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Abstract

The apolipoprotein E (APOE) ε4 allele is the best characterized genetic risk factor for Alzheimer’s 

disease to date. Older APOE ε4 carriers (aged 60+ years) are known to have disrupted structural 

and functional connectivity, but less is known about APOE-associated network integrity in middle 

age. The goal of this study was to characterize APOE-related differences in network topology in 

middle age, as disentangling the early effects of healthy versus pathological aging may aid early 

detection of Alzheimer’s disease and inform treatments. We performed resting state functional 

magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) in healthy, cognitively 

normal, middle-aged adults (age 40–60; N = 76, 38 APOE ε4 carriers). Graph theoretical analysis 

was used to calculate local and global efficiency of 1) a whole brain rs-fMRI network; 2) a whole 

brain DTI network; and 3) the resting state structural connectome (rsSC), an integrated functional-

structural network derived using functional-by-structural hierarchical (FSH) mapping. Our results 

indicated no APOE ε4-associated differences in network topology of the rs-fMRI or DTI networks 

alone. However, ε4 carriers had significantly lower global and local efficiency of the integrated 

rsSC compared to non-carriers. Furthermore, ε4 carriers were less resilient to targeted node failure 

of the rsSC, which mimics the neuropathological process of Alzheimer’s disease. Collectively, 

these findings suggest that integrating multiple neuroimaging modalities and employing graph 

theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-

related cognitive decline in middle age, decades before the onset of overt cognitive impairment.
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1. Introduction

Alzheimer’s disease is the sixth leading cause of death in the United States and is expected 

to triple in frequency by the year 2050, affecting an estimated 13.8 million people 

(Alzheimer’s Association, 2014). This disease is characterized by profound deficits in 

memory, executive functioning, and ability to perform activities of daily living (McKhann et 

al., 2011), resulting in reduced quality of life for both patients and their caregivers. Although 

research is underway to identify potential treatments, we do not yet fully understand the 

underlying causes of the disorder or who may benefit most from early diagnosis and 

intervention efforts. Current treatments may modestly slow disease progression but are 

typically prescribed only after the emergence of cognitive deficits, at which point underlying 

brain damage is likely irreversible (Kishi et al., 2017; Rogers et al., 2000; Tan et al., 2014). 

Thus, it is imperative that we identify biomarkers of Alzheimer’s disease that are detectable 

early in the aging process, before the onset of overt cognitive symptoms and irreversible 

brain damage.

1.1 Establishing Neuroimaging Biomarkers of Alzheimer’s Disease

Despite decades of research, distinguishing healthy aging from the earliest stages of disease 

remains challenging. Although neuroimaging methodology has advanced, progress has been 

complicated by the fact that both normal aging and Alzheimer’s disease are associated with 

structural and functional brain changes, including regional gray matter atrophy (McDonald 

et al., 2009; Schuff et al., 1999), regional hypometabolism (Chételat et al., 2013; Curiati et 

al., 2011), white matter (WM) changes (Barrick et al., 2010; Michielse et al., 2010; Salat et 

al., 2005; Sullivan and Pfefferbaum, 2006), Aβ deposition (Rodrigue et al., 2012; Rowe et 

al., 2010; Rowe et al., 2007), and disrupted resting state functional connectivity (Agosta et 

al., 2012; Damoiseaux et al., 2008; Sheline et al., 2010; Wang et al., 2006). Given the 

overlap in the patterns of brain changes, traditional neuroimaging measures have weak 

predictive utility to differentiate healthy aging from early disease stages (Devanand et al., 

2005; Rowe et al., 2013). For example, a study using data from the Alzheimer’s Disease 

Neuroimaging Initiative examined the accuracy of common neuroimaging biomarkers to 

predict which patients with mild cognitive impairment (MCI) would convert to Alzheimer’s 

disease versus remaining cognitively stable (Prestia et al., 2013). The study found that 

hippocampal volumes had 46% sensitivity in predicting conversion to Alzheimer’s disease 

and 76% specificity to exclude patients with stable MCI, while regional cerebral 

hypometabolism had 33% sensitivity and 58% specificity. Although PET imaging of 

amyloid deposition has been shown to yield high sensitivity (93.5%) to predict conversion to 

Alzheimer’s disease, a substantial number of healthy older individuals without clinical 

symptoms are amyloid positive on PET imaging, making it problematic for use in clinical 

practice (Zhang et al., 2012). All of these studies have been conducted on patients already 

diagnosed with MCI, and our ability to predict the likelihood of developing Alzheimer’s 

disease among healthy older adults who do not yet show signs of cognitive impairment is 

likely to be even poorer.

Given the complexity of Alzheimer’s disease pathogenesis, network-level neuroimaging 

metrics may be more sensitive than traditional region-of-interest (ROI) analyses (Gomez-
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Ramirez and Wu, 2014; Seeley et al., 2009). In particular, graph theoretical analyses have 

gained considerable attention given their potential to yield novel information about the 

human connectome (Sporns et al., 2005). A neuroimaging graph comprises a set of nodes 

and edges, with nodes representing discrete brain regions and edges representing the 

connectivity between two nodes. Initial graph theoretical analyses revealed that the brain has 

a “small world” topology, which is characterized by high local efficiency to support 

segregated or specialized modules as well as global integration to facilitate information 

processing (Achard and Bullmore, 2007; Bassett and Bullmore, 2006). Patients with MCI 

and Alzheimer’s disease show loss of “small world” properties (Brier et al., 2014; Sanz-

Arigita et al., 2010; Stam et al., 2007), suggesting that global network topology is disrupted 

in Alzheimer’s disease. As neurodegenerative conditions such as Alzheimer’s disease may 

preferentially target critical nodes, or “hubs,” of the brain (Buckner et al., 2009; Greicius et 

al., 2004), early disruptions to global or local network efficiency may be sensitive 

biomarkers of Alzheimer’s disease. Although patients with MCI and Alzheimer’s disease 

have been shown to have lower local and global efficiency of functional and structural 

networks compared to healthy elderly individuals (Fischer et al., 2015; Lo et al., 2010; 

Supekar et al., 2008; Zhao et al., 2012), no known studies have investigated these metrics in 

middle-aged individuals at risk for Alzheimer’s disease.

