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Abstract

The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an
insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-
restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined
olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as a site of
significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed
in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences
of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and
their normal littermates. Data from oligonucleotide microarrays and quantitative real-time RT-PCR
(QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and
extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes
encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhrl) and calcium-transporting
plasma membrane ATPase 4 (PMCAA4, Atp2b4) showed the greatest up-regulation with QRT-PCR.
Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-
regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and
pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response
of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in
cerebellar cortex.

Animal models provide unique platforms to explore motor systems and, consequently, often
engender novel insights into the molecular and systems neurobiology of human movement
disorders (LeDoux, 2004a). A major example of this concept can be found in studies of the
genetically dystonic rat (SD-dt:JFL), an animal model of generalized dystonia. Dystonia is a
motor syndrome of sustained muscle contractions, frequently causing twisting and repetitive
movements, or abnormal postures (Fahn et al., 1987). Primary dystonia includes syndromes
in which dystonia is the sole phenotypic manifestation with the exception that tremor can be
present as well. Primary dystonia may manifest in generalized, segmental, or focal
distributions. Focal dystonias usually present during adult life, whereas generalized dystonias
usually begin in childhood.

The dt rat is a spontaneous mutant discovered in the Sprague-Dawley strain (Lorden et al.,
1984; LeDoux, 2004b). The dt rat can be reliably distinguished from normal littermates by
Postnatal Day 12 (P12). Dystonic rats exhibit axial and appendicular dystonia that progresses

Address correspondence to: Mark S. LeDoux, M.D., Ph.D., University of Tennessee Health Science Center, Department of Neurology,
855 Monroe Avenue, Link Building-Suite 415, Memphis, Tennessee 38163, Phone: 901-448-1662, FAX: 901-448-7440, Email:
mledoux@utmem.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Xiao et al.

Page 2

in severity with increasing postnatal age. Without intervention, dt rats do not live beyond P40.
With normal-sized litters of ten to twelve pups, dt rats maintain body weight until at least P16
(Lordenetal., 1984). Gross brain morphology is normal in the dt rat. Cresyl violet, hematoxylin
and eosin, periodic acid-Schiff, Luxol fast blue, and silver-stained central and peripheral
nervous tissues from dt rats are normal (Lorden et al., 1984). In addition, Golgi-stained striatal
neurons are structurally normal in the mutants (McKeon et al., 1984). Quantitative
morphological studies have shown the dt rats have normal Purkinje cell numbers, molecular
and granular layer thickness, and soma size of cerebellar nuclear neurons (Lorden et al.,
1984; 1992). However, in vermian and paravermian tissues, Purkinje cell somas are 5-11%
smaller in dt rats than in normal littermates (Lorden et al., 1985). This effect is not generalized
and may be specific to Purkinje cells since there are no differences in the size of hippocampal
pyramidal neurons from dt and normal rats.

Olivocerebellar pathways, particularly the post-synaptic response of Purkinje cells to climbing
fiber input, are functionally abnormal in the dt rat. The dt rat does not tremor after
administration of harmaline (Lorden et al., 1985). Correspondingly, basal and harmaline-
stimulated cyclic guanosine monophosphate (cGMP) levels and complex spike firing rates are
depressed in the mutants (Lorden et al., 1985; LeDoux and Lorden, 2002). In comparison with
normal littermates, complex spikes produce less suppression of simple spikes in dt rats. In
addition, simple spikes tend to exhibit rhythmic bursting patterns in the mutants (LeDoux and
Lorden, 2002). As a consequence of these bursting firing patterns and a slight trend towards
higher simple spike firing rates in dt rats, glucose utilization and glutamic acid decarboxylase
(GAD) activity are increased while muscimol binding is decreased in the cerebellar nuclei of
the mutants (Oltmans et al., 1986; LeDoux, 2004b)

Single-unit electrophysiological recordings from the cerebellar nuclei identified rhythmic
bursting firing patterns in the mutants (LeDoux et al., 1998) and the severe dystonia exhibited
by dt rats was eliminated by cerebellectomy (LeDoux et al., 1993). Classically and commonly
attributed to dysfunction of the basal ganglia (Hallett, 1993; Berardelli et al., 1998; Sanger et
al., 2003), experiments in the dt rat suggested, instead, that dystonia may arise from abnormal
cerebellar output (LeDoux et al., 1993; LeDoux et al., 1998; Raike et al., 2005).

All of the electrophysiological and biochemical abnormalities described to date in the dt rat
can be ascribed to autosomal recessive-inheritance of hypomorphic Atcay alleles (Xiao and
LeDoux, 2005). Atcay encodes a protein named caytaxin (Bomar et al., 2003; Xiao and
LeDoux, 2005). With radioactive in situ hybridization, Atcay transcripts are widely distributed
throughout the central nervous system of normal rats (Xiao and LeDoux, 2005). Autosomal
recessive mutations of Atcay are associated with dystonia and varying degrees of ataxia in
jittery, hesitant, and sidewinder lines of mice (Kapfhamer et al., 1996; Bomar et al., 2003;
Gilbertetal., 2004). Ataxia, acommon manifestation of hereditary (e.g., spinocerebellar ataxia
type 1) and acquired (e.g., ischemic stroke) diseases that affect the cerebellum and its afferent
and efferent pathways, is characterized by movements that are asynergic, inaccurate, and
dysmetric. Interestingly, autosomal recessive mutations of the human ortholog, ATCAY, have
been identified in patients with a rare form of ataxia found on Grand Cayman Island (Bomar
et al., 2003). Thus, the phenotypic consequences of caytaxin deficiency depend on genetic
background. Along these lines, it is intriguing to speculate that caytaxin may be part of a
biochemical network at the molecular boundary between ataxia and dystonia.

In cerebellum, Atcay transcripts are present in all three layers of cortex (Xiao and LeDoux,
2005). Expression of Atcay transcript increases linearly in cerebellar cortex from P1 through
P36, a period critical to the maturation of cerebellar Purkinje cells and their climbing fiber
afferents. Furthermore, in the molecular layer, transcript density peaks at P14. In aggregate,
normative studies of Atcay transcripts along with a large body of work detailing olivocerebellar

Neuroscience. Author manuscript; available in PMC 2008 January 19.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Xiao et al.

