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Abstract 

In visual search, responses are slowed, from one trial to the next, both when the target dimension 

changes (e.g., from a color target to a size target) and when the target feature changes (e.g., from 

a red target to a green target) relative to being repeated across trials. The present study examined 

whether such feature and dimension switch costs can be attributed to the same underlying 

mechanism(s). Contrary to this contention, an EEG study showed that feature changes influenced 

visual selection of the target (i.e., delayed N2pc onset), whereas dimension changes influenced 

the later process of response selection (i.e., delayed s-LRP onset). An fMRI study provided 

convergent evidence for the two-system view: Compared with repetitions, feature changes led to 

increased activation in the occipital cortex, and superior and inferior parietal lobules, which have 

been implicated in spatial attention. By contrast, dimension changes led to activation of a fronto-

posterior network that is primarily linked with response selection (i.e., pre-motor cortex, 

supplementary motor area and frontal areas). Taken together, the results suggest that feature and 

dimension switch costs are based on different processes. Specifically, whereas target feature 

changes delay attention shifts to the target, target dimension changes interfere with later response 

selection operations. 

 

Keywords: Attention, Priming of Pop-Out, Dimension Weighting, EEG, fMRI. 
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INTRODUCTION 

 In visual search, changing the target feature across trials (e.g., from a red to a green target) or 

the target dimension (e.g., from a size target to a color target) typically leads to performance 

impairments (e.g., increased reaction time) relative to pairs of trials where target defining 

properties are repeated. For instance, in search for an “odd-one-out”, changing the target feature 

from a smaller item to a larger item or from a red item to a green item slows responses to the 

target (e.g., Maljkovic & Nakayama, 1994; Becker, 2008a,b,c, 2010). Similar switch costs occur 

when the stimulus dimension of the target is changed, for example, from a target differing in size 

to a target differing in color (e.g., a large to a red target; Müller, Heller & Ziegler, 1995). 

Originally, both types of intertrial effects were attributed to an attentional weighting mechanism. 

According to this attentional biasing account, selection of the target feature or the target 

dimension primes or biases attention to select the same feature or dimension on the next trial, by 

increasing the weights (or gains) of corresponding feature-specific and dimension-specific maps, 

respectively (e.g., Maljkovic & Nakayama, 1994; Müller et al., 1995).  

 In contrast to this early attention view of target switch costs, it has been proposed that they 

may reflect later processes involved in response selection (e.g., Cohen & Magen, 1995). 

According to a response biasing account, repeating the target could bias response selection 

mechanisms to repeat the response from the last trial as well, even when repetitions of the target 

feature and the response are statistically independent. For example, in a target present/absent 

search task, changing the target dimension (e.g., from a color to a size target) would 

automatically create a bias to change the response as well, which would lead to switch costs when 

the target changes but the instructed response is the same as on the previous trial (e.g., a target 

present response; Becker, 2008a, 2010a; Cohen & Magen, 1999; Mortier, Theeuwes & 

Starreveld, 2005; Pollmann et al., 2006; Yashar & Lamy, 2011).   

 In line with the response biasing account, reaction times are often faster when both the target 

and response repeat than when only either the target or the response repeats (e.g., Hillstrom, 

2000; Huang & Pashler, 2005; Meeter & Olivers, 2006; Müller & Krummenacher, 2006; Töllner 

et al., 2008; Yashar & Lamy, 2011). Yet, at least with respect to feature changes, changing the 

response requirements do not completely eliminate target switch costs, indicating that they 

cannot be fully accounted for by response biasing (e.g., Hillstrom, 2000; Yashar & Lamy, 2011). 

As a consequence, most researchers to date advocate a dual stage account, which holds that target 
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changes can incur costs both at an early attentional level and at a later, response-selection level 

(e.g., Meeter & Olivers, 2006, Mortier et al., 2005; Rangelov, Müller & Zehetleitner, 2011; 

Yashar & Lamy, 2011; Zehetleitner, Rangelov, & Müller, 2012). 

 According to the dual stage account, feature and dimension changes will usually have the 

same impact on attention and response selection, and there is no reason to distinguish between 

them. In contrast to this prevalent view, recent findings suggest that feature and dimension 

changes may be categorically different and produce costs at different levels of information 

processing. Specifically, it appears that target feature changes mainly interfere with early 

attentional processes, whereas target dimension changes mainly influence later response selection 

processes (e.g., Becker, 2008a, 2010a). This two-system hypothesis is currently supported by 

three major findings. First, altering the target feature usually delays eye movements to the target 

(e.g., Becker, 2008a, b, c, 2013; McPeek et al., 1999), whereas changing the target dimension 

does not interfere with selection of the target but rather prolongs target dwell times (e.g., Becker, 

2010a). Second, electroencephalography (EEG) studies have found that swapping the target and 

non-target features leads to large delays in the onset of the N2pc (~50ms; Eimer, Kiss & Cheung, 

2010), an electrophysiological marker for spatial attentional selection (e.g., Eimer, 1996; Luck & 

Hillyard, 1994), whereas dimension changes have only small effects on N2pc latencies (~8ms; 

e.g., Töllner et al., 2008; 6ms, Töllner et al., 2010, Rangelov et al., 2013) that cannot account for 

the substantial RT delay of 30-50ms. Third, functional imaging data show that feature changes 

lead to an increased BOLD response in early visual areas (e.g., occipital cortex; Kristjansson et 

al., 2007), whereas dimension changes had no consistent effects on early visual areas, but instead 

led to increased activation of a dorsolateral pre-frontal network (DLPFC; Gramann et al., 2007, 

2010; Pollmann et al., 2000, 2006; Weidner et al., 2002). 

