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Abstract

DYT1 dystonia is caused by a GAG deletion in TOR1A, the gene which encodes torsinA. Gene
expression studies in rodents and functional imaging studies in humans suggest that DYT1
dystonia may be a network disorder of neurodevelopmental origin. To generate high resolution
metabolic maps of DY T1 dystonia and pinpoint dysregulated network elements, we performed 2-
deoxyglucose autoradiography and cytochrome oxidase (CO) histochemistry in transgenic mice
expressing human mutant (hMT1) torsinA and wild-type littermates. In comparison with controls,
hMT1 mice showed increased glucose utilization (GU) in the inferior olive (I0) medial nucleus
(IOM), 10 dorsal accessory nucleus and substantia nigra compacta, and decreased GU in the
medial globus pallidus (MGP) and lateral globus pallidus. The hMT1 mice showed increased CO
activity in the IOM and Purkinje cell layer of cerebellar cortex, and decreased CO activity in the
caudal caudate-putamen, substantia nigra reticulata and MGP. These findings suggest that (1) the
DYT1 carrier state increases energy demand in the olivocerebellar network and (2) the 10 may be
a pivotal node for abnormal basal ganglia-cerebellar interactions in dystonia.
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Dystonia is characterized by sustained and involuntary muscle contractions resulting in
twisting and repetitive movements or abnormal postures (Fahn, 1988). Early-onset primary
dystonia typically begins in the distal portions of a limb and often spreads to involve other
regions of the body. A common genetic cause of early-onset primary dystonia is a
heterozygous GAG deletion in the TOR1A gene (i.e., DYT1 dystonia) which results in the
loss of a single glutamic acid residue near the C-terminus of the encoded protein torsinA
(Ozelius et al., 1997). DYT1 dystonia is transmitted in an autosomal dominant fashion with
reduced penetrance. Symptoms usually become manifest in childhood. Onset before the age
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of 4 or after the age of 28 is uncommon (Bressman et al., 1998; Bressman et al., 2000; Xiao
et al., 2009).

Using [18F]-fluorodeoxyglucose and positron emission tomography (PET) in humans, both
manifesting and non-manifesting carriers of the DYT1 mutation have shown similar patterns
of hypermetabolism when compared to neurologically-normal controls (Eidelberg, 1998). In
movement-free conditions, both manifesting and non-manifesting DY T1 carriers showed
increased metabolic activity in the lentiform nuclei, cerebellum and supplementary motor
areas. In movement-related conditions, only manifesting DYT1 carriers showed increased
metabolic activity in the midbrain, cerebellum and thalamus. More recently, magnetic
resonance diffusion tensor imaging has demonstrated reduced integrity of
cerebellothalamocortical fiber tracts in both manifesting and non-manifesting carriers of the
DYT1 AGAG mutation (Argyelan et al., 2009). The nigrostriatal pathway has also been
implicated in the network pathophysiology of DYT1 dystonia. PET studies have shown that
non-manifesting carriers exhibit reduced dopamine D2 receptor binding (Asanuma et al.,
2005). In addition, post-mortem neurochemical studies have noted a significant increase in
dopamine turnover (Augood et al., 2002). Taken together, these findings suggest that DYT1
dystonia is a circuit disorder of the nervous system.

Mice that overexpress mutant human torsinA (hMT1) show abnormalities in nigrostriatal
neurochemistry, similar to what has been found in humans with DYT1 dystonia. Zhao et al
(2008) detected increased striatal DOPAC and HVA levels in hMT1 mice consistent with
increased dopamine turnover. In addition, hMT1 mice display attenuated amphetamine-
induced dopamine release, altered activity of the dopamine transporter, and abnormal
dopaminergic D2 receptor responses in striatal cholinergic interneurons (Pisani et al., 2006;
Balcioglu et al., 2007; Sciamanna et al., 2009; Hewett et al., 2010). Thus, the physiological
and neurochemical abnormalities found in humans with DY T1 dystonia can be exposed with
greater clarity in animal models of this order.