Page 3

dysfunction in the dt rat, indicates that caytaxin deficiency in cerebellar cortex is causally
associated with the mutant’s motor syndrome.

To explore the downstream effects of cerebellar cortical caytaxin deficiency in greater detail,
differential gene expression studies were performed in dt rats and their phenotypically-normal
littermates. The experiments described herein serve the twofold purpose of enhancing our
understanding of (1) caytaxin and (2) molecular mechanisms involved in generalized dystonia.
Oligonucleotide microarrays, relative quantitative real-time reverse transcriptase-PCR (QRT-
PCR), and immunocytochemistry were sequentially applied to the examination of gene
expression in dt rat cerebellar cortex for comparison with normal littermates.

EXPERIMENTAL PROCEDURES

Animals and tissue acquisition

All experiments were performed in accordance with the National Institutes of Health’s Guide
for the Care and Use of Laboratory Animals and the guidelines of the Institutional Animal
Care and Use Committee. Dystonic rats and their littermates were obtained from a breeding
colony established at the University of Tennessee Health Science Center (UTHSC) in 1997. It
should be noted that neither visual inspection nor behavioral testing can be used to
phenotypically distinguish wild-type (+/+) from heterozygote (dt/+) littermates (LeDoux,
2004b). In this regard, the microarray experiments described below were performed prior to
discovery of the causal mutation in the dt rat and, as such, the groups of phenotypically-normal
littermates included both dt/+ and +/+ pups. In contrast, dt/dt rat pups were exclusively
compared to +/+ pups in the QRT-PCR and immunocytochemical experiments described
below.

To genotype rat pups, gDNA was extracted from tail snips and PCR amplified using a primer
pair flanking the insertional mutation (435 bp) in Intron 1 of Atcay (forward:
gacacaatggatttgactcagc, reverse: aggtctttactggctcagctct) yielding 697 bp and 1132 bp
amplicons for wild-type Atcay and Atcayd alleles, respectively. An additional reverse primer
targeting the insert (gcatgaactcccatttagcata) was used to generate a 488 bp amplicon in the
presence of Atcaydt, PCR amplification was performed with Tag2000 (Stratagene, La Jolla,
CA, USA, www.stratagene.com) in the following manner: 94 °C for 3 min, 35 cycles at 94 °
C for 30 s, 58 °C for 30 s and 72 °C for 45 s, with final extension occurring at 72 °C for 10
min.

Microarray analysis

Six Affymetrix (Santa Clara, CA, USA, www.affymetrix.com) Rat 230A GeneChip® probe
arrays were used to compare olivocerebellar gene expression between dt rats and gender-
matched phenotypically-normal littermates at P18. The P18 developmental time point was
chosen for microarray analysis to maximize detection of differential gene expression in
cerebellar cortex due to caytaxin deficiency while, at the same time, limiting the potential
effects of nutritional deficiency and severe motoric disability. Prior to P15, the dt rat motor
syndrome is relatively mild and cerebellar cortex is quite immature. After P20, dt rat pups
typically manifest marked ambulatory deficits, have difficulty feeding, and lose weight.

The Rat 230A chip contains probe sets for 4,699 full-length genes and 10,467 expressed
sequence tags (ESTs). Pooled cerebellar cortex harvested from 3 rats was used for each Rat
230A GeneChip®. Total RNA was extracted with RNAwiz™ (Ambion, Austin, TX, USA,
www.ambion.com) and quality was assessed with an Agilent Bioanalyzer 2100 (Agilent
Technologies, Palo Alto, CA, USA, www.homeagilent.com) prior to synthesis of 1st and 2nd
strand cDNA. Synthesis and labeling of cRNA probes, hybridization to GeneChip® expression
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arrays, and acquisition of fluorescence intensities was performed by Genome Explorations
(Memphis, TN, USA, www.genome-explorations.com). Double-stranded cDNA was used to
synthesize biotin labeled cRNA. The cRNA was hybridized to an Affymetrix Test 3 chip to
check transcript integrity. Multiple housekeeping and spike controls were also utilized to assess
data reliability. In addition, 100 pM CreX, 25 pM BioD, 5 pM BioC, and 1.5 pM BioB were
detected in the hybridization cocktail for all six chips. Raw data were generated by Microarray
Suite (Affymetrix). The expression values from Microarray Suite were pre-processed and
analyzed using GeneSpring GX 7.3 (Agilent Technologies). To correct for variations in sample
loading and staining, expression values were normalized to the median expression value for
all probe sets on each chip as well as the median expression value for each gene across the set
of 6 arrays. Then, these normalized expression values were employed for t-tests and calculation
of fold-changes. Gene annotation and ontological information (www.geneontology.com) is
integrated into the GeneSpring GX 7.3 software package.

Relative quantitative real-time reverse transcriptase (RT)-PCR

QRT-PCR with SYBR Green was used to reexamine selected genes showing at least a 1.4x
microarray fold change. Total RNA was extracted with RNAwiz™ and genomic DNA was
removed with DMA-free™ (Ambion) prior to reverse transcription of RNA (RETROscript™,
Ambion). Primers were designed using Primer Express® (Applied Biosystems [ABI], Foster
City, CA, USA, www.appliedbiosystems.com) to generate unique amplicons for each gene
under study. QRT-PCR was performed using the ABI 7900 Real Time PCR System with the
SYBR Green Master Mix Kit (ABI) based on ABI protocol. Samples were normalized to 18S
rRNA expression levels. Fold change was determined using the comparative Ct+ method. For
each gene, transcript levels were compared between 4 phenotypically-normal wild-type (+/+)
and 4 dt P18 rat cerebellae (different from those used for microarray) to generate a median
value for fold change.