 Although the above results are consistent with the view that feature switch costs are mainly 

due to an early attentional biasing mechanism whereas dimension switch costs are mainly due to 

a late response mechanism, the nature of the tasks used in these previous studies limit the extent 

to which a definitive conclusion can be made. Specifically, the results to date are based on a 

collection of studies that used different methods and stimuli to examine feature- versus 

dimension-based switch costs (e.g., Gramann et al., 2007, 2010; Kristjansson et al., 2007; Töllner 

et al., 2008, 2010; Pollmann et al., 2000, 2006, Weidner et al., 2002). Hence, it is unclear whether 

the observed differences between feature- and dimension-based switch costs were due to 

differences in the mechanisms tapped or the methods employed for each switch condition. 
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 Here, we aim to directly compare feature- and dimension-based switch costs, using the same 

task, stimuli and methods in a within-subjects design. Specifically, changes of the target feature 

and the target dimension will be randomly generated within a continuous block, and the search 

displays will be identical across the different trial types (repeat, feature change, dimension 

change), ensuring that feature and dimension changes are not confounded with differences in 

search strategies or the stimuli. In the first experiment, we used EEG and in a second experiment, 

functional magnetic resonance imaging (fMRI) to assess whether feature and dimension switch 

costs in visual search arise at early or late levels of information processing. In both experiments, 

the participants' task was to indicate whether the target was present (66%) or absent (33%) from 

the display, and the experiments used the same stimuli and design. The target was defined as an 

odd-one-out that differed from the nontargets either in size or color: The nontargets were 

consistently orange, medium-sized disks, and the target could be either small or large, or red or 

yellow. Intertrial transitions from a color target to a size target or vice versa (e.g., small to red, 

yellow to large) were classified as (across-)dimension changes, and intertrial changes of the 

target size (e.g., small to large) or its color (e.g., red to yellow) were classified as feature 

changes/within-dimension changes. Trials in which the target from the previous trial was directly 

repeated were classified as repeat trials and served as a baseline against which the two types of 

switch costs were compared.  

 In Experiment 1, we recorded the EEG from participants and, following Töllner and 

colleagues (2008), assessed three ERP components: The N2pc, as a marker for attentional 

selection, the stimulus-locked LRP (lateralized readiness potential; s-LRP), as a marker for 

response selection/decision-making (e.g., Hackley & Valle-Inclan, 2003), and the response-

locked LRP (r-LRP), as a marker for response execution (e.g., Eimer, 1998). The theoretically 

important question was whether target feature changes and target dimension changes would 

modulate the N2pc and LRPs in the same way or whether they would show evidence for 

dissociation. For the second experiment we employed an event-related fMRI design to identify 

the hemodynamic (‘neural’) correlates of target and dimension changes using the same stimuli 

and task as those used in the EEG experiment. Of primary interest was whether feature and 

dimension changes would affect entirely different brain regions, or a network of overlapping 

areas. Secondly, we sought to identify whether networks previously found to be involved in 

attention and response biasing would be tapped differently under feature versus dimension 

changes.  
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MATERIALS AND METHODS 

Participants. Twenty participants with no history of psychiatric illness or neurological injury or 

illness participated in the study for monetary compensation ($10/hour). Twelve participated in the 

EEG experiment, and eight in the fMRI experiment. All participants were naïve with regard to 

the purpose of the experiments and reported normal color vision and normal or corrected-to-

normal visual acuity. All procedures were approved by the human ethics review committee at 

The University of Queensland. 

 Stimuli, Design and Procedure. In both experiments, the participants' task was to respond to 

the presence or absence of a target stimulus that differed in size or color from the nontargets. 

Target absent displays consisted of a central black fixation cross (size: 0.18° x 0.18°) and 6 

medium-sized orange disks (diameter: 2.7º; RGB: 255, 94, 0; Lu’v’: 43.8, 0.286, 0.538) 

presented against a white background at a distance of 9.2° from the central fixation cross. On 

target present trials, one of the nontargets was replaced with one of the possible targets. The color 

targets were either a yellow (RGB: 255, 155, 0; Lu’v’: 59.8, 0.229, 0.546) or red (RGB: 255, 45, 

0; Lu’v’: 34.5, 0.342, 0.53) disk of the same size as the nontargets, and the size targets were 

either smaller (diameter: 1.9º) or larger (diameter: 3.9º) orange disks (the same color as the 

nontargets; see Fig. 1).  

 Targets were present on 66% of the trials, and the target type varied pseudo-randomly across 

trials (see below). When the target changed from a color target to a size target across trials, 

attention had to be shifted to a different stimulus dimension because the color target differed only 

in color, and the size targets only in size from the nontargets. Hence, trials in which a color target 

was preceded by a size target or vice versa were classified as dimension change trials. Trials in 

which the target color changed (e.g., from red to yellow) or in which the target size changed (e.g., 

from small to large) required shifting attention to a different feature within a stimulus dimension 

and were therefore classified as feature (within-dimension) change trials. Trials in which the 

target feature from the previous trial was directly repeated were classified as repeat trials and 

served as a baseline. Note that the search displays were identical across the different conditions 

(repeat, feature change, dimension change), so that differences between conditions cannot be 

attributed to physical differences between the targets (e.g., Kiss & Eimer, 2011). 

 The transition probabilities for target dimension and target feature (within-dimension) changes 

were 33.3%, respectively, to obtain equal numbers of trials in each of the conditions (repeat, 
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feature change, dimension change). The target type (red/yellow/small/large) and location were 

chosen pseudo-randomly on each trial, with the restrictions that the target was presented equally 

often at the four lateral positions (never at the top or bottom position), and that the target location 

was never repeated on successive trials. Only target present trials that were preceded by target 

present trials were included in the analysis (e.g., Müller et al., 1995). 

 The search display was presented for 200ms, followed by a fixation display that contained a 

small central fixation cross. After a fixed interval of 1,000ms (from the onset of the search 

display), a feedback tone (duration: 100ms) indicated whether the response had been correct 

(1,300Hz tone) or wrong (500Hz tone). In the EEG experiment, the intertrial interval was 500ms, 

plus a random interval that varied between 0 and 350ms. Participants responded with the index 

fingers of their right and left hand placed on two vertically aligned keys to target absent and 

target present trials, respectively, and the response mapping was reversed halfway through the 

experiment (for the purpose of assessing LRPs; see Eimer, 1998; Eimer et al., 2010). Participants 

completed at least 40 practice trials prior to the experiment (not recorded), and 840 experimental 

trials in each response mapping condition, yielding a total of 1,680 trials.  