Metabolic mapping in animal models has provided critical insights into the network
pathophysiology of a variety of movement and neurodegenerative disorders (Kimura et al.,
1980; Brown and Lorden, 1989; Mitchell et al., 1992; Vila et al., 1996; Nobrega et al., 1998;
Richter et al., 1998). Functional neuroimaging in humans suffers from limited spatial
resolution and may be confounded by the effects of genetic background, age and gender. To
reduce these effects and generate data of higher spatial resolution, 2-deoxy-D-glucose (2-
DG) autoradiography and cytochrome oxidase (CO) histochemistry were performed in
transgenic mice expressing either human wild-type (hWT) or mutant (hMT1) torsinA and
wild-type (WT) littermates. The combined use of CO histochemistry and 2-DG
autoradiography provides complementary information regarding metabolic activity in
specific cell groups and local circuits (Jacquin et al., 1993).

EXPERIMENTAL PROCEDURES

Animals

Adult male mice, between 3 to 4 months of age, that over express human mutant torsinA
(hMT1; N =9), human wild type torsinA (hWT; N = 8) and their non-transgenic littermates
(WT; N =9) were used for quantitative analyses of brain metabolism using 2-DG
autoradiography and CO histochemistry. CO histochemistry reflects oxidative energy
metabolism of neural tissues, especially neurons and is thought to provide information
reflecting long-term neuronal metabolic demand over days or weeks (Di Rocco et al., 1989;
Wong-Riley, 1989; Gonzalez-Lima and Garrosa, 1991; Hevner et al., 1995). In contrast, the
glucose analogue, 2-DG, is taken up by glucose transporters in neurons and glia but cannot
undergo glycolysis. Thus, 2-DG reveals the instantaneous glucose demand of neural and
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extra-neural tissues and 2-DG autoradiography is thought to reflect short-term metabolic
demands (Wree and Schleicher, 1988; Wree, 1990; Duncan and Stumpf, 1991; McCasland
and Graczyk, 2001). Mice were maintained in a temperature-controlled environment with
free access to food and water. Light was controlled on a 12 hr light/dark cycle. All
procedures were approved by the University of Tennessee Health Science Center Animal
Care and Use Committee and performed in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.

Tissue preparation

The protocol for combined 2-DG autoradiography and CO histochemistry was adapted from
McCasland and Graczyk (2001). After a single dose of 2-DG (0.165 uCi/g) given by
intraperitoneal injection, mice were placed in individual cages for 45 min, overdosed with
pentobarbital and rapidly perfused (< 2 min) with heparinized saline followed by a mixture
of 2.5% paraformaldehyde/1.5% glutaraldehyde/4% sucrose in 0.1 M phosphate buffer (PB).
Of note, perfusion-fixation with paraformaldehyde and/or glutaraldehyde for 2-DG
autoradiography has been employed by numerous investigators as a means of preserving
tissue integrity for CO histochemistry and immunocytochemistry (Silverman and Tootell,
1987; McCasland and Woolsey, 1988; Redies and Gjedde, 1989). Brains were rapidly
removed, blocked, frozen in pre-chilled isopentane at —40 °C and stored at —80 °C. Twenty
um coronal tissue sections were prepared using a Leica CM3050 S cryostat (Leica
Microsystems Inc., Bannockburn, IL, USA) and collected in 5 rostral-caudal coronal series
onto SuperFrost®-Plus glass slides (Fisher Scientific, Pittsburgh, PA, USA). One series of
sections was air-dried overnight and stained with cresyl violet (Sigma-Aldrich, St. Louis,
MO, USA). The remaining 4 series of sections were stored at —80 °C in vacuum-sealed slide
containers until further processing for 2-DG autoradiography imaging and CO
histochemistry.