Immunocytochemistry

The two genes showing the most prominent up-regulation in dt rat cerebellar cortex (Crhrl,
Atp2b4) were examined at the encoded protein level using immunocytochemistry. The
corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and calcium-transporting plasma
membrane ATPase 4 (PMCA4, Atp2b4) were detected with goat polyclonal (sc-1757, Santa
Cruz Biotechnology, Santa Cruz, CA, USA, www.scht.com) and mouse monoclonal
(MA1-914, Affinity BioReagents, Golden, CO, USA, www.bioreagents.com) antibodies,
respectively. A rabbit anti-calbindin D-28K polyclonal antibody (AB1778, Chemicon
International, Temecula, CA, www.chemicon.com) was used to mark cerebellar Purkinje cells.

Perfusion-fixed (normal saline-4% paraformaldehyde in 0.1 M phosphate-buffered saline
[PBS]) brains from P18 dt rats and wild-type (+/+) littermates were sectioned in the mid-sagittal
plane. Then, the left and right halves of dt rat brains were bound to the opposite halves of
normal littermate brains with Tissue-Tek® (Electron Microscopy Sciences, Hatfield, PA, USA,
www.emsdiasum.com). In this fashion, all subsequent processing steps were identical for
tissues from dt rats and normal littermates. Coronal sections (20 um) of cerebellae were
collected in six series onto Superfrost Plus microscope slides (Fisher Scientific,
www.fisherscientific.com). One series of slides was air dried overnight and stained with cresyl
violet (Sigma, St. Louis, MO, UA, www.sigma.com). Two series were used for
immunocytochemical detection of PMCA4 or CRH-R1 with a nickel-intensified 3,3'-
diaminobenzidine solution (Ni-DAB, Vector Laboratories, Burlingame, CA, USA,
www.vectorlabs.com). The three remaining series were processed for immunofluorescent
detection of PMCA4, CRH-R1, and calbindin D-28K. The collection of sections on each slide
was circled with a PAP pen (Electron Microscopy Sciences), dried on a slide warmer for 10
min, placed in a slide rack, and immersed within PBS.
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The protocol for detection of PMCA4 proceeded as follows: (1) rinsed slides in PBS x 2 over
30 min on a rotary shaker; (2) quenched endogenous peroxidases with 10% methanol and 3%
H»0, in PBS for 5 min on a rotary shaker; (3) rinsed in PBS x 3 over 30 min on a rotary shaker;
(4) blocked with 2% nonfat dry milk and permeabilized with 0.3% Triton X-100 (Sigma) for
1 hr; (5) rinsed in PBS x 3 over 30 min on a rotary shaker; (6) incubated with primary antibody
(MA1-914, 1:200), 3% horse serum and 0.1% Triton X-100 (Sigma) in PBS overnight; (7)
rinsed in PBS x 3 over 30 min on a rotary shaker; (8) incubated with secondary antibody
(biotinylated horse anti-mouse, 1:500; Vector Laboratories), 2% horse serum and 0.1% Triton
X-100 in PBS for 4 hr; (9) rinsed in PBS x 3 over 30 min on a rotary shaker; (10) incubated
with streptavidin (Vector Laboratories) for 1 hr; (11) rinsed in PBS x 3 over 30 min on a rotary
shaker; and (12) incubated with Ni-DAB solution (Vector Laboratories). An analogous
protocol was followed for detection of CRH-R1 with sc-1757 (1:800) except that the secondary
antibody and blocking serum were derived from rabbit. To provide a correlate to differential
CRH-R1 expression, the distribution and intensity of CRH-immunoreactivity (IR) was
examined in separate groups of perfusion-fixed brains from P18 dt rats and wild-type
littermates. With steps identical to the PMCA4 and CRH-R1 protocols, CRH was detected with
a polyclonal guinea pig primary antibody (1:15,000; T-5007, Peninsula Laboratories, San
Carlos, CA, USA, www.bachem.com) and a biotinylated goat anti-guinea pig secondary body.
Slides were thoroughly rinsed, air dried overnight, dehydrated, cleared, and coverslipped. Null
controls (i.e., no primary antibody) were included with initial runs.

Double-label fluorescence immunocytochemistry for PMCAA4, calbindin D-28K, and CRH-R1
was used to examine the relationships between either PMCAA4-IR or CRH-R1-IR and cerebellar
Purkinje cells. PMCA4 was detected with MA1-914 (1:300) and a Cy2-tagged donkey anti-
mouse secondary antibody (1:250, Jackson ImmunoResearch, West Grove, PA, USA,
www.jacksonimmuno.com). CRH-R1 was detected with sc-1757 (1:500) and a rhodamine red-
X (RRX)-tagged donkey anti-goat secondary antibody (1:250, Jackson ImmunoResearch).
Calbindin D-28K was detected with AB1778 (1:1000) and either the Cy2- or RRX-tagged
secondary antibodies. Sections were incubated with secondary antibodies for 4 hr and then
rinsed, dehydrated, cleared and coverslipped with 1,3 diethyl-8-phenylxanthine mounting
media (DPX; Sigma). Sections were visualized with both epifluorescence (Axioplan; Zeiss,
Oberkochen, Germany, www.zeiss.com) and confocal laser-scanning (Bio-Rad, Hercules, CA,
USA, www.bio-rad.com) microscopes.

Cerebellar cortical transcriptomes

Affymetrix Rat 230A GeneChip® probe arrays were used to compare cerebellar cortical
transcriptomes between dt rats and gender-matched phenotypically-normal littermates at P18
(Table 1). Particular attention was paid to the expression of genes on Chr 7g11 to explore the
possibility that the Atcaydt insertional mutation influences nearby gene transcription. Using
Affymetrix terminology, 22 transcripts were absent (A) on all three dt rat chips (AAA) and
present (P) on all three normal rat chips (PPP). Of these transcripts, only the CAMP responsive
element modulator (CREM) showed greater than a two-fold difference between normal and dt
rats (P, not significant). The CREM gene is not located near Atcay on 7g11. Five transcripts
derived from Chr 7q11 had a P < 0.10 for the difference between dt and normal rats, although
the fold change was less than 2 for all: small glutamine-rich tetratricopeptide repeat containing
protein (Stg), glutamate receptor NMDA3B (Grin3b), megakaryocyte-associated tyrosine
kinase (Matk), solute carrier family 1 (high affinity aspartate/glutamate transporter) member
6 (Slcla6), and nuclear factor I/C (Nfic). Only Stg and Matk are located within 4 Mb of
Atcay. Importantly, Atcay is not included on the Affymetrix Rat 230A GeneChip® probe array.
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Only two transcripts were absent (A) on all normal rat chips (AAA) and present (P) on all dt
rat chips (PPP). However, the fold changes for the probe sets 1385088 _at and 1391074 _at were
only —1.01 and —1.03, respectively. Using looser criteria of present (P) or marginal (M) on all
dt rat chips and absent (A) on at least two normal rat chips, transcripts for the gamma 5 subunit
of voltage-gated calcium channels (Cacng5) was found to be up-regulated in dt rats (Table 2).