 In the fMRI experiment, the duration of the intertrial interval was randomly chosen from an 

exponential distribution ranging from 1,500ms to 7,500ms in steps of 1,500ms. Participants 

responded via a button box with the index and middle finger of their dominant hand. All 

participants completed at least 40 practice trials at a workstation outside the scanner prior to the 

experiment. In the scanner, participants completed 576 experimental trials, split into 8 sessions of 

5.1 min. each (72 trials, 204 scans per run). In both the EEG and fMRI experiment, participants 

were asked to maintain fixation on the central fixation cross during the entire trial, to avoid all 

body movements, and to respond as quickly as possible without committing any errors. 

 EEG recording and data analysis. The continuous EEG was recorded using a 64-channel 

ActiveTwo Biosemi EEG system (Biosemi Instrumentations, Amsterdam, Netherlands), digitized 

at 1,024Hz and re-sampled off-line to 250Hz (using spline interpolation). All electrodes were 

mounted in an elastic cap corresponding to the 10-10 system (American Electroencephalographic 

Society, 1994), and data were referenced off-line to the common average (Kayser & Tenke, 

2010). Impedances were kept below 5kΩ , and the raw EEG data was filtered off-line by means 

of a 40 Hz low-pass filter.  
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 For the analysis of the N2pc and the s-LRP, the EEG was segmented from 200 ms before to 

600 ms after target onset, and was averaged separately for all combinations of trial type (repeat, 

feature change, dimension change) and target hemi-field (left, right), or response hand (left, 

right), respectively. The epoched EEG was baseline corrected to the 200 ms pre-stimulus interval. 

Mean amplitudes were obtained in the 190-290 ms time window after target onset at lateral 

posterior electrode sites PO7 and PO8 for the N2pc and in the 300-500 ms post-stimulus time 

window at central C3 and C4 sites for the s-LRP.  

 For the analysis of the r-LRP, the EEG was initially segmented into 2,000 ms epochs ranging 

from 1,000ms prior to 1,000ms post stimulus onset, so that the data could be baseline-corrected 

using the same 200 ms pre-stimulus baseline as that employed for the N2pc and the s-LRP. After 

the baseline-correction the EEG was re-segmented into epochs ranging from 600 ms before to 

200 ms after response, and was averaged separately for each trial type (repeat, feature change, 

dimension change) and response hand (left, right). Mean amplitudes for the r-LRPs were acquired 

in the 150 to 50 ms time window prior to response at central electrode sites C3 and C4.  

 N2pc, s-LRP, and r-LRP onset latencies were determined separately for repeat, feature change, 

and dimension change trials using the jackknife procedure in which averaged ERP difference 

waves (ipsilateral ERPs subtracted from contralateral ERPs) are computed over subsamples of 

participants, systematically excluding one participant from the original sample (Miller, Patterson, 

& Ulrich 1998; Ulrich & Miller, 2001). Onset latencies were defined as the point in time where 

the negative going deflection in the difference waveform of each subsample exceeded 40% of the 

N2pc peak amplitude (N2pc onset latencies; see Eimer et al., 2010 and Eimer, Kiss, Press, & 

Sauter, 2009, for an identical procedure), 50% of the s-LRP peak amplitude (s-LRP onset 

latencies; Miller et al., 1998), and 90% of the r-LRP peak amplitude (r-LRP onset latencies; 

Miller et al., 1998). Mean amplitudes and onset latencies were subjected to separate repeated-

measures ANOVAs and two-tailed t-tests using the statistical software package SPSS. Statistical 

t and F values comparing jackknifed onset latencies were corrected according to the formulas 

described by Miller et al. (1998) and Ulrich and Miller (2001), respectively, and were indicated 

with the labels ‘tc’  and ‘Fc’. 

fMRI. 

 Images were acquired with a 3T Siemens Trio scanner equipped with a 12-channel head coil. 

Anatomical scans were acquired using a rapid gradient-echo sequence with 1mm isotropic 
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voxels. Functional images were collected in 27 transverse slices of 3mm (distance: 33%) with 

echo planar imaging [TR=1500ms, TE=31ms, FA=90°, FOV=192mm, matrix: 64x64, voxel size: 

3x3x3mm]. In each session, participants completed 8 event-related runs. 

 Images were analysed using FSL (FMRIB, Oxford, UK). Data were first motion-corrected and 

slice time-corrected, and then convolved with a 7mm FWHM Gaussian Kernel. As in Pollmann 

et al. (2006), event-related BOLD signal changes were modeled with a set of 3 basis functions 

(FMRIB's linear optimal basis sets; e.g., Jenkinson et al., 2012; Woolrich et al., 2009, Smith et 

al., 2004). To assess differences between the trial types (repeat, feature change, dimension 

change), we first compared dimension change trials to repeat trials, and feature change trials to 

repeat trials. Then, to extract differences that are specific to the different kinds of intertrial 

changes, we contrasted dimension change trials with feature change trials. Both contrasts were 

computed by linearly combining the respective contrasts from lower-level analyses across 

sessions and subjects (e.g., Pollmann et al., 2006), and by using permutation testing (FSL's 

randomise function; 5,000 permutations; Hayasaka & Nichols, 2003). All voxel-wise statistical 

comparisons are reported at an FDR-corrected alpha level of .05, and only clusters with a 

minimum voxel cluster size of >27 voxels are reported. 

 RESULTS. 

 Data Screening  

 Only target present trials that were preceded by target present trials were included in the 

analysis. Trials with delayed (> 1000 ms) or anticipatory (< 200 ms) responses were excluded 

from the data analyses, leading to a loss of 1.27% of the data in the EEG experiment, and 2.15% 

in the fMRI experiment. Moreover, in the EEG experiment, trials with artifacts (eye movements 

exceeding +/- 30 µV in the HEOG channels; blinks exceeding +/- 60 µV at Fp1/2; muscular 

movements exceeding +/- 80 µV in all other channels) were excluded (7.4%) from the analysis of 

event-related potentials (ERPs), leaving on average 219, 199 and 204 trials per participant for the 

ERP analysis of repeat, feature change and dimension change trials, respectively. 

  

 Mean Response Times and Errors.  

 Experiment 1 – EEG. Analysis of the mean response times (RTs) showed significant costs of 

changing the target feature and the target dimension between trials: A repeated-measures 

ANOVA with the factor of trial type (repeat, feature change, dimension change) showed that 
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mean RT significantly differed between the three conditions, F(2,22)=35.4, p<.001, η
2
=.76. 