Regions of interest (ROIs)

The nomenclature and abbreviations used for GU and CO ROIs (Tables 1 and 2) were
adapted from Franklin and Paxinos (1997). In general, CO histochemistry (tissue sections,
Fig. 1) generated data of higher spatial resolution than 2-DG autoradiography (film, Fig. 2).
For example, CO activity was well delineated among the layers of cerebellar cortex
(molecular, Purkinje and granule cell) and regions of hippocampus. Accordingly, a larger
number of ROIs were interrogated for CO activity than GU. Mean values for optical density
(O.D.) were derived from four to six sections covering the rostal-caudal extent of each ROI.
To generate O.D. values for the layers of cerebellar cortex, measurements were made from
the vermis (N = 6) and hemispheres (N = 6).

Image acquisition and analysis of GU

Brain sections were exposed to Kodak Biomax MR Film together with 14C Microscale™
autoradiography standards (RPA504, Amersham Biosciences, Piscataway, NJ, USA) for 7
days. Due to technical issues, data from 4 mice (1 hMT1, 2 hWT, and 1 WT) was not
suitable for subsequent analyses of GU. Autoradiographic images were acquired in
transmission mode (ScanMaker 9800 XL, Microtek, Carson, CA, USA) and imported into
ImageJ (Java version of NIH Image, http://rsh.info.nih.gov/ij/) for neuroanatomical ROI
quantification of radioactivity. The investigator performing ROI analyses was blinded to
genotype. O.D. was calibrated to the set of autoradiography standards to generate measures
of radioactivity (nCi/g tissue) for each ROI. Due to potential confounding variables such as
peritoneal absorption and global differences in GU, ROI GU data from each mouse was
converted to Z-scores.
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CO histochemistry

Statistics

CO histochemistry was performed using a protocol modified from that of Gonzalez-Lima
and Jones (1994). The reaction solution was freshly made in 0.1 M PB (pH. 7.4) and
contained 0.06% diaminobenzidine, 0.02% cytochrome ¢ and 4.5% sucrose. Brain sections
and standards of brain homogenate were incubated in the reaction solution for 1.5 h in the
dark at 37 °C in a shaking water bath. The reaction was stopped by washing the slides with
0.1M PB/4% sucrose for 5 min x 3. After dehydration in ascending concentrations of
ethanol (30%, 50%, 75%, 95%, and 100%), the slides were cleared with xylene and
coversliped with Permount (Fisher Scientific, Pittsburgh, PA).

Fresh whole brains from 5 wild-type C57BL/6 mice (littermates) were completely
homogenized on ice with a manual Dounce-glass homogenizer. The homogenates were
transferred to 2 ml microcentrifuge tubes. After centrifugation at 2000 rpm (4 °C) for 2 min,
the tubes were fast frozen in isopentane (—40 °C) and stored at —80 °C. Brain homogenates
were sectioned on a cryostat at a series of thicknesses covering the entire range of CO
activity (5 pum, 10 um, 20 pm, 30 pum, 40 um, 50 um and 60 um), collected onto
SuperFrost®-Plus glass slides and stored at —80 °C in a vacuum-sealed slide container for
use as CO activity standards.

The CO activity of the brain homogenates was determined with a spectrophotometric
method as modified from Hess and Pope (1953) by Gonzalez-Lima and Jones (1994).
Briefly, the sample solution was made by mixing the brain homogenate in 0.75%
deoxycholate at a ratio of 0.01 g/5 ml. Then, 0.1 ml of the sample solution was added to 0.9
ml of a 30 uM reduced cytochrome c solution in a 10 mm cuvette and mixed well. The O.D.
was read with a SmartSpec3000 spectrophotometer (Bio-Rad Laboratories, Hercules, CA,
USA) at 550 nm using the kinetic program with readings taken at 15 s intervals over 3
minutes. The change in spectrophotometric reading (AO.D.) was used in the calculation of
CO activity with an extinction coefficient of 19000/M-cm. Each sample solution was read in
triplicate and each homogenate underwent the reaction 5 times. A mean activity of 30.02
mmol/min-g of tissue was used for densitometric analysis.