1.2 Neuroimaging Genetics in Middle-Aged Individuals

As Alzheimer’s disease-associated neuropathological changes such as Aβ deposition 

(Aizenstein et al., 2008; Jack et al., 2010; Mintun et al., 2006) and vascular dysfunction 

(Iturria-Medina et al., 2016) may predate the onset of clinical symptoms by decades, it is 

important to identify neuroimaging biomarkers very early in the disease timecourse. One 

method of investigating potential early biomarkers of Alzheimer’s disease is to use 

neuroimaging genetics, a method which provides information about the neurobiological 

features associated with genetic polymorphisms associated with risk for disease. By 

studying middle-aged adults at genetic risk for Alzheimer’s disease, we can characterize 

differences in brain structure and function in individuals who may be undergoing 

neuropathological changes despite manifesting no substantial impairment or clinical 

symptoms at the time.

Here we focus our investigation on middle-aged carriers of apolipoprotein E (APOE) ε4, the 

largest and best characterized genetic risk factor for Alzheimer’s disease. Two single 

nucleotide polymorphisms (SNPs), rs7412 and rs429358, segregate ε4 carriers and non-

carriers. Presence of the ε4 allele increases risk of Alzheimer’s disease in a dose-dependent 

manner, with ε3/ε4 carriers having a 3.68 times greater risk and ε4/ε4 carriers having a 

seven-fold greater risk than ε3 homozygotes (Bertram et al., 2007). In addition to having 

higher risk for Alzheimer’s disease, healthy older APOE ε4 carriers perform more poorly 

than non-ε4 carriers on measures of global cognitive ability, episodic memory, executive 

functioning, and perceptual speed than non-carriers, with age increasing the magnitude of 

episodic memory impairment (Wisdom et al., 2011). Older ε4 carriers (aged 60+ years) also 

show poorer structural and functional brain integrity than non-ε4 carriers, including smaller 

hippocampal volumes (Cohen et al., 2001; Liu et al., 2015; Moffat et al., 2000), greater 

burden of amyloid plaques (Drzezga et al., 2009; Villemagne et al., 2011), disrupted WM 
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microstructural organization (Honea et al., 2009; Salminen et al., 2013), and lower 

connectivity of resting state networks (Heise et al., 2014; Machulda et al., 2011; Sheline et 

al., 2010). Two studies to focus on whole-brain connectivity in healthy older ε4 carriers 

found reduced global efficiency of white matter networks as well as lower regional structural 

connectivity of the precuneus, orbitofrontal cortex, lateral parietal cortex, and medial 

temporal lobe structures (Brown et al., 2011; Chen et al., 2015), with a smaller magnitude of 

functional connectivity disruption (Chen et al., 2015).

Little extant research has focused on APOE-related differences in network connectivity in 

healthy middle-aged participants. In Alzheimer’s disease patients, disruptions in functional 

connectivity are most commonly reported in the default mode network (DMN), a task-

negative network associated with self-referential thought (Damoiseaux et al., 2012; Greicius 

et al., 2004; Jones et al., 2011). Two studies have reported that middle-aged ε4 carriers have 

lower functional connectivity of the default mode network than non-carriers (Goveas et al., 

2013; Patel et al., 2013), possibly reflecting very early Alzheimer’s disease-associated 

changes. However, the pattern of APOE ε4-associated whole brain connectivity (either 

structural or functional) is unknown. As any early Alzheimer’s disease-related aberrations in 

connectivity are likely to be subtle, novel methods that integrate multiple neuroimaging 

modalities may increase sensitivity to detect differences. Functional-by-structural 

hierarchical (FSH) mapping (Leow et al., 2012) is one such method, integrating resting state 

fMRI (rs-fMRI) and diffusion tensor imaging (DTI) data into a single functional-structural 

network. The resulting “resting state structural connectome” is more sensitive than either rs-

fMRI or DTI alone in detecting aberrant connectome properties associated with depression 

(Ajilore et al., 2013). Whether FSH mapping has the sensitivity to detect early differences 

associated with risk of Alzheimer’s disease is unknown.

The purpose of the present investigation was to compare the graph theoretical properties of a 

whole-brain functional network, a whole-brain structural network, and an integrated 

functional-structural network in middle-aged APOE ε4 versus non-ε4 carriers. By studying 

network-level brain integrity in this middle-aged population, we may identify differences 

that predict risk for Alzheimer’s disease years before the onset of cognitive impairment, 

providing a potential window for prevention or early intervention efforts before aberrant 

processes or irreversible damage have already taken place.

2. Method

2.1 Participants

Participants (N = 76; all Caucasian) were selected based on APOE genotype from a larger 

sample of 150 community-dwelling adults aged 40 to 60 years (mean age: 49.9 ± 6.0; 60 

men). Exclusion criteria included: (a) self-reported cognitive or memory complaints; (b) 

Mini-Mental Status Exam (MMSE) (Folstein et al., 1975) score ≤ 24; (c) Mattis Dementia 

Rating Scale Second Edition (DRS-2) (Jurica et al., 2004) score ≤ 135; (d) Geriatric 

Depression Scale (GDS) (Yesavage et al., 1982) > 10; (e) history of central nervous system 

disease (e.g., dementia, stroke, Parkinson’s disease, epilepsy, other neurological disease); (f) 

history of severe cardiac disease (e.g., myocardial infarction, coronary bypass surgery, 

angioplasty); (g) history of metastatic cancer; (h) history of serious psychiatric disorder or 
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substance use disorder; (i) any contraindication to MRI. All participants provided written 

informed consent and received financial compensation for their participation. The study was 

carried out in accordance with guidelines set by the institutional review boards at the 

University of Wisconsin-Milwaukee and the Medical College of Wisconsin.

2.2 Cognitive Assessment Measures

Participants completed several cognitive tasks and questionnaires. The following measures 

were used to exclude participants with possible cognitive impairment or depressed mood:

2.2.1 Mini-Mental Status Examination (MMSE)—The MMSE (Folstein et al., 1975) 

is a brief screening tool used to assess global mental status. The 11-question measure 

(possible scores from 0 to 30) assesses orientation, attention and concentration, registration, 

recall, and language. Scores below 24 have been shown to be effective in identifying 

individuals with possible cognitive impairment. One person was excluded based on this 

cutoff.