Compared with repeat trials (M=513ms), both changes of the target feature and the target 

dimension significantly delayed RT, by 24ms and 37ms, respectively, both ts(11)=7.0, p<.001. 

Dimension switch costs were also significantly larger than feature change costs, t(11)=2.8, 

p=.017.  

 The same results were obtained for the arcsine-transformed error scores: There were 

significant differences between the trial types, F(2,22)=20.7, p<.001, η
2
=.65. Compared with 

repeat trials (M=5.6%), more errors were committed when the target feature changed (M=7.4%), 

t(11)=2.5, p=.031, and when the target dimension changed (M=11.1%), t(11)=5.2, p<.001. In 

addition, error scores were higher on dimension change trials than on feature change trials, 

t(11)=5.7, p<.001 (Fig. 2). 

 Experiment 2 – fMRI. The results of the fMRI experiment displayed a similar pattern: The 

ANOVA showed significant RT differences between the trial types (repeat, feature change, 

dimension change), F(1,7)=27.9, p<.001, η
2
=.80. Compared with repeat trials (M=479ms), 

changing the target feature led to switch costs of 26ms, t(7)=5.7, p=.001) and changing the target 

dimension led to switch costs of 34ms, t(7)=7.1, p<.001. The respective switch costs did not 

differ significantly from one another, t(7)=1.5, p=.17. The same analyses computed over the 

arcsine-transformed error scores showed significant differences between the conditions, 

F(1,7)=8.3, p=.004, η
2
=.54. Compared with repeat trials (M=3.3%), more errors were committed 

on feature change trials (M=6.7%), t(7)=3.8, p=.007, and on dimension change trials (M=6.4%), 

t(7)=4.2, p=.004, with no differences between feature and dimension change trials, t<1 (see Fig. 

2).  

 In sum, both experiments showed significant switch costs for changes of the target 

dimension and the target feature. In the EEG experiment we additionally found higher costs for 

changes of the target dimension than the target feature. This is a common result (e.g., Kumada, 

2001; Mortier et al., 2005), which was however not observed in the fMRI experiment – possibly 

because the longer ITIs selectively reduced across-dimension switch costs. In line with this 

possibility, Maljkovic and Nakayama (1994) reported that feature priming effects survive long 

ITIs of ~12s, whereas no such long-lasting effects have been reported for across-dimension 

switch costs. 
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On the other hand, the pattern of switch costs did not differ significantly between 

experiments. Comparing the mean RT with a 2 (experiment: 1, 2) x 3 (trial type: repeat, feature 

change, dimension change) mixed-model ANOVA yielded only a significant main effect of the 

trial type, F(2,36)=58.9, p<.001, but no interaction with experiment, F<1. Independent t-tests 

computed over the data of each trial type (repeat, feature change, dimension change) similarly 

revealed no differences between the experiments, all ts<1.6, ps>.23, indicating that switch costs 

of the target feature and dimension did not differ across experiments. 

 Stimulus-Specific Switch Costs: Experiments 1 (EEG) and 2 (fMRI). To examine whether 

feature and dimension switch costs reliably occurred for all inter-trial transitions, data were 

pooled across experiments and RT switch costs were examined separately for each target 

stimulus (red, yellow, small, large) and the previous target type (n-1 red, n-1 yellow, n-1 small, n-

1 large). As shown in Table 1, significant switch costs (computed as RT on a switch trial – RT on 

a repeat trial) were obtained for all target types and inter-trial transitions, all ts>3.4, ps<.003.  

 

 Table 1. Mean RT separately for each inter-trial transition. 

 n-1 Target Color 

Target Color n-1 red n-1 yellow n-1 small n-1 large 

Red 498 [12.1] 523 [11.8] 530 [12.6] 519 [12.5] 

Switch Cost - 25ms ** 32ms ** 21ms * 

Yellow 488 [12.8] 463 [11.9] 499 [15.2] 495 [14.8] 

Switch Cost 23ms ** - 34ms ** 30ms ** 

Small 573 [15.7] 565 [15.5] 527 [11.7] 554 [14.3] 

Switch Cost 47ms ** 38 ms ** - 27ms ** 

Large 555 [12.4] 553 [14.7] 541 [13.7] 513 [11.8] 

Switch Cost 42ms ** 40ms ** 29 ms ** - 

Note. Numbers in brackets denote the standard error of the mean. Switch costs are computed as 

the difference between RT on trials with different target attributes and direct repeat trials. 

*p=.0025, **p<.001, as per two-tailed t-test.  
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 EEG Results & Discussion: N2pc, s-LRP and r-LRP 

 N2pc. The top panel of Figure 3 shows grand-average ERPs elicited at electrode sites PO7/8 

contra- and ipsilateral to the hemi-field of the target, separately for repeat, feature change and 

dimension change trials. The graphs suggest that all three experimental conditions yielded N2pc 

components of similar size. This observation was statistically confirmed when ERP mean 

amplitudes, measured in the 190-290 ms post-stimulus time window, were subjected to a 

repeated-measures ANOVA with the factors trial type (repeat, feature change, dimension change) 

and laterality (ipsilateral, contralateral). The ANOVA revealed a significant main effect of 

laterality, F(1,11)=14.1, p = .003, but no effect of trial type, F(2,22)=2.4, p =.115, nor a reliable 

interaction, F<1. The finding of similar N2pc amplitudes on repeat (M=-0.6µV), feature change 

(M=-0.6µV) and dimension change trials (M=-0.6µV) shows that attention was shifted to the 

target in all three conditions. 