Brain slides were scanned using Polaroid SprintScan 4000 (Polaroid Corporation, Waltham,
MA, USA) with PathScan Enabler (Meyer Instrument, Houston, TX, USA) at a resolution of
2000 dpi along with the brain homogenate standards. Digital images were imported into
ImageJ for quantitative densitometry analysis and the standards were used to convert O.D.
levels into enzyme activity values reported as pumol/min-g of tissue for each ROI. Due to
potential confounding variables such as global differences in CO activity, ROI data from
each mouse was converted to Z-scores.

Al statistical analyses were performed with SAS®. In previous work, we showed that hWT
mice expressed very low levels of wild-type torsinA transcript (Zhao et al., 2008).
Compatible with those results, GU and CO activity within ROIs from hWT and WT mice
were found to be highly correlated in the experiments described herein (GU mean r = 0.968,
CO activity mean r = 0.952, Fig. 3). In addition, two-sided unpaired t-tests were used to
evaluate differences in mean GU and CO ROI Z-scores between WT and hWT mice. Even
without correction for multiple comparisons, no GU ROI Z-score showed a significant
difference between WT and hWT mice (P > 0.01, for all). Among the 56 CO ROls, only the
ventral pallidum (VP) differed between WT and hWT mice (P < 0.01). Accordingly, data
from hWT and WT mice were pooled for comparisons with hMT1 mice in order to increase
statistical power. Statistical analyses for mean GU and CO values between hMT1 and
control mice were assessed using two-sided unpaired t-tests. The level of significance (a)
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was set at 0.01, and, given the large number of ROIs, no corrections were made for multiple
comparisons. We also examined Pearson correlations of GU and CO activity as described by
Brown and Lorden (1989). Pairs of ROIs were chosen a priori based on known patterns of
anatomically connectivity. Our analyses were limited to basal ganglia and olivocerebellar
pathways.

Principal component analysis (PCA) was applied to GU and CO ROI Z-scores as a variable
reduction method and to expose coherent subsets of anatomical regions associated with the
DYT carrier state (i.e., hMT1 mice). The principal axis method was use to extract
components. Varimax rotation was used, which results in orthogonal components. Five
components were retained for each analysis based, in part, on scree tests, proportion of
variance accounted for and interpretability. Variables with loadings >0.5 restricted to single
components were retained in order to generate component scores. Component scores were
calculated for each animal and used for statistical comparisons of hMT1 and control mice
with two-sided t-tests subjected to Bonferroni correction. Below is the general formula for
calculation of component scores:

Cn = an1(X1) + an2(X2) +ana(Xs) +ana(Xs) +ans(Xs)
where ¢; = mouse’s score on principal component N,
a1 -.- ans = loadings for ROIs 1 -5
X1 ... Xg = Z-scores for ROIs 1 -5

Based on mean GU across all 40 neuroanatomical ROIs, there were no differences in whole
brain GU between hMT1 and control mice. However, a comparison of ROl GU Z-scores in
discrete brain regions between hMT1 and control mice identified several ROIs with altered
acute metabolic activity in the mutants (Table 1). Of note, of the 10 regions showing Z-score
P values less than 0.01, 9 were located in the basal ganglia (medial globus pallidus [MGP},
substantia nigra compacta [SNC], lateral globus pallidus [LGP] and subthalamic nucleus
[STh]), olivocerebellar structures (10 medial nucleus [IOM], 10 dorsal accessory nucleus
[IOD] and lateral cerebellar nucleus [Lat]), or their immediate efferent nuclei (ventromedial
thalamic nucleus [VM] and red nucleus magnocellular [RMC]). In comparison with control
mice, hMT1 mice showed significantly increased GU in the IOM (P = 0.0017), I0OD (P =
0.0049) and SNC (P = 0.0064). Trends towards higher GU were also noted in hMT1
cerebellar cortex (hemisphere [CHem] and vermis [CVer]), Lat, RMC, SThand VM. In
comparison with control mice, hMT1 mice had decreased GU in the MGP (P = 0.0009) and
LGP (P =0.0098).