2.2.2. Mattis Dementia Rating Scale 2 (DRS-2)—The DRS-2 is a validated measure 

of overall cognitive functioning (possible scores from 0 to 144) (Jurica et al., 2004). It yields 

five subscales that provide information about attention, initiation/perseveration, construction, 

conceptualization, and memory. Scores below 135 are indicative of possible cognitive 

impairment; this cutoff was used to ensure that the study population had no overt cognitive 

impairment. Four participants fell below this cutoff and were excluded from further analysis.

2.2.3. Geriatric Depression Scale (GDS)—The GDS (Yesavage et al., 1982) is a 30-

item measure that assesses symptoms of depression in middle-aged and older populations. 

Scores above 10 indicate possible Major Depressive Disorder. One participant reported a 

GDS score greater than 10 and was excluded from further analysis.

2.3 Genotyping

A small amount of blood was drawn from participants in order to obtain DNA. DNA was 

submitted to the University of Wisconsin-Madison Biotechnology Center for sequencing of 

the SNPs (rs7412, rs429358) that make up the common ε2, ε3, and ε4 APOE genotypes (see 

Table 1). Thirty-eight participants were APOE ε4 carriers (either ε3/ε4 or ε4/ε4). A subset 

of non-ε4 carriers (ε3/ε3 or ε2/ε3) were age- and sex-matched to create equivalent groups 

(N = 38) of ε4 and non-ε4 carriers.

2.4 Multi-Modal MRI

All MRI data acquisition was conducted on a GE Signa 3T scanner (Waukesha, WI) with a 

quad split quadrature transmit/receive head coil. Participants were screened for any 

contraindications to MRI. Imaging sessions lasted 1 hour and 15 minutes. The imaging 

paradigm included:

2.4.1. Structural MRI—A ‘spoiled-grass’ (SPGR) sequence (axial acquisition: TR = 35 

ms, TE = 5 ms, flip angle = 45°, matrix = 256 × 256, field of view = 24 cm, Nex = 1) was 

obtained at the beginning of each imaging session.
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2.4.2. Resting state functional MRI (rs-fMRI)—A T2*-weighted functional scan was 

obtained with an echo-planar pulse imaging (EPI) sequence (28 axial slices, 20 × 20 cm2 

FOV, 64 × 64 matrix, 3.125 mm x 3.125 mm x 4 mm voxels, TE = 40 ms, TR = 2,000 ms). 

The 8-minute rs-fMRI scan was acquired under a task-free condition (i.e., resting state): 

subjects were instructed to relax with eyes closed and to “not think about anything in 

particular.”

2.4.3. Diffusion tensor imaging (DTI)—A 3-minute, 30 seconds DTI sequence was 

acquired with a spin echo single shot, echo-planar imaging sequence with sensitivity 

(SENSE = 2.5) encoding (2.2 mm isotropic voxels, 212 × 212 mm FOV, 96 × 96 acquired 

matrix), TR/TE = 6338/69 ms, 60 slices for whole brain coverage, with diffusion gradients 

applied along 32 non-collinear directions at a b-factor of 700 s/mm2, including one 

minimally weighted image with b = 0 s/mm2.

2.5. Data Processing and Analysis

2.5.1. Resting state fMRI data processing—rs-fMRI image preprocessing was 

carried out using Analysis of Functional NeuroImages (AFNI) (Cox, 1996) and FMRIB 

Software Library (FSL) (Smith et al., 2004) based on the rs-fMRI preprocessing pipeline 

employed in the Human Connectome Project (Smith et al., 2013). Preprocessing included: 1) 

removal of the first four EPI volumes; 2) slice timing correction; 3) despiking; 4) registration 

of each volume to the first volume; and 5) removal of non-brain tissue from EPI volumes. A 

bias field-corrected T1-weighted image was skull stripped and segmented into gray matter, 

white matter, and cerebrospinal fluid using FAST (Zhang et al., 2001). EPI volumes were 

averaged to create a mean EPI image that was coregistered to the T1-weighted image using 

affine registration with 6 DOF with FLIRT (Jenkinson et al., 2002). This transform was 

concatenated with a structural-to-MNI nonlinear warp field, permitting a single resulting 

warp to be applied to resample EPI into 2-mm MNI space. White matter and CSF masks 

were downsampled to match EPI resolution. Ordinary Least Squares regression (AFNI 

3ddeconvolve) was used to censor TRs for excessive head motion (censored at 0.3 mm for 

affected TR and the TR preceding it; participants [N = 2] were excluded if they had >30% of 

TRs censored based on this cutoff), regress out motion parameters and their derivatives as 

well as time-series from white matter and CSF masks. A highpass filter of .01 Hz was 

applied to remove low-frequency drift. Data were spatially smoothed using a 6-mm FWHM 

Gaussian filter.

2.5.2. DTI data processing—DTI data processing was carried out using FSL. The B0 

image was skull-stripped using BET (Smith, 2002), and the resulting mask was applied to 

the other images. Eddy current-induced distortions and subject movements were corrected 

using FSL’s “eddy” tool (Andersson and Sotiropoulos, 2016). A probability distribution of 

fiber direction was generated at each voxel using BEDPOSTX (Behrens et al., 2007; 

Behrens et al., 2003) to be used in probabilistic tractography.

2.5.3. FSH mapping

2.5.3.1. Deriving the resting state structural connectome (rsSC): Functional by 

structural hierarchical (FSH) mapping was employed to integrate the functional and 
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structural data into a single graph (Ajilore et al., 2013; Leow et al., 2012). FSH mapping 

begins with subject-specific functional and structural connectivity matrices. Freesurfer 

cortical parcellation and subcortical segmentation (Dale et al., 1999; Fischl et al., 2002; 

Fischl et al., 2004) were performed to define 80 ROIs. These ROIs were registered to MNI 

and diffusion space, respectively, using affine registration with 6 DOF using FLIRT 

(Jenkinson et al., 2002). To create the functional connectivity matrices, the mean timecourse 

from each ROI was extracted from the preprocessed rs-fMRI data. These timecourses were 

correlated to create an 80×80 functional connectivity matrix. To create the structural 

connectivity matrices, probabilistic tractography was performed between each ROI pair 

using Probtrackx (Behrens et al., 2007; Behrens et al., 2003). The resulting structural 

connectivity matrix was normalized by dividing each matrix row by the waytotal for its 

corresponding seed ROI. The functional and structural connectivity matrices were then z-

transformed and made symmetrical before being input into the FSH mapping pipeline.