 To examine whether changes of the target feature or dimension delayed attention shifts to the 

target, N2pc onset latencies were determined on the basis of difference waves (obtained by 

subtracting ipsilateral from contralateral ERPs). Figure 3 (left middle panel) shows these 

difference waveforms, separately for the three trial types (repeat, feature change, dimension 

change). Comparing onset latencies (determined at 40% of the N2pc peak amplitude) across 

conditions with a one-way ANOVA showed that the N2pc onsets differed significantly between 

repeat, feature change, and dimension change trials, Fc(2,22)=5.0, p=.016. Paired t-tests showed 

that onset latencies on feature change trials (236 ms) were significantly delayed compared to 

repeat trials (211 ms), tc(11)=3.4, p=.006, and dimension change trials (214 ms), tc(11)=3.3, 

p=.007. Onset latencies for repeat and dimension change trials did not significantly differ, tc< 1.
1
 

Thus, attention shifts to the target were delayed by changes of the target defining feature only, 

                                                 
1
 Additional analyses using an N2pc onset criterion of 0% (reflecting the point in time when each N2pc 

difference wave diverged from 0) and of 50% computed over the jack-knifed data revealed exactly the 

same results. The ANOVA on N2pc onset latencies calculated by means of a 0% criterion revealed a 

significant main effect of trial type, Fc(2,22) =6.6, p=.004. The N2pc on feature change trials (207 ms) 

was delayed relative to the N2pc on repeat (174 ms), tc(11)=3.0, p=.001, and dimension change trials (182 

ms), tc(11)= 3.2, p=.009. N2pc onset latencies were statistically the same on repeat and dimension change 

trials, t<1. The same pattern was found on N2pc onset latencies measured with a 50% onset criterion. The 

ANOVA revealed a main effect of trial type, Fc(2,22)=5.6, p=.007, with delayed N2pc latencies on feature 

change (240 ms) relative to repeat (215 ms), tc(11)=3.7, p<.001, and dimension change trials (218 ms), 

tc(11) = 3.3, p=.007, and no differences between repeat and dimension change trials, tc< 1. 
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whereas changes of the target defining dimension did not affect the speed of target selection. It is 

also worth noting that, the feature switch costs on N2pc latencies (25 ms) almost perfectly 

matched the size of behavioural feature switch costs (26 ms). 

 s-LRP. The bottom panel of Figure 3 displays s-LRP difference waveforms at electrode sites 

C3/4 separately for repeat, feature change, and dimension change trials. All s-LRPs were of 

similar size, as was demonstrated by a one-way ANOVA on mean amplitudes measured in the 

300-500 ms post-stimulus time window, F<1.  

 To examine whether feature and dimension changes produce delays in response selection 

processes, we compared s-LRP onset latencies (defined as 50% of the s-LRP peak amplitude) 

between repeat, feature change and dimension change trials using a one-way ANOVA. The 

results showed a main effect of trial type, Fc(2,22)=5.8, p=.010, reflecting that s-LRP onset 

latencies were significantly delayed on dimension change trials (310 ms) compared to repeat 

trials (282 ms), tc(11)=3.0, p=.012, whereas feature change trials (298 ms) differed neither from 

repeat trials, tc(11)=2.1, p = .061, nor from dimension change trials, tc(11)=1.6, p=.145. 

Numerically, the dimension change costs on the s-LRP onset latencies (28 ms) can account for a 

large portion of the RT costs (41 ms). By contrast, the non-significant s-LRP onset delay for 

feature changes relative to repeat trials cannot be interpreted as arising from response selection 

processes. Within the limits imposed by criterion-based latency estimates, this delay reflects the 

propagation of the initial delay in shifting attention to the target (N2pc onset delay; see e.g., 

Eimer, 1996; Töllner et al., 2008; Wiegand et al., 2012). Taken together, the pattern of ERPs 

supports the two-system view (e.g., Becker, 2010a) - changing the target feature leads to costs on 

the level of target selection (N2pc), whereas target dimension changes produce costs on the level 

of response selection (s-LRPs).  

 r-LRP. Figure 3 (right central panel) shows difference waveforms at electrode sites C3/4 

locked to the time of the response. A repeated-measures ANOVA computed over the mean 

amplitudes in the 150-50 ms time window prior to response showed no significant differences 

between the different trial types, indicating that the r-LRPs were of equal magnitude on repeat, 

feature change and dimension change trials, F<1. 

 To examine whether changing the target feature or dimension would delay response execution 

processes, we compared r-LRP onset latencies (determined at 90% of the r-LRP amplitude) on 

repeat, feature change and dimension change trials with a one-way repeated-measures ANOVA. 
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The analysis showed that r-LRP onset latencies did not differ significantly from each other, Fc< 1 

(repeat: -78 ms; feature change: -79 ms; dimension change: -85 ms). Hence, the r-LRPs were not 

affected by either changes of the target feature or the response. An effect of target changes on the 

r-LRP was not predicted, because the r-LRP onsets typically reflect the time-course of executing 

a response (e.g., Toellner et al., 2008), and we varied only the sensory characteristics of the 

target, and not the difficulty of response execution (i.e., all conditions required a simple key-press 

response). 

 Collectively, the results of the EEG experiment suggest that switch costs occurring as a result 

of changes of the target feature (e.g., red/yellow) and the target dimension (e.g., red/large) may 

not reflect the same underlying mechanism (e.g., Becker, 2008a, 2010a). Whereas feature 

changes predominantly delay attention shifts to the target, changes of the target dimension mainly 

interfere with later, response selection processes. This dissociation is supported by two major 

findings: First, the onset of the N2pc, which reflects the time required to shift attention to the 

target, was selectively delayed for feature change trials, not dimension change trials. Second, the 

onset of the s-LRP, which reflects the time-course of response selection, was delayed for target 

dimension changes, whereas the s-LRP on feature change trials was not delayed beyond 

expectations (i.e., more than the initial N2pc delay). These results support the two-system view 

(e.g., Becker, 2008a, 2010a), that changing the target feature leads to costs on the level of target 

selection (N2pc), whereas target dimension changes produce costs on the level of response 

selection (s-LRPs).  

 The present findings, however, should not be taken to mean that the respective other processes 

didn’t contribute to RT switch costs observed in either condition. For instance, on dimension 

change trials, the s-LRP onset delay was numerically smaller than the RT switch cost (by 13 ms), 

and there was a small and non-significant delay in the N2pc onset, allowing for the possibility 

that early perceptual processes may have contributed to dimension change costs. Similarly, it 

remains possible that response selection costs contribute to feature change costs (although this 

assumption seems unnecessary, as the delay in attention shifts (N2pc onset delay of 25ms) can 

fully explain the RT switch cost (of 26ms)). What seems to be clear from the present data is that 

the bulk of feature and dimension change costs reside in early attentional processes versus 

response-selection processes, thereby supporting the two-system account (Becker, 2010a). 

 



 15 

 fMRI Results & Discussion. 