The regional distribution of CO staining in control mouse brain was similar to that found in
rats (Hevner et al., 1995). The highest levels of CO histochemical staining were found in the
cerebellar cortex, cerebellar nuclei, red nucleus, caudate-putamen, STh and subregions of
the cerebral cortex. The lowest levels of CO histochemical staining were found in the corpus
callosum and globus pallidus. CO staining in the gray matter was not dependent on the
density of cell bodies. For example, in the SNC and granule cell layer of the dentate gyrus,
two regions with high cell packing densities, CO staining was not particularly intense.
However, in some regions with a relative paucity of cell bodies, such as the molecular layer
of the cerebellar cortex and the stratum lacunosum-moleculare in the hippocampus,
relatively high CO staining was visible. Similar variability in the intensity of staining was
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seen between cell bodies and neuropil in different brain regions. For example, the cell
bodies of neurons in red nucleus and vestibular nuclei had the most intense CO staining,
whereas, in the caudate-putamen and deep cerebellar nuclei, both the cell bodies and the
neuropil stained equally well.

Densitometric analysis of CO activity encompassing all 56 neuroanatomical ROIs did not
reveal any difference in whole brain CO activity between hMT1 and control mice. However,
comparisons of Z-scores did reveal significant differences in CO activity within individual
ROIls between hMT1 mice and controls. As seen in Table 2, there were significant increases
in CO activity in the IOM (P = 0.0059) and Purkinje cell layer of the cerebellar cortex (P =
0.0074) in hMT1 mice in comparison with controls. In addition, all three cerebellar nuclei
included in ROI analyses (Lat, anterior interposed nucleus [Alnt] and medial cerebellar
nucleus [Med]) tended to show higher CO activity in hMT1 mice (P < 0.1, for all). In
contrast, all three subdivisions of the caudate-putamen included in our analyses (caudal
[CPuC], rostral-ventral [CPuRV] and rostral-dorsal [CPuRD]) tended to show lower CO
activity in hMT1 mice in comparison with controls (P < 0.01). When compared to controls,
significant decreases in hMT1 CO activity were found in CPuC (P = 0.0008), substantia
nigra reticulata (SNR, P = 0.0025) and MGP (P = 0.0097).

Correlation analysis

For additional interrogation of functional relationships within regions of the basal ganglia,
cerebellum, and their input and output nuclei, correlation coefficients between ROIs were
analyzed with GU and CO histochemistry (Table 3). The projection from Alnt and Lat to
RMC was altered in hMT1 mice. First, the positive correlation between CO activity in the
cerebellar nuclei (Alnt and Lat) and RMC noted in control mice was absent in hMT1 mice.
Second, correlations in GU between the cerebellar nuclei and RMC were stronger in the
hMT1 mice than in controls. The projection from Lat to the thalamus (ventrolateral [\VL]
and VM) was also abnormal; GU correlations were positive in controls whereas they were
negative in hMT1 mice. As additional evidence of olivocerebellar dysfunction, correlations
of CO activity between inferior olivary subnuclei (IOM and 10D) and their efferent
cerebellar nuclei (Med and Alnt) were positive in controls but negative in hMT1 mice.

Striatopallidal and subthalamic-pallidal interactions showed evidence of derangement in
hMT1 mice. To begin with, CO activity correlations between the rostal caudate-putamen
(CPu) and both the MGP and LGP were weaker in hMT1 than in controls. However, these
correlations were maintained in the caudal caudate-putamen. Secondly, all GU correlations
between the CPu and globus pallidus were positive in controls but negative in hMT1 mice.
Lastly, the STh-MGP and -LGP CO activity correlations were negative in controls but
positive in hMT1 mice.