The details of FSH mapping pipeline has been described in (Ajilore et al., 2013; Leow et al., 

2012) and is illustrated in Fig. 1.

This technique aims to derive a functional-informed structural connectivity matrix. As not 

all white matter tracts are equally utilized during a given state captured by fMRI, functional 

connectivity data may be used to infer the underlying pattern of white matter engagement 

that occurs during this particular resting state. The resulting resting state-informed structural 

connectome (rsSC) reflects the structural network underlying the observed functional 

connectome.

Briefly, FSH mapping assumes that higher levels of rs-fMRI correlation reflect stronger 

structural interactions between two regions. This may be through direct or indirect 

neuroanatomical WM connections. Thus, the degree of rs-fMRI correlation between two 

regions decreases as the graph distance of the structural connectivity between the regions 

increases. In current implementation, FSH mapping assumes that this relationship 

mathematically follows an exponential decay function (Ajilore et al., 2014). For each node 

pair in the structural connectivity matrix, the edge reflects the existence of an underlying 

neuroanatomical WM connection (which may be direct or indirect). This WM connection 

may or may not be used when the brain is in a particular resting state. Thus, it is possible to 

construct a utilization matrix U that represents the pattern of WM engagement in the 

functional resting state. To reduce mathematical complexity, the current FSH mapping 

algorithm assumes all-or-nothing utilization of each edge in this matrix. Accordingly, each 

WM connection is either utilized or not in a given functional state (i.e., U(i, j) = 1 indicates 

that the WM structural connection between nodes i and j is utilized during the resting state; 

zero otherwise). A given connection between two nodes is considered “utilized” if including 

this anatomical connection better predicts the overall rs-fMRI correlation. If matrix S 
denotes the graph distance of the WM connection between each node pair, then U°S 
represents the resting state-informed structural connectome (rsSC). Here ° indicates the 

Hardamard entry-by-entry multiplication operator between two matrices of the same 

dimensions.
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FSH mapping adopts simulated annealing (Kirkpatrick et al., 1983) to find the optimal 

utilization matrix U to maximize the goodness of fit between the observed rs-fMRI F and the 

rsSC (U°S). Because the “optimal” U may differ slightly if simulated annealing starts with a 

different seed, the entire FSH cooling algorithm was repeated 100 times per group using 

randomly selected starting seeds (Ajilore et al., 2013). These results were then summarized 

to create a probability distribution of the optimal solution U for each group. This was 

thresholded to retain the top 25% of utilized nodes, yielding the final U matrix for each 

group. A weighted rsSC was then created by multiplying each participant’s structural 

connectivity matrix S by the binarized group U matrix. To ensure any observed group 

differences in the rsSC were not false positives due to the rsSC being separately estimated 

for each group, a permutation analysis was performed (see Supplemental Materials).

2.5.3.2. Graph analysis of network efficiency: The Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010) was used to derive graph properties of the rs-fMRI network 

alone, the DTI network alone, and the rsSC. We used two measures to evaluate the network 

topography of the networks for each group: 1) global efficiency, which is the average inverse 

shortest path length in the network and is a measure of network integration:

Eglob = 1
n ∑

i ∈ N

∑ j ∈ N,   j ≠ idi j
n − 1

where N is the set of all nodes in the network and dij is the shortest path length (distance) 

between nodes i and j and 2) local efficiency, which is the efficiency of node neighborhoods, 

defined by evaluating which of a node’s neighbors are neighbors of each other. Local 

efficiency was averaged over all nodes in the networks. Local efficiency is a measure of 

network segregation, in which densely interconnected groups of brain regions (e.g., 

“clusters” or “modules”) emerge:

Eloc = 1
n ∑

i ∈ N
Eglob Gi

where Eglob(Gi) is the global efficiency of Gi, the sub-graph composed of the neighbors of 

node i

2.5.3.3. Resilience analysis: Resilience refers to a network’s ability to withstand 

perturbations or failures. We performed a random and targeted failure analysis for each 

group rsSC. In the random failure analysis, the network’s resilience was evaluated as nodes 

were removed from the network at random. The size of the largest connected component 

was used as a measure of network resilience (Ajilore et al., 2014). To ensure that results do 

not depend on which nodes were randomly selected to fail, we ran 5000 iterations of this 

random failure analysis.

In the targeted failure analysis, network nodes were rank ordered in terms of node centrality, 

or “hubness.” Three centrality metrics were used to calculate a robust measure of node 

Korthauer et al. Page 8

Neuroimage. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



centrality (Bolt et al., 2017): 1) betweenness centrality, the fraction of all shortest paths 

within a network that contain a given node:

bi =   ∑
m ≠ i ≠ n ∈ N

σmn i

σmn

where σmn is the total number of shortest paths from node m to node n and σmn(i) is the 

number of shortest paths from node m to node n that pass through node i 2) eigenvector 

centrality, a measure of which nodes are connected to other highly connected nodes:

vi ∝  ∑
j

Ni j v j

where Nij is an element of the adjacency matrix and vj is the eigenvector centrality of node j 
and 3) participation coefficient, the proportion of intermodular connections of a given node:

yi = 1 −   ∑
m ∈ M

ki m

ki

2

where M is the set of modules and ki(m) is the number of links between i and all nodes in 

module m

These metrics were calculated for each node in each rsSC at thresholds ranging from 10% to 

50% of the strongest graph weights. Ranks for each node across these three metrics were 

summed to create a rank-ordered list of all rsSC nodes by their centrality or “hubness.” The 

targeted failure analysis removed nodes in order of their centrality, beginning with the most 

central node. Resilience was evaluated after the removal of each additional node. Between-

group differences after each node removal was determined through non-parametric 

permutation tests with 5000 iterations, with a significance threshold of p < .05.

2.6 Statistical Analysis

Participants were age- and sex-matched. Education, DRS-2, MMSE, and GDS scores did not 

significantly differ by genotype (p’s > .05). Thus, group differences between ε4 carriers and 

non-ε4 carriers were assessed via two-sample t-tests. Significance was determined using an 

alpha level of .05.

3. Results

Demographic characteristics of participants are reported in Table 2.