 The results of the fMRI experiment are depicted in Figures 4a-c and Table 2. We first 

contrasted feature change trials and dimension change trials separately with repeat trials 

(Dimension Change > Repeat and Feature Change >Repeat). Differences between the two types 

of switch costs were further analysed by directly comparing target dimension changes and feature 

changes (Dimension Change > Feature Change and Feature Change > Dimension Change). The 

results of the non-parametric permutation tests are reported at an FDR-corrected alpha level of 

.05 (see Table 2; all uncorrected ps<.001). 

 Dimension changes. Comparing dimension change trials to repeat trials (Dimension Change > 

Repeat; Fig. 4a, blue regions) showed increased activation of parietal areas surrounding the 

superior parietal lobule (SPL), and the left premotor cortex (BA 6). Replicating the findings of 

Pollmann et al. (2002, 2006), we also found activation in the right frontal pole and the right 

orbito-frontal cortex as well as bilaterally in middle frontal areas. 

 Comparing dimension change trials with feature change trials (Dimension Change > Feature 

Change) revealed no significant differences in the SPL, but significant differences in two 

locations of the right frontal pole, bilateral premotor areas, as well as in the right supplementary 

motor area (SMA). In addition, this contrast revealed higher activation in the right insula, the 

right fusiform gyrus, and the left middle frontal gyrus (see Fig. 4a, red regions). 

 Feature changes. Comparing feature change to repeat trials (Feature Change > Repeat; Fig. 

4b, green clusters) also led to significant activation of the left precuneus, but otherwise showed a 

markedly different results pattern. Consistent with the results of Kristjansson et al. (2007), feature 

changes led to significant activation of occipital areas, compared to repeat trials. In addition, 

significant activation of the right intraparietal lobule (IPL) was observed.  

 Compared with dimension change trials, feature changes (Feature Change > Dimension 

Change) led to more activation in right and left occipital areas. Moreover, feature change trials 

led to significantly more activation in the dorsal part of the IPL (see Fig. 4b, red clusters).  
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Table 2.  Size and MNI coordinates for significant clusters, Experiment 2.   

Extent MNI Coordinates (mm) Structure 

(voxels) x y z  

Dimension Change > Repeat 

279 -12 -54 54 L precuneus cortex/SPL 

84 -30 -3 63 L superior/precentral frontal gyrus 

53 -54 -66 18 L lateral occipital cortex 

48 60 -45 30 R angular/supramarginal gyrus/IPL 

39 24 27 33 R middle frontal gyrus 

39 27 57 24 R frontal pole 

34 -30 30 36 L middle frontal gyrus 

29 -6 27 24 L cingulate cortex (anterior division) 

28 -51 -66 -6 L insular cortex 

Dimension Change  > Feature Change 

122  27 36 33 R frontal pole/middle frontal gyrus  

110 -21 -9 66 L superior/precentral frontal gyrus 

62 21 15 48 R superior frontal gyrus 

59 30 57 18 R frontal pole 

54 -6 0 48 L supplementary motor cortex 

52 27 27 3 R insular cortex  

37 24 -42 -18 R temporal occipital fusiform gyrus 

28 -30 30 36 L middle frontal gyrus 

Feature Change > Repeat 

102 -12 -66 45 L precuneus cortex/SPL  

101 15 -87 -3 R occipital pole 

78 51 -33 36 R parietal/supramarginal gyrus/IPL  

70 -15 -87 3 L occipital pole 

Feature Change > Dimension Change 

119 36 -24 33 R IPL 

30 21 -96 -12 R occipital pole 

28 -12 -87 -15 L occipital pole 
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 In sum, the results of the fMRI experiment showed that changes of the target dimension and 

the target feature led to activation of different and largely separable brain regions. In fact, the 

results reveal only two regions that were both more strongly activated by changes of the target 

feature and the target dimension (compared to repeat trials); the left SPL, and the right TPJ/IPL 

(see Fig. 4C). Apart from this, there was no overlap between regions that were active in feature 

change versus dimension change trials, indicating that feature changes and dimension changes 

have separable effects and may affect visual search at different levels of processing. 

 

GENERAL DISCUSSION 

 In the present study we directly compared trial-to-trial target feature changes to dimension 

changes in a simple target detection task. The results were clear: Feature changes delayed 

attention shifts to the target, whereas target dimension changes mostly interfered with later, 

response selection processes. Thus, the results support an attentional account of feature change 

costs and a response biasing account for dimension switch costs, in line with the two-system 

hypothesis (Becker, 2010a).  

 Two findings from the EEG support this two-system account: First, target feature changes 

significantly delayed the onset of the N2pc (an electrophysiological marker for attention shifts; 

Eimer, 1996), whereas dimension changes did not interfere with target selection. Second, 

dimension changes led to a significant delay in the s-LRP (an electrophysiological marker for 

response-selection; Hackley & Valle-Inclan, 2003), indicating that dimension changes interfered 

with response selection. 

 The fMRI study similarly showed that feature and dimension changes have dissociable effects 

as feature and dimension change costs were largely associated with different brain areas. There 

were only two regions showing a moderate overlap for feature and dimension costs (left SPL and 

right IPL), indicating that the associated processes are largely driven by different underlying 

neural substrates. Specifically, target dimension changes led to higher activation in pre-motor and 

other frontal areas, regions that have previously associated with response-selection processes 

(Dux et al., 2006, 2009; Marois, Chun & Shima, 2005), and feature changes led to higher 

activation in occipital areas, previously implicated in featural attention processing (e.g., Serences 

et al., 2005). 
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 Theoretical Implications 

 The present study represents the first successful attempt to study the electrophysiological and 

systems-level hemodynamic (neural) correlates of feature and dimension changes within a single 

task with the same set of stimuli used for all the conditions. Specifically, within each experiment, 

feature and dimension changes of the target were varied randomly within a block, which allowed 

directly comparing switch costs arising from feature changes versus dimension changes in the 

absence of confounds arising from differences in the stimuli, task or participants. Moreover, 

although fMRI and ERP measurements were conducted in separate experiments and with 

different subjects, the EEG results can inform the interpretation of fMRI results and vice versa, 

which allows us to interpret the results regarding the neural correlates of feature and dimension 

switch costs with high temporal and spatial resolution.  