GU and CO PCA

Examination of Table 4 shows that the extracted components showed marked anatomical
loading differences between hMT1 and control mice. In control mice, those ROIs
contributing to individual components tended to be concentrated in contiguous brain
regions. For instance, secondary motor cortex, secondary somatosensory cortex,
somatosensory 1 barrel field and cingulum load on the first GU component in controls.
Similarly, the third and fifth CO components in control mice are derived from cerebellar and
thalamic structures, respectively. In contrast, the relationships among adjacent anatomical
structures appear to break down in hMT1 mice producing components that are more difficult
to interpret but suggestive of interactions among olivocerebellar and basal ganglia-cerebral
cortical loops. For example, hMT1 GU component 2 includes loadings from the pontine
nuclei (Pn), somatosensory and motor cortices, superior colliculus and substantia nigra
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reticulata (SNR). Similarly, hMT1 GU component 3 includes sensory cortex (S2), thalamus
(VM and VL), striatum (CPuRD) and IOM.

In total, scores for 20 components were calculated for each mouse using the loadings
provided in Table 4. After Bonferroni correction for multiple comparisons, only Component
3 for GU in controls showed a significant difference between hMT1 and control mice (P =
0.0002). This component (Table 4) includes loadings from the 10 (IOM and 10D), CHem,
CVer and VL.

DISCUSSION

hMT1 mice do not exhibit overt manifestations of dystonia but do display abnormal
behavioral phenotypes as well as neurochemical and electrophysiological abnormalities
involving the basal ganglia (Sharma et al., 2005; Pisani et al., 2006; Balcioglu et al., 2007;
Zhao et al., 2008; Sciamanna et al., 2009: Hewett et al. 2010). In this study, GU and CO
activity served as approximate markers of acute and chronic metabolic activities in the brain,
respectively. Our goal was to identify functional brain abnormalities in hMT1 transgenic
mice, which may correlate with the already described behavioral, neurochemical and
electrophysiological alterations identified in this DYT1 model. For comparisons with hMT1
mice, the control group included data from WT and hWT mice because hWT show
negligible transgene expression (Zhao et al. 2008) and ROI GU and CO activity from hWT
and WT were highly correlated. CO activity was significantly increased in the IOM and
Purkinje cell layer of cerebellar cortex and decreased in caudal caudate-putamen, SNR, and
MGP of hMT1 mice in comparison to the control group. Similarly, GU was significantly
increased in IOM, 10D, and SNC, and decreased in MGP and LGP in hMT1 mice in
comparison to the control group.

Not unexpectedly, the results of the two metabolic mapping methods employed herein did
not generate identical results. Given that GU and CO activity measure distinct metabolic
processes on different time scales, it is not surprising that these two methods generated both
overlapping and unique results. Similar discrepancies between GU and CO metabolic
patterns have also been reported in the mutant dystonic hamster (Nobrega et al., 1998;
Richter et al., 1998). Moreover, functional neuroanatomical studies have shown that
measures of GU and CO activity capture different aspects of network activity (Jacquin et al.,
1993). Specifically, signals derived from CO histochemistry reflect oxidative energy
metabolism of neural tissues, especially neurons and are concentrated at sites with greater
mitochondrial density, whereas the signals derived from 2-DG autoradiography mainly
reflect uptake of the tracer into astrocytes in synaptic regions with high Na+-K+-ATPase
activity (Di Rocco et al., 1989; Wong-Riley, 1989; Gonzalez-Lima and Garrosa, 1991;
Hevner et al., 1995; Magistretti and Pellerin, 1996; Tsacopoulos and Magistretti, 1996).

Overall, functional brain mapping in hMT1 mice demonstrated a shift of metabolic demand
from the basal ganglia to the cerebellum (Fig. 4). In the basal ganglia, the decreased GU
noted in the MGP and LGP might be due, in part, to decreased CO activity in CPu neurons,
which send GABAergic projections to MGP, LGP and SNR. In MGP and SNR, CO was
also reduced. These changes in CO activity in MGP and SNR mirror results in the dystonic
hamster, in which significant decreases in CO activity were also found in the globus pallidus
and substantia nigra reticulata (Nobrega et al., 1998). In agreement with these findings,
independent studies in human subjects with generalized and focal dystonias have found
significantly reduced mean GPi firing rates (Starr et al., 2005;Tang et al., 2007). Reduced
GPi output to the thalamus might result in enhanced thalamocortical activation. In similar
fashion, reduced SNR output might result in enhanced activity in the tectal and tegmental
pathways, which receive inhibitory projections from SNR. Although likely associated, our
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approach does not allow us to ascribe the hMT1 metabolic abnormalities in the basal ganglia
to the increased nigrostriatal dopaminergic turnover described in hMT1 mice (Zhao et al.,
2008).