There were no significant associations between APOE polymorphism and global efficiency, 

t(74) = .007, p = .995, or local efficiency, t(74) = .04, p = .968, of the rs-fMRI whole brain 

functional network (Fig. 2A). When examining the DTI-derived whole brain structural 

network, there were no significant associations between APOE polymorphism and global 

efficiency, t(74) = 1.52, p = .133, or local efficiency, t(74) = .834, p = .407 (Fig. 2B). 
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However, for the rsSC obtained using FSH mapping, APOE ε4 carriers had significantly 

lower global efficiency than non-ε4 carriers, t(74) = 2.824, p = .006 (Fig. 2C). The ε4 

carriers also had significantly lower local efficiency than non-ε4 carriers, t(74) = 2.87, p = .

005.

Nodes were ranked by “hubness” for failure analysis; the top 10 nodes are listed in Table 3. 

Group differences in nodal properties for these hubs were compared for the rs-fMRI 

network, the DTI-derived structural network, and the rsSC (see Table 3). There were no 

differences between ε4 carriers and non-ε4 carriers on betweenness centrality, participation 

coefficient, or eigenvector centrality for these hub nodes in the rs-fMRI or DTI networks. 

For the rsSC, ε4 carriers had significantly higher betweenness centrality of the right 

putamen (p < .001) and higher betweenness centrality (p < .001) and participation 

coefficient (p < .001) of the right thalamus compared to non-ε4 carriers. ε4 carriers had 

lower betweenness centrality (p < .001) and participation coefficient (p < .001) of the left 

lateral orbitofrontal cortex, lower betweenness centrality of the left superior temporal gyrus 

(p = .001), and lower participation coefficient of the left superior frontal cortex (p = .004). 

These differences were significant after applying an FDR correction (q < .05).

In the random failure analysis for the rsSC, resilience did not differ between groups when 

nodes were removed at random (Fig. 3A). For the targeted failure analysis for the rsSC, ε4 

carriers maintained higher resilience than non-ε4 carriers until approximately 10% of 

network hubs were removed. After that point, ε4 carriers had significantly lower resilience 

than non-ε4 carriers as progressively more central nodes were removed (Fig. 3B).

To determine whether differences in rsSC network properties correspond to cognitive 

performance and depressive symptoms, we conducted pairwise correlations between global 

and local efficiency with MMSE and DRS-2 performance as well as GDS total score. Global 

efficiency was not significantly associated with MMSE total score, r = .10, p = .39, DRS-2 

total score, r = .16, p = .16, or GDS total score, r = −.10, p = .37. Local efficiency was not 

significantly associated with MMSE, r = .18, p = .13, DRS-2, r = .15, p = .21, or GDS total 

scores, r = .01, p = .96. Though not statistically significant, these associations were in the 

predicted direction; greater global and local efficiency was associated with better cognitive 

performance and fewer reported symptoms of depression.

4. Discussion

The goal of the present study was to investigate measures of functional and structural brain 

connectivity as potential endophenotype of Alzheimer’s disease in healthy, non-demented, 

middle-aged individuals. We report a pattern of significant differences between APOE ε4 

carriers and non-carriers when using graph theoretical measures to characterize the 

properties of an integrated, whole-brain functional-structural connectome, despite observing 

no differences in the rs-fMRI or DTI-derived networks alone. These findings suggest that 

despite being years or even decades from potentially exhibiting overt cognitive impairment, 

non-demented, middle-aged APOE ε4 carriers exhibit compromised network integrity that 

may serve as a potential endophenotype of risk for cognitive impairment or Alzheimer’s 

disease.
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4.1. Effects of APOE on Network Connectivity in Middle Age

Establishing endophenotypes of Alzheimer’s disease is of significant public health 

relevance, given the immense financial and social burden of the disease. Prior studies 

investigating potential endophenotypes of Alzheimer’s disease have largely focused on focal 

brain differences, including regional gray matter volume (Drzezga et al., 2009; Honea et al., 

2010; Karas et al., 2004), microstructural properties of specific WM tracts (Chiang et al., 

2011; Honea et al., 2009; Salminen et al., 2013), regional hypometabolism (Drzezga et al., 

2005; Mosconi et al., 2004; Reiman et al., 2005), and deposition of amyloid and tau 

(Drzezga et al., 2009; Morris et al., 2010; Okello et al., 2009). Despite decades of 

neuroimaging research in this area, these investigations have largely failed to find reliable, 

sensitive biomarkers with adequate prognostic accuracy (Prestia et al., 2013; Zhang et al., 

2012). Novel neuroimaging methods, including those that integrate multiple imaging 

modalities and look at network-level indices of brain integrity, may yield a potential path to 

identify stronger biomarkers for risk of Alzheimer’s disease.

Graph theoretical indices have been proposed as potentially more sensitive compared to 

traditional ROI analyses in detecting early brain aberrations associated with risk for disease 

(Bullmore and Sporns, 2009). In particular, neuropathology may disrupt small world 

topology, which balances the need for efficient local communication and global information 

transfer while minimizing the energy needs associated with a densely wired network 

(Achard and Bullmore, 2007). Patients with MCI and Alzheimer’s disease have weaker 

small world properties compared to healthy elderly (Lo et al., 2010; Sanz-Arigita et al., 

2010; Supekar et al., 2008; Yao et al., 2010). A similar pattern has been observed among 

elderly individuals at higher genetic risk for Alzheimer’s disease. For example, studies using 

networks derived from rs-fMRI (Wang et al., 2015; Zhao et al., 2012), DTI (Brown et al., 

2011), cortical thickness (Goryawala et al., 2014), and [18F] fluorodeoxyglucose positron 

emission tomography (PET) (Seo et al., 2013) have reported that healthy elderly ε4 carriers 

and those with Alzheimer’s disease have disrupted network topology compared to non-ε4 

carriers. The present study extends these findings into middle age, reporting that APOE ε4 

carriers have lower global and local efficiency of an integrated functional-structural network. 

This pattern is suggestive of a disrupted small world topology, which may represent 

connectome vulnerability to neuropathology or very early manifestations of disease.