 Of note, the present findings closely match the results of previous studies investigating target 

dimension and target feature changes, despite the fact that these studies used different tasks (i.e., 

compound search task) and stimuli (e.g., Eimer et al., 2010; Kristjansson et al., 2007; Pollmann et 

al., 2006; Töllner et al., 2008). Yet, previous work often interpreted the findings very differently, 

with the greatest discrepancy being that switch costs due to target dimension changes were often 

attributed to early attentional processes (e.g., Pollmann et al., 2000, 2006; Töllner et al., 2008). 

The results of the present study are inconsistent with this hypothesis, since only feature changes 

but not dimension changes delayed early attentional processes (i.e., N2pc onset). The discrepancy 

is however not in the results: Interestingly, an examination of the literature reveals that previous 

studies had similarly failed to show sufficiently large N2pc onset or peak latency delays that 

could explain across-dimension switch costs (e.g., Töllner et al., 2008, 2010), whereas N2pc 

delays due to changes of the target feature matched the behavioral costs, reflecting delays in 

shifting attention to the target (e.g., Eimer et al., 2010). However, because previous studies 

lacked the means to directly compare effects of feature and dimension changes, small N2pc peak 

latency delays were still interpreted as evidence that dimension switch costs were due to delays in 

shifting attention to the target (e.g., Töllner et al., 2008). In the present study, we were able to 

directly compare the effects of dimension changes to feature changes, which revealed that only 

feature changes were associated with attentional switch costs. 

 Previous fMRI studies on dimension changes found significant activation of multiple posterior 

brain areas (e.g., Pollmann et al., 2000: fusiform gyrus, lateral occipital gyrus, superior/middle 

temporal gyrus, SPL and precuneus; Pollmann et al., 2006: IPS, fusiform gyrus, striate/peristriate 
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cortex and posterior putamen/claustrum) that have been implicated in early attentional processes 

(Corbetta et al., 1993, 1995, 2000; Corbetta & Shulman, 1999; Kelley et al., 2008; Macaluso et 

al., 2000; Nobre et al., 1997, Vandenberghe et al., 2000; Yantis et al., 2002). Hence, it was 

concluded that dimension changes interfere with attention shifts to the target. Moreover, 

significant activation of frontal areas and especially the dorso-lateral pre-frontal cortex (DLPFC) 

was interpreted as evidence that DLPFC is involved in re-assigning attentional weights to 

different stimulus dimensions (e.g., Pollmann et al., 2000). In the present study, we similarly 

found activation in multiple frontal brain areas (i.e., right frontal pole, right middle frontal gyrus, 

left precentral gyrus), as well as posterior brain areas (i.e., left lateral occipital cortex and SPL). 

However, we cannot interpret the latter results as reflecting early attentional switch costs, because 

the results from the EEG study showed that dimension changes did not interfere with attention 

shifts to the target. Instead, target dimension changes interfered with response selection (as 

reflected in the significant s-LRP onset delay). This indicates that the activation of frontal and 

parietal areas observed at target dimension changes has to be interpreted within the framework of 

a response selection account.  

 According to a response selection hypothesis, stimulus-to-response mappings (SR-mappings) 

that are automatically created in the course of the experiment create a bias to change the response 

when the target dimension changes, which leads to activation of an incorrect response on change 

trials (i.e., target absent response when target present response is required; e.g., Becker, 2010a; 

Cohen & Magen, 1999; Mortier et al., 2005). According to this account, the parietal and frontal 

areas as well as the ACC that were found to be active at dimension changes could be involved in 

resolving conflicts in response selection. 

 In line with this contention, previous studies have shown that posterior parietal areas are 

involved in governing SR-mappings (e.g., Rushworth et al., 1997, 2001; Wager et al., 2005). For 

instance, Rushworth and colleagues (2001) examined effects of changing visual selection rules 

(attend to shape/color) versus response rules. Visual changes were associated with activation in 

posterior lateral intraparietal sulcus and the parieto-occipital region, whereas changes of the 

response rules led to activation in the medial intraparietal sulcus, posterior SPL, dorsomedial 

parietal cortex, and the anterior lateral intraparietal sulcus. Rushworth and colleagues (2001) 

concluded that modulation of the SPL and the medial parietal cortex are related to changes of the 

response rules, whereas the core visual selection areas are located further in the intraparietal 

sulcus. The present findings dovetail with those of Rushworth and colleagues (1997, 2001), 
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especially in that both studies showed minimal overlap between areas involved in visual selection 

versus response conflict, and support their conclusion that SPL has a role in maintaining and 

applying the correct SR mappings (or visuomotor rules, as they are called in Rushworth et al., 

2001). 

 In addition, we found that dimension changes significantly increased activation in the pre-

motor area/supplementary motor area (SMA) and other frontal areas (e.g., DLPFC). The 

activation in the pre-motor areas may be linked to the incorrect response being activated, whereas 

the other frontal activations most likely reflect the need to re-organise SR-mappings. In line with 

this interpretation, Wager and colleagues (2005) showed that a go/no-go task, which required 

withholding of incorrect responses, led to significant increases in the brain areas that closely 

matched those activated by target dimension changes; viz. the DLPFC, right anterior PFC, 

premotor cortex, SMA (as well as posterior and inferior parietal regions; compare Pollmann and 

colleagues, 2000; see also Dux et al., 2006, 2009; Filmer et al., 2013a,b; Tombu et al., 2011).  

 In sum, the results of the target dimension changes can be interpreted in a similar manner to 

previous studies that investigated genuine response conflicts: Whereas frontal and parietal areas 

have a central role in governing SR mappings, pre-motor areas are involved in a more executive 

stage of applying SR mappings (e.g., Wise et al., 1997; Wise & Murray, 2000).  

 Proponents of the early attentional view of dimensional switch costs could argue that 

dimension changes also led to significant activation of occipital cortex, close to the (functionally 

defined) lateral occipital cortex (LOC), which could be interpreted as a correlate for early 

attentional switch costs (see Pollmann et al.’s (2000) interpretation of activation in the lateral 

occipital sulcus). As noted above, however, this interpretation is at odds with the results from the 

EEG study (Experiment 1). Moreover, the feature change condition clearly showed evidence for 

attentional switch costs without significant activation of those occipital areas that were active 

during dimension changes. This indicates that activation of this lateral occipital area may not 

reflect attentional switch costs. Instead, target feature changes led to significant activation of 

early visual areas (viz., right and left occipital pole). These results mimic the findings of 

Kristjansson et al. (2007) and corroborate their conclusion that feature changes produce 

attentional switch costs that are reflected in early visual areas. 