Hypermetabolism in the cerebellar hemispheres has been reported in non-manifesting DYT1
carriers (Eidelberg, 1998; Trost et al., 2002; Carbon et al., 2004). Compatible with these
results in humans, we identified hypermetabolism in the Purkinje cell layer (PCL), and, to a
lesser degree, in the molecular layer of the cerebellum in hMT1 mice. In our model,
increased GU and CO activity in the 10, which sends excitatory input to cerebellar Purkinje
cells via the climbing fiber pathway, might alter the firing properties of Purkinje cells. In the
dt rat, decreased complex spike firing rates are associated with rhythmic bursts of Purkinje
cell simple spikes and a small increase in mean Purkinje cell firing rates (LeDoux and
Lorden, 2002). In hMT1 mice, it is possible that increased activity of parallel fiber input to
Purkinje cells activity outweighs the effects of increased climbing fiber activity.
Alternatively, the olivocerebellar pathway in hMT1 mice could be defective at the post-
synaptic level. Elevated Purkinje cell simple spike firing rates would be associated with
enhanced metabolic activity at GABAergic synaptic terminals in the cerebellar nuclei;
similar results have been identified in the dt rat (LeDoux, 2004). Although it is not possible
to specifically attribute the previously reported gait abnormalities in hMT1 mice (Zhao et
al., 2008) to dysfunction of either the basal ganglia or cerebellum, increased hind-base width
is classically associated with dysfunction of the latter. Theoretically, this cerebellar
abnormality could be either primary (Argyelan et al. 2009) or secondary to dysfunction of
the basal ganglia (Zhao et al., 2008). In support of the latter possibility, functional imaging
in DTY1 carriers suggests the possibility that a primary functional abnormality in the basal
ganglia leads to compensatory maladaptive neural output from the cerebellum (Ghilardi et
al., 2003; Carbon et al., 2008).

The 10 may be a central node in communication between basal ganglia-thalamocortical and
olivocerebellar circuits (Alexander and Crutcher, 1990; Marshall and Lang, 2004). The 10
receives a wide variety of excitatory and GABAergic projections (Walberg, 1956, 1974;
Berkley and Hand, 1978; Berkley and Worden, 1978; Saint-Cyr and Courville, 1981;
Swenson and Castro, 1983). 10 afferents arise from the spinal cord, medulla, pons,
midbrain, cerebellar nuclei and cerebral cortex. Projections from the red nucleus,
periaqueductal gray and other midbrain nuclei such as the interstitial nucleus of Cajal,
nucleus of Bechterew and nucleus of Darkschewitsch enter the central tegmental tract,
descend uncrossed, and terminate in the 10. Fibers, which ascend in the spinal cord, reach
the 10 either directly through the spino-olivary tract that courses through the anterior
funiculus or indirectly via the dorsal column nuclei. Dysfunction of one or more of these
afferents might induce hypermetabolism and altered neuronal activity in the 10.
Alternatively, a defect intrinsic to the 10 could be causally associated with the
pathophysiology of DY T1 dystonia because climbing fiber dysfunction is critical to the
dystonic movement disorders of the dt rat and rats treated with the neurotoxin 3-
acetylpyridine (Sukin et al., 1987; LeDoux, 2004).

With a 2-DG autoradiography protocol similar to our own, striking increases in GU were
detected in the cerebellar nuclei of the dt rat (Brown and Lorden, 1989). In the dt rat,
correlations for GU in regions with known anatomical connections also suggested that basal
ganglia efferents might be abnormal. The GU metabolism pattern identified in h(MT1
transgenic mice show important qualitative similarities to patterns described in dt rats.
However, the magnitude of the changes in hMT1 mice was small relative to alterations seen
in the dt rat, possibly due to the fact that the latter model exhibits a profound generalized
dystonia whereas the hMT1 mice do not display overt signs of dystonia. Unquestionably, the
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cerebellum contributes to the dystonic movement disorder of the dt rat, which is eliminated
by cerebellectomy (LeDoux et al., 1993; LeDoux et al., 1995).