Of those transcripts present (P) or marginal (M) on all chips, 342 were differentially expressed
(t-test P < 0.05). Using more stringent criteria of present (P) on all chips, 325 genes showed
significant differential expression. In dt rats, 51 genes were up-regulated and 92 genes were
down-regulated by > 25% (Table 1). Subsets of 10 and 11 transcripts showed more robust (>
50%) up- and down-regulation, respectively.

The attributes of differentially expressed genes were explored with Gene Ontology biological
process, cellular component, and molecular function (www.geneontology.org). A gene product
can have several molecular functions, can be used in one or more biological processes and may
be associated with one or more cellular components. As detailed in Table 1, many of the genes
up-regulated in dt rat cerebellar cortex encode integral plasma membrane and extracellular
proteins: Slc7al2, Atp2b4, Fst, Crhrl, Nppc, Cltb, Bche, Sdc3, Accn2, Col27al, Celsr2,
Mepla, Fnbp4, and Bace. The two genes showing the greatest up-regulation on microarray,
Be/2111 and Hspala, encode proteins that may be involved in apoptosis and unfolded protein
binding, respectively. Both of these proteins bind nucleotides. Interestingly, two genes
(Plekha3 and Inppll) associated with inositol phosphate metabolism/signaling were up-
regulated in the dt rat. Plekha3 encodes a phosphatidylinositol binding protein that contains a
pleckstrin-homology (PH) domain whereas Inppl encodes a protein with inositol-
polyphosphate 5-phosphatase activity. Besides PMCA4, transcripts for several other proteins
with molecular functions that include calcium binding were up-regulated in the dt rat: clathrin
light polypeptide (Cltb), cadherin EGF LAG seven-pass G-type receptor 2 (Celsr2), and
phospholipid scramblase 3 (Plscr3).

In contrast to the up-regulated genes, down-regulated genes were found to encode proteins
localized to a variety of cellular components and involved in a more diverse range of molecular
functions (Table 1). Three genes involved in the apoptotic process (Stk17b, Bag5, and Bagl)
were down-regulated in the dt rat. Bag5 and Bag 1 encode proteins that are apparently anti-
apoptotic and function in unfolded protein binding. In distinction to Plekha3 and Inpp1, three
other genes that participate in inositol phosphate metabolism/signaling, Freq (frequenin
homolog), Inpp5a (inositol polyphosphate-5-phosphatase A), and Inpp1 (inositol
polyphosphate-1-phosphatase) were down-regulated in the dt rat. Down-regulation of Inppl
was similar with two probe sets: 1394340_at (—1.409) and 1399125_at (—1.566).

QRT-PCR of differentially expressed genes

QRT-PCR was used to substantiate microarray results for selected genes showing significant
fold changes. In general, QRT-PCR and microarray were highly concordant for up-regulated
genes (Table 2). Of all genes, those encoding CRH-R1 (Crhrl) and PMCA4 (Atp2b4) exhibited
the greatest positive fold-change in dt rats. For three genes showing significant down-
regulation on the microarrays, QRT-PCR findings were in the opposite direction (Table 2). In
aggregate, the microarray and QRT-PCR results point out the relative importance of genes
related to extracellular matrix interactions during the maturation of cerebellar cortex,
phosphatidylinositol metabolism/signaling pathways, and calcium homeostasis in both the
molecular pathophysiology of the dt rat movement disorder and caytaxin deficiency.
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Immunocytochemical examination of cerebellar cortex

To provide spatial resolution and translational correlates to the microarray and QRT-PCR data,
the cellular distribution of two proteins, CRH-R1 and PMCAA4, was examined
immunocytochemically. In normal and dt rat pups (P18), CRH-R1-IR was present in the
granular, Purkinje cell, and molecular layers of cerebellar cortex (Fig. 1). CRH-R1-IR was
prominent in the cytoplasm of Purkinje cells (Fig. 3A-F). In the molecular layer, focal
concentrations of CRH-R1-IR, presumably within interneurons, was superimposed on milder
more-diffuse staining of presumptive dendritic elements. The overall intensity of CRH-R1-IR
was greater in dt rats than in normal littermates. In particular, CRH-R1-IR was robust in the
soma and proximal dendritic trees of Purkinje cells in the mutants. In comparison with normal
littermates, CRH-R1-IR was more intense in the granular layer of dt rat cerebellar cortex.

In normal rat pups, PMCA4-IR was concentrated in the inner two-thirds of the molecular layer
with weaker staining of the granular cell layer (Fig. 2). In comparison to normal rat pups, much
more prominent PMCAA4-IR was seen in the molecular layer of cerebellar cortex from dt rat
pups. In addition, PMCAA4-IR extended to the outer third of the molecular layer in dt rat pups.
Staining for PMCAA4 in the granular layer was also more robust in the mutants.

Double-label immunocytochemistry with confocal microscopy was used to examine the
cellular and subcellular distribution of CRH-R1 and PMCA4 (Figs. 3, 4). Although most
prominent in the soma and proximal dendrites, CRH-R1-IR was clearly present in the more
apical portions of Purkinje cells. CRH-R1-IR was also apparent in granule cells. The
subcellular distribution of CRH-R1-IR did not differ between dt and normal rats (Fig. 4). In
the molecular layer, PMCAA4-IR tended to exhibit a patch-like distribution which was clearly
more intense in the mutants (Fig. 3G-L). High-power confocal images of the molecular layer
showed that calbindin D-28K-IR co-localized with CRH-R1-IR but not PMCA4-IR (Fig. 4).
In both normal and dt rats, PMCAA4-IR within the molecular layer had a fine granular
appearance suggestive of a synaptic localization (Fig. 4E).