We also found that APOE ε4 carriers have altered properties of hub networks compared to 

non-ε4 carriers, including higher nodal centrality of subcortical structures (the right 

thalamus and putamen) but lower centrality of cortical hubs including the left superior 

frontal cortex, superior temporal gyrus, and lateral orbitofrontal cortex. The magnitude and 

direction of these node-specific findings are broadly consistent with those observed in a 

prior study of healthy, middle-aged APOE ε4 carriers, which focused on functional 

connectivity with specific resting state networks rather than the whole-brain, integrated 

network approach used in the present study (Goveas et al., 2013). Goveas and colleagues 

reported that APOE ε4 carriers had higher connectivity of the caudate and putamen but 

lower connectivity of the orbitofrontal cortex and superior temporal gyrus with two resting 

state networks (the DMN and executive control network), mirroring the present findings. 

Studies investigating disrupted nodal properties of healthy older ε4 carriers have been more 
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varied, with reports of lower regional connectivity of the precuneus, lateral and medial 

orbitofrontal cortex, lateral parietal cortex, and medial temporal lobe structures (Brown et 

al., 2011; Chen et al., 2015). In our healthy, middle-aged sample, altered nodal properties of 

hub regions may reflect very early AD pathological processes or may reflect longstanding 

differences in the functional and structural organization of the brain that make ε4 carriers 

more vulnerable to AD neuropathology.

In addition to observing lower global and local brain integrity in middle-aged APOE ε4 

carriers, we report that this group is less able to withstand targeted node failure, which 

replicates the neuropathological process of Alzheimer’s disease. Well-connected hub 

regions, often found in heteromodal association areas (Buckner et al., 2005), are 

preferentially targeted by the Alzheimer’s disease process. Specifically, hub regions are 

among the first to undergo amyloid deposition, demonstrate hypometabolism, and begin to 

atrophy (Buckner et al., 2009; Greicius et al., 2004; Lo et al., 2010; Sperling et al., 2009). 

Our finding that APOE ε4 carriers are initially robust to hub removal is consistent with 

numerous neuroimaging studies showing that older ε4 carriers show hyperactivation or 

hyperconnectivity compared to non-ε4 carriers early in the AD process, perhaps reflecting 

overcompensation in the face of depleted neural resources, before eventually exhibiting 

steeper declines as the disease progresses (Han et al., 2009; Han and Bondi, 2008). Although 

the rsSC of APOE ε4 carriers was resilient to random node removal, removing nodes in 

order of their “hubness” caused network failure more rapidly than for non-ε4 carriers. This 

provides further evidence that healthy, middle-aged APOE ε4 carriers already show 

network-level vulnerabilities that may make them more susceptible to Alzheimer’s disease 

pathogenesis.

To establish network metrics of an integrated functional-structural network as biomarkers of 

risk for AD, it will also be useful to establish associations between these measures and 

cognitive performance. We examined associations between rsSC network properties and 

performance on two cognitive screening measures, the MMSE and DRS-2. These 

associations were in the predicted direction, with higher global and local efficiency 

associated with better cognitive performance and lower depressive symptomatology, though 

the correlations were not statistically significant. The lack of statistical significance can 

likely be attributed to the restricted range of these cognitive screening measures, as 

participants with scores falling below established cutoffs were excluded from the study. 

Future studies examining associations between rsSC properties and cognition, such as 

performance on traditional neuropsychological measures, are warranted.

4.2. Advantages of FSH Mapping to Construct the rsSC

The fact that we only observed APOE ε4-related differences in brain integrity when using 

FSH mapping, but not traditional rsfMRI or DTI analyses, also suggests the need for more 

sophisticated measures of brain integrity to capture the earliest changes associated with 

potential neuropathology. In the current sample, there were no differences between APOE 
ε4 carriers and non-carriers in the graph properties of the whole brain rs-fMRI or DTI 

networks. Only when these networks were integrated into the rsSC were significant group 

differences observed. This is consistent with findings from Ajilore and colleagues (Ajilore et 

Korthauer et al. Page 12

Neuroimage. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2013), who found that FSH mapping yielded higher sensitivity than rs-fMRI or DTI 

alone in detecting aberrant network properties associated with depression.

Despite the popularity of multi-modal imaging paradigms, most studies continue to analyze 

each modality in parallel, rather than combining them. Some multi-modal neuroimaging 

studies use fMRI to guide fiber tracking (Broser et al., 2012; Greicius et al., 2009; Yang et 

al., 2009) or investigate the functional connectivity associated with a structural network 

derived from diffusion-weighted imaging (Douaud et al., 2011; Pinotsis et al., 2013). 

However, techniques that truly integrate fMRI and DTI data into a single, functional-

structural network are still developing and have not been widely employed (Bowman et al., 

2012; Calamante et al., 2017; Venkataraman et al., 2010). Some of the proposed methods 

model structural by functional connections, but these are limited by the fact that regions may 

show strong functional connections despite having no direct structural connection (Honey et 

al., 2009). Furthermore, many existing methods consider structural connectivity to be static, 

while functional connectivity is presumed to be dynamic. As it is likely that structural 

connections are dynamically utilized to produce functional activity, FSH mapping uses this 

assumption to model the data. The complex, multifactorial nature of Alzheimer’s disease 

makes it essential that we continue to develop techniques such as FSH mapping, allowing us 

to meaningfully integrate multiple neuroimaging modalities to increase the sensitivity to 

detect very early network aberrations associated with risk for Alzheimer’s disease.

4.3. Study Limitations

This study is not without its limitations. The study was powered to detect moderate genetic 

effects of SNPs on functional and structural brain integrity using a dominant genetic model. 

Thus, we were unable to study dose-dependent effects of the ε4 allele. Replication of these 

effects in a larger, independent cohort will be important to establish graph theoretical 

measures of network integrity as reliable endophenotypes of Alzheimer’s disease.

It is also important to note that the rsSC was constructed to represent the utilization of 

structural connections during a particular resting state. Thus, the pattern of connectivity 

represented by the rsSC may not generalize to other, task-based cognitive states. 