Our correlation analysis supports the validity of our findings. In particular, the correlations
that we obtained in control mice are similar to values previously reported in hamsters and
rats (Brown and Lorden, 1989; Richter et al., 1998). A strong correlation between a specific
nucleus and one of its synaptic targets, whether positive or negative, implies the presence of
an important functional relationship (Wong-Riley, 1989; Wree, 1990). For specific
examples, rats and hamsters show positive correlations between the cerebellar nuclei
(medial and interpositus) and the red nucleus (Brown and Lorden, 1989). In addition,
positive correlations between the striatum and LGP have been described in all three species
of rodents (Brown and Lorden, 1989; Yamaguchi et al., 1992; Richter et al., 1998). These
and several other correlations in control mice, including positive correlations of rostral
caudate-putamen with MGP, positive correlations of rostral caudate-putamen with LGP, and
negative correlations of the subthalamic nucleus with both MGP and LGP, were disrupted in
hMT1 mice. Clearly, our data provides evidence that DYT1 dystonia is a network disorder
with manifest metabolic aberrations in carriers of the DYT1 AGAG mutation.

Abbreviations

2-DG 2-deoxy-D-glucose
Alnt anterior interposed nucleus
CHem cerebellar cortex hemisphere
CcoO cytochrome oxidase
CPuC caudate-putamen caudal
CPuRD caudate-putamen rostral-dorsal
CPurRvV caudate-putamen rostral-ventral
CVer cerebellar cortex vermis
hMT1 human mutant torsinA
hWT human wild-type

inferior olive
10D inferior olive dorsal accessory nucleus
1I0M inferior olive medial nucleus
Lat lateral cerebellar nucleus
LGP lateral globus pallidus
Med medial cerebellar nucleus
MGP medial globus pallidus
O.D. optical density
PB phosphate buffer
PET positron emission tomography
RMC red nucleus magnocellular
ROI region of interest
SNC substantia nigra compacta
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subthalamic nucleus
ventrolateral thalamic nucleus
ventromedial thalamic nucleus

wild-type
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Fig. 1.

CO histochemical labeling of CPu, MGP, SNR, 10 and cerebellar cortex (CB) in hMT1
mice and WT littermates. Selected ROIs (CPuC, LGP, MGP, SNC, SNR, I0OD, IOM, ML,
PCL, and GL) are demarcated with hashed lines. Scale bars, 100 pum.
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Fig. 2.
Representative GU autoradiographic images for hMT1 and WT mice. ROIs (10D, IOM, Lat,

Alnt, Med, SNC, SNR, CpuC, LGP, MGP, CPu) are pointed out with arrows (scale bar, 2
mm). Selected ROIs are demarcated with hashed lines in magnified images and contiguous
cresyl violet-stained sections (scale bars: 300 pm for A and B; 500 pm for C and D; and 1
mm for E, F, G, and H).
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Fig. 3.
GU and CO Z-score scatter plots for WT and hWT mice.
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A. Normal mice
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Fig. 4.

A. Sensorimotor network model in normal mice. B. Sensorimotor network model in hMT1
mice based on GU and CO activity. Red and yellow fills denote increased and decreased CO
activity, respectively. Green and blue borders denote increased and decreased GU
respectively. To facilitate overall understanding of the experimental findings, select
anatomical structures (e.g., sensorimotor cortex, cerebellar nuclei [CN], thalamus [Th] and
red nucleus [RN]) are represented in place of their multiple formative ROIs, and the effects
of genotype (hMT1) with P < 0.05 are included in Fig. 4B. CN, cerebellar nuclei; Th,
thalamus; RN, red nucleus. Other abbreviations are defined in the text and tables.
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