At P18, CRH-IR was readily apparent in the 10 and cerebellar cortex in both normal and dt
rats, although the intensity of staining was mildly more prominent in the mutants, especially
inthe 10 (Fig. 5). In normal and dt rats, the majority of 1O neurons exhibited cytoplasmic CRH-
IR above background levels of staining (Fig. 5A, C). CRH-IR was significantly more intense
in the medial accessory 10 (MAOQ) and dorsal accessory 10 (DAO) than the principal 10. The
topology of 10 CRH-IR did not differ between normal and dt rats. In cerebellar cortex, CRH-
IR climbing fibers were, overall, more numerous and intensely stained in the mutants (Fig. 5E-
H). CRH-IR climbing fibers were detected in the vermis, cerebellar hemispheres, flocculus,
and paraflocculus. The overall cerebellar distribution of CRH-IR climbing fibers was similar
between dt rats and their normal littermates.

DISCUSSION

The experiments presented herein show that caytaxin deficiency has important effects on
cellular and molecular networks involved in the development and physiology of cerebellar
cortex. Previous studies have shown that olivocerebellar neurophysiology, including simple
and complex spike firing patterns, is functionally abnormal in the dt rat (LeDoux et al., 1998;
LeDoux and Lorden, 2002). The present study provides cellular and molecular correlates to
prior neurophysiological work. Specifically, we found dysregulation of networks involved in
cell-surface and phosphatidylinositol signaling, calcium homeostasis, and extracellular matrix
interactions. In particular, significant up-regulation of CRH-R1 and PMCAA4 was detected in
Purkinje cells and parallel fibers, respectively. Our findings highlight the roles of development,
climbing fiber signaling pathways, and calcium homeostasis in the molecular pathophysiology
of dystonia.
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The dt rat cerebellar gene expression profile that we have characterized with microarray and
QRT-PCR should, for the most part, be viewed as the downstream molecular consequence of
caytaxin deficiency. Itis unlikely that malnutrition, developmental delay, or involuntary motor
activity exerted major effects on the dt rat transcriptome at P18. Although the motor syndrome
of the dt rat is overtly apparent at P18, the dystonia exhibited by the mutants is reduced at rest
and disappears during sleep. At P18, dt rats have normal body weights, are able to nurse, and
exhibit no overt signs of malnourishment (Lorden et al., 1984; LeDoux, 2004b). Furthermore,
P18 dt rat pups exhibit normal homing behavior and can climb, right, and hang (LeDoux et al.,
1993; LeDoux, 2004b).

CRH-R1 and PMCAA4 are up-regulated in dt rat cerebellar cortex

CRH is but one of at least four transmitters (glutamate, aspartate, CRH, and calcitonin gene
related peptide) released at climbing fiber synapses (Palkovits et al., 1987; Bishop, 1990;
Yuzaki etal., 1996; Beitz and Saxon, 2004). Long-term depression (LTD) at the climbing fiber-
Purkinje cell synapse is most likely expressed post-synaptically (Shen et al., 2002) and LTD
at the parallel fiber-Purkinje cell synapse may require CRH released by climbing fibers (Miyata
et al., 1999). Furthermore, climbing fiber LTD requires post-synaptic calcium elevation,
activation of group 1 metabotropic glutamate receptors, and protein kinase C (Hansel and
Linden, 2000). Clearly, up-regulation of Crhr1 transcript and protein in dt rat cerebellum points
to a defect in the climbing fiber-Purkinje cell synapse or post-synaptic signaling pathways in
Purkinje cells (Dautzenberg et al., 2004).

Of all transcripts examined with RT-PCR, those for CRH-R1 and PMCA4 showed the greatest
up-regulation (QRT-PCR) in dt rat cerebellar cortex. CRH-R1 belongs to the secretin family
of G-protein coupled receptors that utilize adenylate cyclase and production of cCAMP for signal
transduction (Hillhouse and Grammatopoulos, 2006). The distribution of CRH-R1-IR in mouse
cerebellar cortex is similar to our findings in P18 rats (Bishop et al., 2000; Chen et al., 2000;
King and Bishop, 2002). The concentration of CRH-R1-IR in the somas and proximal dendrites
of Purkinje cells in normal rats and mice is consistent with the known anatomical relationships
between climbing fibers and Purkinje cells. In previous work using the anterograde/retrograde
tracer horseradish peroxidase, Stratton (1991) showed that the climbing fiber projection to
cerebellar cortex is neuroanatomically intact in dt rats. Correspondingly, the spatial distribution
of CRH-R1-IR and CRH-IR was also normal in dt rats.

Theincreased 10 and climbing fiber CRH-IR that was found in the dt rat has also been described
in two other rodent lines with motoric disability ascribed to cerebellar dysfunction (Sawada et
al., 2001; Jeong et al., 2005). The mutations in rolling mouse Nagoya (RMN) and the ataxic
mouse pogo are allelic with those in tottering and leaner mice, which harbor defects in the
a-1 subunit of P/Q-type calcium channels (Cacnala) (Sawada et al., 2001; Jeong et al., 2005).
Similar to the dt rat, the gait disorders of RMN and pogo become apparent by P10 to P14
(Jeong and Hyun, 2000; Sawada et al., 2001). Since the a-1 subunit is expressed at high levels
in the presynaptic active zone of parallel fibers and on the dendritic spines of Purkinje cells
but only sparsely by climbing fibers (Kulik et al., 2004), increased expression of CRH and
CRH-R1 in climbing fibers and Purkinje cells, respectively, may represent a compensatory
response to a post-synaptic defect of Purkinje cells. In this regard, CRH can positively regulate
Crhrl transcription (Hillhouse and Grammatopoulos, 2006). Interestingly, Swinny and
colleagues (2004) showed that constant exposure of Purkinje cells to CRH inhibits dendritic
outgrowth whereas intermittent exposure induces dendritic outgrowth and elongation.