Additionally, the FSH model itself has several limitations. For example, due to the need for a 

parsimonious model of functional-by-structural connectivity, FSH mapping does not account 

for feedback, inhibitory interactions, or deactivation of network connections (Leow et al., 

2012). There may also be concern that estimating the rsSC separately by group could 

artefactually inflate group differences. Future work replicating these findings in an 

independent sample is needed. Despite these limitations, the use of FSH mapping in the 

present investigation is one of its major strengths. FSH mapping has several advantages over 

other methods of integrating fMRI and DTI data: it assumes that structural connections are 

dynamically utilized, rather than static; it accounts for non-linear relationships between 

structural and functional connectivity; and it allows a particular functional connection to be 

modeled by both direct and indirect (multi-step) structural connections (Ajilore et al., 2013; 

Leow et al., 2012). Furthermore, given that the neuroimaging modalities employed are non-

invasive and task-free, they are particularly well suited for use in a clinical setting.
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Finally, this study is limited by its cross-sectional design. Although APOE ε4 carriers are 

less resilient than non-carriers to targeted node failure, we cannot determine whether these 

are long-standing developmental differences in brain organization or whether they represent 

early Alzheimer’s disease-associated pathological changes. Furthermore, we lack 

prospective data to determine which of the ε4 carriers in the current sample will actually go 

on to develop Alzheimer’s disease, limiting our ability to conclude whether rsSC graph 

properties may serve as biomarkers of risk for Alzheimer’s disease. Longitudinal studies 

characterizing the transition from middle age to older adulthood are needed to better 

understand the dynamics of connectivity changes that may serve as biomarkers of risk for 

age-related cognitive decline.

4.4. Summary and Conclusions

In conclusion, we report that middle-aged APOE ε4 carriers have less small world 

organization, including lower global and local efficiency, compared to non-ε4 carriers. Risk 

allele carriers were also less resilient to targeted failure of central network nodes, which 

mimics the Alzheimer’s disease neuropathological process. Critically, these differences in 

connectome organization were only apparent when using FSH mapping to integrate rs-fMRI 

and DTI data into a single network. This suggests that conventional neuroimaging methods 

that separately characterize functional or structural connectivity may be inadequate to detect 

early changes associated with Alzheimer’s disease. To our knowledge, this is the first 

investigation that identifies APOE-associated differences in connectome integrity in a 

middle-aged, non-demented, healthy population, establishing a potential early 

endophenotype of cognitive impairment or Alzheimer’s disease.
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Figure 1. Functional-by-structural hierarchical (FSH) mapping processing pipeline.
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Figure 2. Associations between APOE genotype and whole-brain functional and structural 
connectivity.
APOE ε4 carriers did not differ from non-ε4 carriers in the global or local efficiency of </

p>(A) the rs-fMRI-derived whole brain functional network or </p>(B) the DTI-derived 

whole brain structural network. </p>(C) ε4 carriers had significantly lower global and local 

efficiency of the rsSC compared to non-ε4 carriers. ** p < .01.
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Figure 3. Associations between APOE genotype and resting state structural connectome (rsSC) 
resilience to node failure.
(A) APOE ε4 carriers did not differ from non-ε4 carriers in resilience when nodes were 

removed from the rsSC at random. </p>(B) When nodes were removed in order of 

“hubness,” ε4 carriers were initially resilient but soon showed lower resilience as 

progressively more central nodes were removed. * denotes group differences, p < .05.
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Table 1.
Candidate SNPs.

GMAF: global minor allele frequency. Expected GMAF reports the minor allele frequency from the global 

population (obtained from the 1000 Genome Project) and reflects the second most frequent allele value. 

Observed GMAF reflects the minor allele frequency in the current study population.

SNP ID Chr. Position (bp) Expected GMAF Observed GMAF

APOE

    rs7412 Chr19 50103919 0.074 0.157

    rs429358 Chr19 50103781 0.149 0.179
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Table 2.
Demographic characteristics by genotype.

Values represent M(SD). DRS-2: Mattis Dementia Rating Scale-2. MMSE: Mini-Mental Status Examination. 

GDS: Geriatric Depression Scale. Groups did not differ on any of these demographic characteristics (p’s > .

05).

ε4 carriers (N = 38) non-ε4 carriers (N = 38)

Age (yrs) 50.8 (.99) 50.9 (.99)

Sex (M:F) 16:22 16:22

Education (yrs) 15.4 (2.5) 15.2 (2.4)

DRS-2 (total) 139.9 (2.3) 139.9 (2.3)

MMSE (total) 28.5 (1.1) 28.8 (1.3)

GDS (total) 1.8 (2.3) 2.4 (2.7)

Neuroimage. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Korthauer et al. Page 26

Ta
b

le
 3

.
N

od
al

 p
ro

pe
rt

ie
s 

of
 h

ub
s.

T
he

 1
0 

hi
gh

es
t r

an
ke

d 
hu

bs
 (

ba
se

d 
on

 a
 c

om
po

si
te

 m
ea

su
re

 o
f 

be
tw

ee
nn

es
s 

ce
nt

ra
lit

y 
[B

C
],

 p
ar

tic
ip

at
io

n 
co

ef
fi

ci
en

t [
PC

],
 a

nd
 e

ig
en

ve
ct

or
 c

en
tr

al
ity

 [
E

C
] 

ar
e 

lis
te

d 
(v

al
ue

s 
re

fl
ec

t M
(S

D
))

. N
od

al
 p

ro
pe

rt
ie

s 
of

 h
ub

s 
in

 th
e 

rs
-f

M
R

I 
an

d 
D

T
I 

ne
tw

or
ks

 d
id

 n
ot

 d
if

fe
r 

be
tw

ee
n 
ε4

 a
nd

 n
on

-ε
4 

ca
rr

ie
rs

. I
n 

th
e 

re
st

in
g 

st
at

e 
st

ru
ct

ur
al

 c
on

ne
ct

om
e 

(r
sS

C
),

 ε
4 

ca
rr

ie
rs

 a
nd

 n
on

-c
ar

ri
er

s 
di

ff
er

ed
 in

 B
C

 a
nd

 P
C

 f
or

 s
ev

er
al

 h
ub

s,
 d

ep
ic

te
d 

w
ith

 th
e 

* 
(s

ig
ni

fi
ca

nt
 a

ft
er

 F
D

R
 

co
rr

ec
tio

n,
 q

 <
 .0

5)
. T

he
re

 w
er

e 
no

 g
ro

up
 d

if
fe

re
nc

es
 in

 E
C

 o
f 

hu
bs

 o
f 

th
e 

rs
SC

 (
re

su
lts

 o
m

itt
ed

 f
or

 b
re

vi
ty

).
 O

FC
: o

rb
ito

fr
on

ta
l c

or
te

x.

rs
-f

M
R

I 
N

et
w

or
k

D
T

I 
N

et
w

or
k

R
es

ti
ng

 S
ta

te
 S

tr
uc

tu
ra

l C
on

ne
ct

om
e

B
C

P
C

B
C

P
C

B
C

P
C

R
an

k
H

ub
 N

am
e

ε4
no

n-
ε4

ε4
no

n-
ε4

ε4
no

n-
ε4

ε4
no

n-
ε4

ε4
no

n-
ε4

ε4
no

n-
ε4

1
R

 in
su

la
12

0.
10

52
.6

0
0.

