammation (Tilleux and Hermans, 

2007) are also common features of various LSDs (Jesionek-Kupnicka et al., 1997, Pontikis 

et al., 2004, Vitner et al., 2010b, Di Malta et al., 2012a, b, Burkovetskaya et al., 2014). 

Additionally, both JNCL and PD share certain similarities in the brain regions affected, 

including nigrostriatal pathology, as well as abnormal substrate accumulation, either 

lysosomal storage or α-synuclein, respectively (Jarvela et al., 1997, Weimer et al., 2007). 

There is also growing evidence that heterozygous carriers of Gaucher and NPC mutations 

have increased risk for developing PD, which clearly highlights a link between these 

diseases (Neudorfer et al., 1996, Volders et al., 2002, Halperin et al., 2006, Sidransky et al., 

2009b, Goker-Alpan et al., 2012). Indeed, a multicenter analysis examining GBA mutations 

in PD patients revealed an odds ratio of 5.43 compared to controls. PD patients harboring a 

GBA mutation had an earlier disease onset (on average 4 years earlier) and were more likely 

to experience atypical clinical disease, making GBA mutations among the most common 

genetic risk factors for PD identified to date (Sidransky et al., 2009a). Similar to GD, 

patients with Niemann-Pick display α-synucleopathy (Coleman et al., 1988, Josephs et al., 

2004, Saito et al., 2004).

LSDs and PD also share attributes at the subcellular level, suggesting that some aspects of 

pathology may overlap. Specifically, both disorders display evidence of disturbed 

autophagy-lysosomal pathways, proteasome defects, mitochondrial abnormalities, and 

intracellular accumulation of macromolecules (Pan et al., 2008, Osellame and Duchen, 

2014). Other features, such as glial activation and selective neuron loss in specific brain 

regions are also common between LSDs and PD (Aberg et al., 2000, Wong et al., 2004). 

Therefore, it is possible that treatment strategies designed for PD may also exert beneficial 

effects to counteract neurological abnormalities in patients with specific LSDs, although this 

remains to be determined.
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CONCLUDING REMARKS

Lysosomal storage diseases are debilitating disorders caused by inborn errors in lysosomal 

proteins. Numerous LSDs are associated with CNS pathology, with prominent 

neurodegeneration typically occurring in early childhood, which reduces life expectancy. 

Unfortunately, there is no cure for these diseases, which has resulted in aggressive attempts 

for gene/enzyme replacement therapy to counteract the pathological consequences of these 

diseases. Available evidence suggests that astrocyte activation is an early indicator of CNS 

pathology in these disorders, which conceivably contributes to neurodegeneration in later 

stages of disease progression. However, whether astrocyte dysfunction is a primary cause of 

neuronal loss or rather a consequence of reactivity to diseased neurons in the context of 

LSDs remains the proverbial “chicken and the egg” question. Recent studies employing 

selective enzyme/gene replacement strategies in astrocytes have revealed significant 

reductions in neuronal loss as well as improved survival, which strongly suggest that 

neurodegeneration in LSDs may in part be a consequence of astrocyte dysfunction. 

However, it remains to be determined if astrocyte involvement in neuronal demise is a 

universal phenomenon across several LSDs or rather, is only applicable to select 

degenerative processes. Nevertheless, targeting glial dysfunction in these LSDs may have a 

therapeutic benefit, an avenue that is currently being pursued.
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ABBREVIATIONS

AD Alzheimer’s Disease

CNS central nervous system

DAMP danger associated molecular pattern

GBA glucocerebrosidase

GLD globoid cell leukodystrophy

GFAP glial fibrillary acidic protein

INCL Infantile Neuronal Ceroid Lipofuscinosis

JNCL Juvenile Neuronal Ceroid Lipofuscinosis

LINCL Late Infantile Neuronal Ceroid Lipofuscinosis

LMP lysosomal membrane permeability

LSD lysosomal storage disease

MSD multiple sulfatase deficiency

NPC Niemann-Pick type C

Rama Rao and Kielian Page 12

Neuroscience. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PAMP pathogen associated molecular pattern

PPT1 palmitoyl protein thioesterase

TPP1 tripeptidyl peptidase I

PD Parkinson’s Disease

SCMAS subunit C mitochondrial ATP synthase
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HIGHLIGHTS

1. Several lysosomal storage diseases (LSDs) are associated with CNS neuron loss.

2. Astrocyte dysfunction is observed in numerous LSDs and is suggested to impact 

neurodegeneration.

3. Enzyme/gene replacement in astrocytes reduces neuron loss, implicating 

astrocyte dysfunction in LSD pathology.
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Figure 1. Potential contribution of reactive astrocytes to neurodegeneration in LSDs
Lysosomal dysfunction in astrocytes and microglia likely contributes to neuron death in a 

non-cell autonomous manner through the release of damaging mediators and/or loss of 

trophic support. In addition, disruption of lysosomal homeostasis in neurons also regulates 

cell death in a cell autonomous manner. GM2-GS, GM2-gangliosides, HC, hemichannels, 

mtDNA, mitochondrial DNA, chol, cholesterol.
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