The plasma membrance calcium-dependent ATPases (PMCAS) are an essential component of
the complex calcium regulatory system in neurons and their processes. PMCAs hydrolyze ATP
in the process of translocating calcium from the cytosol to the extracellular space. Using

immunohistochemistry, Burette et al. (2003) localized four PMCA isoforms (PMCAZ1-4) in rat
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brain. PMCAA4 showed a more restricted distribution than the other PMCAs. Prominent
PMCAA4 staining was noted in cerebral cortex, particularly the pyramidal neurons in layers Il
and VI, and the molecular layer of cerebellar cortex. PMCAA4 staining was also seen the granular
layer, mainly its outer part. In the present study, PMCAA4-IR in cerebellar cortex was very
similar to that described by Burette et al. (2003). Using confocal microscopy, we extended
previous work by showing that PMCA4 does not co-localize with Purkinje cell dendrites in
the molecular layer. Instead, its presence in the granular cell layer and intense, diffuse
expression in the molecular layer strongly suggests that PMCAA4 is produced by granule cells
and present in parallel fibers. In comparison with normal littermates, PMCA4-IR was more
intense in the granular cell and molecular layers of cerebellar cortex in dt rats.

Consistent with our immunocytochemical findings, Sepulveda et al. (2006) have localized
PMCAA4 to lipid raft domains of synaptic nerve terminals in the molecular layer of cerebellar
cortex. Accordingly, up-regulation of PMCAA4 in the dt rat may be a marker of increased
synaptic activity at parallel fiber synapses on Purkinje cells. This hypothesis is supported by
previous single-unit recordings from awake dt rats and their normal littermates in which
Purkinje cell simple-spike firing rates tended to be higher in the mutants (LeDoux and Lorden,
2002).

Caytaxin participates in phosphatidylinositol signaling pathways

Caytaxin contains a Sec14p domain. Secl4p functions as a phosphatidylinositol transfer
protein in yeast. Moreover, the binding cavity of caytaxin is suited for an amphipathic ligand
like a phosphatidylinositol (Bomar et al., 2003; Panagabko et al., 2003; Xiao and LeDoux,
2005). Compatible with this hypothesis, genes encoding the phosphatidylinositol 4-phosphate
adaptor protein 1 (Plekha3), phospholipid scramblase 3 (PLSCR3; Plscr3), and inositol
polyphosphate phosphatase-like 1 or SH2-containing inositol phosphatase 2 (Inppl1) were up-
regulated in dt rat cerebellar cortex. Dowler and colleagues (2000) established that
phosphatidylinositol 4-phosphate adaptor protein 1 interacts strongly with phosphatidylinositol
4-phosphate but not with other phosphatidylinositols. Inositol polyphosphate phosphatase-like
1 appears to function as a 5’-phosphatase capable of hydrolyzing phosphatidylinositol 3,4,5-
triphosphate to phosphatidylinositol 3,4-biphosphate (Habib et al., 1998). Although the precise
cellular role of PLSCR3 is poorly understood (Wiedmer et al., 2004), PLSCR1 is a multiply
palmitoylated, endofacial membrane protein with the dual functions of (1) promoting
accelerated transbilayer phospholipid movement in response to calcium and (2) directly
binding to the 5’-promoter region of the inositol 1,4,5-triphosphate receptor type 1 gene
(IP3R1) to enhance expression of the receptor (Zhou et al., 2005).

Genes encoding inositol polyphosphate 1-phosphatase (INPP1; Inppl), inositol
polyphosphate-5-phosphastase A (INPP5A; Inpp5a), and frequenin (Freq) were down-
regulated in the dt rat. INPP1 removes the 1 position phosphate from inositol 1,3,4-triphosphate
and inositol 1,4-diphosphate, thereby producing inositol 3,4 diphosphate and inositol 4-
phosphate, respectively (Inhorn and Majerus, 1988). INPP5A is a membrane-associated 5-
phosphatase that hydrolyzes inositol 1,4,5-triphosphate in a signal terminating reaction
(Laxminarayan et al., 1994). Finally, frequenin is an N-myristoylated calcium-binding protein
that appears to bind and stimulate certain mammalian isoforms of phosphatidylinositol 4-kinase
(Strahl et al., 2003). In aggregate, although these gene expression changes do not point to a
specific ligand, they do suggest that caytaxin may function as a phosphatidylinositol transfer
protein. Alternatively, the caytaxin ligand belongs to an entirely different class of molecules
and the changes in phosphatidylinositol-related transcripts outlined above are simply
compensatory or secondary effects of abnormalities in another signaling pathway.
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Caytaxin contributes to the maturation of cerebellar cortex

In contrast to the more common neurodegenerative ataxias due to trinucleotide repeats, defects
in the maturation of cerebellar cortex may contribute to rare movement disorders such as
Cayman ataxia (Bomar et al., 2003) and spinocerebellar ataxia type 13 (SCA13; Waters et al.,
2006). The intimate temporal association between the onset and progression of the dt rat
movement disorder and the maturation of climbing fibers and Purkinje cells indicates that, in
addition to or by virtue of its putative role in phosphatidylinositol signaling, caytaxin most
likely contributes to the development of cerebellar cortex.

Many of the gene expression abnormalities identified in dt rat cerebellar cortex are known to
play roles in programmed cell death, extracellular matrix interactions, cell adhesion, and other
processes essential for normal neurodevelopment (Tables 1 and 2). Moreover, a number of cell
surface-signaling cascades implicated in the microarray studies also participate in
synaptogenesis and dendritogenesis. For instance, activation of cCAMP-dependent pathways,
through elevation of intracellular CAMP levels, is known to promote survival of a large variety
of central and peripheral neuronal populations (Jassen et al., 2006). Our differential gene
expression experiments must be interpreted within the context of cerebellar cortical maturation.
Importantly, numerous climbing fiber terminals are found on developing Purkinje cell
dendrites by P12. Over the next several days, there is pruning of perisomatic climbing fiber
terminals, maturation of Purkinje cell dendritic arbors, and vine-like extension of climbing
fibers along more distal dendrites. By P21, climbing fiber terminals in the molecular layer of
cerebellar cortex are structurally mature. Thus, the temporal window from P12 to P21 is a
period of marked developmental activity in rat cerebellar cortex.