24
0.

31
90

.1
0

87
.0

0
0.

42
0.

49
27

3.
60

21
9.

60
0.

19
0.

21

(2
70

.9
)

(7
2.

3)
(.

21
)

(.
21

)
(1

06
.7

)
(7

5.
8)

(.
20

)
(.

14
)

(2
30

.4
)

(1
82

.3
)

(.
15

)
(.

12
)

2
R

 p
ut

am
en

16
3.

20
15

6.
50

0.
37

0.
41

18
8.

90
23

2.
60

0.
43

0.
41

15
14

.3
*

64
8.

2*
0.

18
0.

18

(1
42

.0
)

(1
30

.0
)

(.
19

)
(.

20
)

(5
6.

2)
(1

55
.6

)
(.

13
)

(.
13

)
(6

53
.7

)
(4

35
.2

)
(.

09
)

(.
10

)

3
L

 s
up

er
io

r 
fr

on
ta

l
17

1.
80

13
2.

10
0.

38
0.

39
56

8.
90

57
7.

60
0.

53
0.

57
69

6.
70

84
0.

50
0.

21
*

0.
30

*

(1
21

.7
)

(1
40

.8
)

(.
18

)
(.

23
)

(1
78

.5
)

(1
80

.2
)

(.
15

)
(.

13
)

(5
33

.0
)

(5
69

.8
)

(.
12

)
(.

14
)

4
L

 th
al

am
us

99
.5

0
10

2.
30

0.
33

0.
23

34
4.

60
37

8.
10

0.
51

0.
53

96
9.

70
67

5.
30

0.
21

0.
22

(7
9.

0)
(1

18
.1

)
(.

21
)

(.
23

)
(1

69
.1

)
(1

58
.3

)
(.

13
)

(.
09

)
(6

12
.8

)
(3

89
.9

)
(.

14
)

(.
09

)

5
R

 s
up

er
io

r 
te

m
po

ra
l

33
0.

70
29

1.
60

0.
46

0.
44

45
0.

10
44

7.
30

0.
36

0.
33

13
37

.4
0

13
23

.8
0

0.
20

0.
19

(1
95

.8
)

(1
44

.4
)

(.
19

)
(.

18
)

(1
36

.1
)

(1
57

.4
)

(.
14

)
(.

14
)

(8
43

.1
)

(5
89

.8
)

(.
11

)
(.

13
)

6
R

 th
al

am
us

87
.1

0
10

0.
00

0.
31

0.
27

27
9.

30
30

4.
90

0.
48

0.
42

98
7.

0*
49

0.
9*

0.
21

*
0.

11
*

(7
3.

1)
(1

07
.9

)
(.

21
)

(.
21

)
(1

31
.4

)
(1

53
.2

)
(.

14
)

(.
13

)
(5

48
.9

)
(3

59
.1

)
(.

11
)

(.
10

)

7
L

 la
te

ra
l O

FC
82

.9
0

11
4.

30
0.

37
0.

35
82

2.
10

84
1.

50
0.

50
0.

51
44

8.
0*

12
18

.9
*

0.
39

*
0.

51
*

(1
13

.0
)

(1
87

.8
)

(.
25

)
(.

24
)

(1
60

.0
)

(1
77

.0
)

(.
09

)
(.

10
)

(3
77

.0
)

(7
61

.4
)

(.
10

)
(.

12
)

8
L

 s
up

er
io

r 
te

m
po

ra
l

22
9.

00
25

9.
90

0.
48

0.
44

38
8.

30
42

5.
00

0.
37

0.
39

11
10

.4
*

15
15

.0
*

0.
17

0.
22

(1
53

.7
)

(1
76

.2
)

(.
18

)
(.

16
)

(1
56

.6
)

(1
56

.5
)

(.
16

)
(.

15
)

(3
24

.5
)

(5
08

.7
)

(.
06

)
(.

10
)

9
R

 la
te

ra
l O

FC
14

8.
30

14
2.

40
0.

43
0.

43
87

8.
80

87
1.

10
0.

42
0.

48
51

6.
40

59
0.

40
0.

46
0.

54

(1
30

.1
)

(1
12

.5
)

(.
21

)
(.

21
)

(1
89

.0
)

(1
73

.8
)

(.
16

)
(.

15
)

(7
94

.9
)

(5
02

.7
)

(.
18

)
(.

14
)

10
R

 p
ar

s 
op

er
cu

la
ri

s
16

9.
80

16
8.

20
0.

39
0.

41
11

8.
90

13
0.

20
0.

18
0.

23
11

97
.4

0
73

6.
70

0.
35

0.
24

(1
35

.2
)

(1
28

.5
)

(.
22

)
(.

20
)

(8
2.

3)
(7

9.
7)

(.
17

)
(.

19
)

(9
24

.9
)

(3
31

.6
)

(.
18

)
(.

23
)

Neuroimage. Author manuscript; available in PMC 2019 September 01.


	Abstract
	Introduction
	Establishing Neuroimaging Biomarkers of Alzheimer’s Disease
	Neuroimaging Genetics in Middle-Aged Individuals

	Method
	Participants
	Cognitive Assessment Measures
	Mini-Mental Status Examination (MMSE)
	Mattis Dementia Rating Scale 2 (DRS-2)
	Geriatric Depression Scale (GDS)

	Genotyping
	Multi-Modal MRI
	Structural MRI
	Resting state functional MRI (rs-fMRI)
	Diffusion tensor imaging (DTI)

	Data Processing and Analysis
	Resting state fMRI data processing
	DTI data processing
	FSH mapping
	Deriving the resting state structural connectome (rsSC)
	Graph analysis of network efficiency
	Resilience analysis


	Statistical Analysis

	Results
	Discussion
	Effects of APOE on Network Connectivity in Middle Age
	Advantages of FSH Mapping to Construct the rsSC
	Study Limitations
	Summary and Conclusions

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.