Focused analysis of a few genes highlights the complex effects of caytaxin deficiency on
neurodevelopmental processes. For instance, BCL-2-associated athanogene 5 (BAGS) has
been shown to directly interact with heat shock protein 70kD (Hsp70) and inhibit Hsp70-
mediated refolding of misfolded proteins (Kalia et al., 2004). Interestingly, Hsp70 also interacts
with the carboxyl terminus of Hsp70-interacting protein (CHIP) which, in turn, has been shown
to polyubiquitinate caytaxin in vitro (Grelle et al., 2006). Other examples relate more explicitly
to the development of cerebellar cortex. Syndecan-3, via an interaction with neurocan,
promotes neurite outgrowth by cerebellar granule cells (Akita et al., 2004). Using an RNAI
knock-down approach, Shima et al. (2004) have shown that the 7-pass transmembrane cadherin
receptor, Celsr2, plays an important role in Purkinje cell dendritic growth and maintenance.
Therefore, in large part, a variety of neurodevelopmental networks appear to compensate for
caytaxin deficiency and help to preserve the gross and microscopic structure of dt rat cerebellar
cortex.

Calcium homeostasis, signaling, and rodent models of dystonia

A number of spontaneous mutations in mice that disturb genes encoding proteins expressed at
high levels in Purkinje cells, particularly those involved in calcium signaling and homeostasis,
are associated with a phenotype that includes dystonia (Hess and Jinnah, 2004; LeDoux,
20044; Jinnah et al., 2005). The tottering mouse, for example, exhibits paroxysmal dystonia
that is precipitated by stress (Fureman et al., 2002). It is well-known that the P/Q-type calcium
channel plays a critical role in the response of Purkinje cells to afferent inputs (Cavelier et al.,
2002). Presumably, mutations of cerebellar P/Q-type calcium channels impair the ability of
Purkinje cells to properly integrate parallel and climbing fiber inputs (Jun et al., 1999). Of note,
Cacnala-null mutants exhibit much more severe dystonia than tottering mice (Jun et al.,
1999).

Other important mouse models of dystonia include the wriggle mouse sagami (wri) and the
opisthotonus mouse. The wri central nervous system is normal except for impaired
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development of Purkinje cell dendritic arbors (Inoue et al., 1993). The plasma membrane
calcium-ATPase type 2 (PMCAZ2) is mutated in the wri mouse (Takahashi and Kitamura,
1999). Unlike PMCA4, PMCAZ2 is expressed at high levels in the dendrites and spines of
Purkinje cells (Burette et al., 2003). Like PMCA4, PMCA2 may play an active role in the
modulation of calcium spikes, local calcium signaling, and maintenance of basal intracellular
calcium levels (Burette et al., 2003; Pottorf and Thayer, 2002). In the wri mouse, dystonia first
appears at P10 to P24 and progresses in severity until 12 weeks of age. Opisthotonus mice have
a mutation in the gene (Itpr 1) that encodes inositol 1,4,5-triphosphate receptor 1 (IP3R1)
(Street et al., 1997). IP3R1 is abundantly expressed in cerebellar Purkinje cells and, upon
binding of inositol 1,4,5-triphosphate (1P3), releases stored calcium into the cytosol. Beginning
at P14, opisthotonus mice exhibit ataxia and paroxysmal opisthotonos (i.e., truncal dystonia).

Congruent with other rodent models of dystonia, several genes associated with calcium
homeostasis and inositol phosphate metabolic and signaling pathways were differentially
expressed in dt rat cerebellar cortex (Tables 1 and 2). Besides Atp2b4 (PMCAA4), genes
encoding other well-annotated proteins like the gamma-5 subunit of voltage-gated calcium
channels (Cacng5) were up-regulated in the dt rat. In general, gamma subunits increase
inactivation of voltage-gated calcium channels (Letts et al., 1998; Kang and Campbell,
2003). Interestingly, stargazer mice harbor mutations in the gamma-2 subunit (Cacng2) and
exhibit ataxia, unusual head movements and paroxysmal dystonia (i.e., retrocollis).

CONCLUSIONS

Our results, when interpreted in the context of previous neurophysiological, pharmacological,
and biochemical studies in the dt rat, indicate that caytaxin plays a major role in the
development and physiology of cerebellar cortex. The complex clinical presentation of
Cayman ataxia and widespread distribution of Atcay transcripts in rat brain suggests that
caytaxin also has important function(s) in other regions of the central and peripheral nervous
systems (Bomar et al., 2003; Xiao and LeDoux, 2005). The microarray results presented herein
direct attention to phosphatidylinositol signaling pathways and are compatible with a predicted
transfer protein function for caytaxin based on structural modeling (Bomar et al., 2003). Future
efforts will focus on identification of caytaxin ligands.

From a broader perspective, our results provide considerable insight into the molecular biology
of motor control, extracellular matrix interactions during maturation of cerebellar cortex, and
cell-type specificity of gene expression in olivocerebellar pathways. The microarray
experiments identified genes and signaling pathways that may be central to many of the
dystonias. In particular, defects in Purkinje cell calcium homeostasis appear to be a theme
common to most rodent models of dystonia and may also be important in sporadic human
dystonia (LeDoux, 2004a; Jinnah et al., 2005). The increased expression of CRH in dt rat
climbing fibers and PMCAA4 in dt rat parallel fibers underscores the highly specific
compensatory changes that can occur in olivocerebellar pathways in response to a single
defective gene. Furthermore, transcripts and proteins found to be differentially expressed in dt
rat cerebellar cortex may provide viable therapeutic targets for the treatment of dystonia and/
or ataxia.
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Fig. 1.

(A) A coronal section through the P18 hemi-cerebellae of wild-type (+/+) and dt rats (dt/dt)
demonstrates CRH-R1-IR. (B) A section adjacent to A was stained with cresyl violet. Coronal
sections through the simple lobules (C, D) and paraflocculi (E, G) of wild-type (C, E) and dt
(D, G) rats exhibit CRH-R1-IR. Sections (F, H) adjacent to E and G were stained with cresyl
violet. Abbreviations: m, molecular layer; p, Purkinje cell layer; g, granular cell layer. Scale
bars: 400 um (A, B), 200 um (C, D), and 100 pm (E-H).
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Fig. 2.

(A) A coronal section through the P18 hemi-cerebellae of wild-type (+/+) and dt rats (dt/dt)
demonstrates PMCA4-IR. (B) A section adjacent to A was stained with cresyl violet. Coronal
sections through the simple lobules (C, D) and paraflocculi (E, F) of wild-type (C, E) and dt
(D, F) rats exhibit PMCAA4-IR. Sections (G, H) adjacent to E and F were stained with cresyl
violet. Abbreviations: m, molecular layer; p, Purkinje cell layer; g, granular cell layer. Scale
bars: 400 um (A, B), 200 um (C, D), and 100 pm (E-H).
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Fig. 3.

Confocal images of the cerebellar molecular layer from normal (A-C, G-I) and dt (D-F, J-L)
rats show double-label fluorescence immunocytochemistry for calbindin D-28K (A, D, G, J),
CRH-R1 (B, E), and PMCA4 (H, K). Merged images are shown in panels C, F, I, and L.
Abbreviations: m, molecular layer; p, Purkinje cell layer; g, granular cell layer. Scale bar: 50

pm.

Neuroscience. Author manuscript; available in PMC 2008 January 19.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Xiao et al. Page 19

Fig. 4.

High-magnification confocal images of the dt rat cerebellar molecular layer show double-label
fluorescence immunocytochemistry for calbindin D-28K (A, D), CRH-R1 (B), and PMCA4
(E). Merged images of calbindin D-28K with CRH-R1 and PMCA4 are shown in C and F,
respectively. Co-localization of calbindin D-28K and CRH-R1 appears yellow in the merged
image (C). Scale bar: 20 um.
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Fig. 5.
CRH-IR in the MAO (A, C), flocculi [Fl]/paraflocculi [PFI] (E, F), and simple lobules (G, H)

of normal (A, E, G) and dt (C, F, H) rats. Sections (B, D) adjacent to A and C were stained
with cresyl violet. Abbreviations: m, molecular layer; p, Purkinje cell layer; g, granular cell
layer. Scale bars: 50 um(A-D) and 100 um (E-H).
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Table 2
QRT-PCR analysis of differentially expressed genes in dt rat cerebellar cortex
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Gene symbol Accession number Gene title Forward/reverse primers Microarray QRT-
fold change PCR fold change
(P-value)
Up-regulated
Bcl2111 NM_022612 BCL-2-like protein 11 TTACACGAGGAGGGCGTTTG/ +2.04 (0.030) +1.66
TCCATACCAGACGGAAGATGAA
Hspala NM_031971 heat shock 70kD protein AGCAGACCGCAGCGACAT/ +1.92 (0.004) +1.62
1A TTGGCGATGATCTCCACCTT
Plekha3 XM_215752 pleckstrin homology CTGTTCAGATGATGAAGCGTTCAG/ +1.71 (0.029) +1.36
domain-containing, AAGTCGGTGAAGGGCAGATG
family A
(phosphoinositide
binding specific) member
3
Atp2b4 XM_341122 calcium-transporting CATCATCGGAGTCACTGTACTGGTA/ +1.62 (0.021) +2.50
plasma membrane 4 GGACCAAGTTGTTGTCCTTCATC
ATPase (PMCA4)
Cacng5 NM_080693 voltage-gated calcium CGGACCATACTGGCTTTTGTCT/ +1.60 (0.025) +1.50
channel, gamma subunit5 ATCTCGTCATTGATGCTGGAGAT
Crhrl NM_030999 corticotropin-releasing GGTGTACCTTTCCCCATCATTG/ +1.56 (0.007) +2.85
hormone receptor 1 TAGTCAGTGTATACCCCAGGACGTT
(CRH-R1)
Fst NM_012561 follistatin CGGCGTACTGCTTGAAGTGA/ +1.55 (0.015) +1.51
TAGGGAAGCTGTAGTCCTGGTCTT
Collal XM_340760 a-1 collagen AGAAGCAGGGACGGATAATTCA/ +1.40 (0.040) +1.31
AGAAGGCGGCTCCCAGAT
Down-regulated
Tm9sf3 XM_220013 transmembrane 9 TCAGCCCAACTTCCCTTGTC/ —2.37 (0.019) -1.50
superfamily protein TAAAATTCCTCCCAGGCAAACA
member 3
Stk17b NM_133392 serine/ GGTCTTGTCCCCACGTGATTAA/ —1.90 (0.019) —-2.08
threonine kinase 17b CCATTTCAGCCAACTCAGGTAAA
Nr4a2 NM_019328 nuclear receptor CGCCGAAATCGTTGTCAGTA/ -1.73 (0.042) +1.64
subfamily 4, group A, CGACCTCTCCGGCCTTTTA
member 2
Kcnal NM_173095 potassium voltage-gated GAGGAGTTTCCAAATTGGGTAAAA/ -1.68 (0.030) +1.19
channel, shaker-related GGTGTAAAGGAGCGAGGGAGTA
subfamily, member 1
Manlal XM_228364 mannosidase, alpha, class AGTGCTGAACAAGCTGGACAAA/ -1.61 (0.038) +1.02
1A, member 1 AAGCTGTCTCCAAGTCCTCCAA
Bag5 XM_345726 BCL-2- CACCCTGCTGGTTCCAAAGA/ -1.59 (0.002) -1.29
associated athanogene 5 CGTTGGATCTCCTGAAGCCTACT
Inppl XM_237116 inositol polyphosphate-1- TGGAGTCACTGGAGATCAGCAT/ —1.57 (0.005) -1.37
phosphatase GATTTAACATTGGCAGAACCTTTGA
LOC360726 XM_340998 similar to 40-2-3 protein AAAGGAGTCCCTCTACAGTTTGACA/ —-1.53(0.014) -1.12
(Fyttd1) TCAGTATTCCAAATCGTTCATTCAAC
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