 Previous studies can potentially shed light on how the significant activation of lateral occipital 

areas could be interpreted without assuming that dimension changes affect attentional processes. 

For instance, in an eye tracking study, Becker (2010) found that target dimension changes 
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delayed processes associated with object identification, since the target dwell times were 

selectively prolonged for target dimension changes, whereas eye movements to the target were 

not delayed (Becker, 2010a). Significant activation of the occipital cortex close to the LOC could 

thus be due to the fact that changing the target dimension prolongs target identification after the 

target has been visually selected, but possibly prior to selecting the response (e.g., Becker, 2008a, 

2010a; Müller & Krummenacher, 2006). This interpretation is also in line with the view that 

LOC is mostly involved in processes of object recognition and object identification (e.g., Grill-

Spector et al., 2001).  

 Hence, a plausible account of feature and dimension changes would be that changing the 

target dimension across trials leads to (1) costs in visual identification of the target that 

commence after the attention has been shifted to the target, reflected in the significant activation 

of LOC, and (2) a response selection bias to change the response (compared to the last trial), 

reflected in the significant activation of frontal areas and especially the pre-motor area (see Table 

2 and Fig. 4). By contrast, changing the target feature within a dimension across trials 

predominantly delays attention shifts to the target, as is probably reflected in the significant 

activation of the right and left occipital cortex (see also Kristjansson et al., 2007). 

 

 Explaining switch costs at feature and dimension changes. 

 The present results provide the first neurophysiological evidence for the two-system 

hypothesis that target feature changes but not dimension changes interfere with attentional 

selection of the target. How can we explain that feature changes cause attentional switch costs 

only within a stimulus dimension but not across different dimensions?  

 We propose that this result can be explained by a nontarget biasing account, which assumes 

that an attentional bias to a given feature will delay target selection only when the bias favours 

selection of a nontarget. According to most theories of top-down control, attention is rather 

broadly biased to the target feature; for instance, redder or yellower rather than the exact color 

values (e.g., Becker, 2010b; Becker, Folk & Remington, 2013; Duncan & Humphreys, 1989; 

Wolfe, 1994). Such a broad selection criterion can lead to erroneous selection of the nontargets 

when the target feature changes, because the nontargets are now more similar to the previous 

target than the actual target. For instance, when a target on the previous trial had been red among 

orange nontargets, attention will be biased to select redder or red-similar items on the next 

trial(s). This leads to erroneous selection of the nontargets when the next target is yellow, because 
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the orange nontargets are now more similar to the previous target (redder). Several studies have 

shown that target feature changes indeed bias attention and the gaze to the nontargets (e.g., 

Becker, 2008a,b,c, 2010a,b, 2013; McPeek, Maljkovic & Nakayama, 1999).  

 Under this framework, changing the target dimension does not produce any attentional costs, 

because an attentional bias to select larger or smaller items does not favour selection of the 

nontargets over the target when these differ only in color (or vice versa). For example, when the 

previous target had been larger, the bias to select larger items does not translate into a preference 

for red, orange or yellow items. In the absence of an attentional bias to select the nontargets, the 

target can be quickly selected simply because it is the only salient item in the display – in short: 

because it has no competition.
2
 

 The nontarget biasing account can also explain some puzzling findings, viz. that mere changes 

in the target color or the non-target color alone have previously failed to show N2pc onset delays, 

whereas partially swapping the target and non-target features have shown N2pc onset delays that 

matched those observed in a full-swap condition (Eimer et al., 2010, Experiment 2). In studies 

that failed to show significant switch costs at mere target feature changes, colors from different 

categories were used (red, green, blue; e.g., Eimer et al., 2010). Presumably, a bias for a red 

target item from the previous trial does not translate into a bias to select (green or blue) 

nontargets when the color of the target changes (to blue or green). Partially swapping the target 

and nontarget colors (e.g., from red target among green nontargets to green target among blue 

nontargets; or blue target among red nontargets) will bias attention to the nontargets, either 

because these now have the color of the previous target, or because the target has inherited the 

color previously associated with the nontargets and is consequently inhibited (which in turn 

increases competition from the nontargets). 

 A second important question is why only changes of the target dimension and not the target 

feature would create response conflicts and delay response selection. Cohen and Magen (1999) 

proposed that response modules are organized in a dimension-specific manner, but it is still an 

open question why SR-mappings should be organized in this manner. A full account of 

dimension change costs is outside the scope of the present study. However, it seems that a 

dimension-specific response bias could result from an adaptation to contingencies in the 

                                                 
2
 According to the nontarget biasing account, changing the target dimension could still produce attentional switch 

costs – for instance, when the target has a very low feature contrast and target-nontarget discrimination is very 

difficult. However, changing the target feature should produce still larger attentional switch costs than dimension 

changes, if the feature change renders the nontargets similar to the previous target. 
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environment. Of note, in everyday life, changing the action (only) in response to a large change 

in the sensory input seems quite adaptive: For example, in repetitive tasks such a fruit-picking, 

attentionally selecting a fruit with slightly different features as the previous one (e.g., a yellower 

fruit when the previous one had been redder) would still often require the same action (e.g., 

picking the fruit). However, when attention is attracted to a salient stimulus from a different 

stimulus dimension (e.g., a moving beetle), the required action typically changes, too. Hence, a 

bias to change the response (or to inhibit the old response) upon changes of the stimulus 

dimension may result from adaptation to regularities in the environment, which dictate that 

executing the same response to stimuli from different dimensions will often be inappropriate. 

CONCLUSION 

 The present study found dissociable effects of target feature changes and target dimension 

changes in visual search: While changes of the target feature interfered with visual selection, 

changes of the target dimension interfered with response selection. Of note, our EEG and fMRI 

results closely matched those of previous studies using a compound search task, indicating that 

feature and dimension changes affect search similarly across different paradigms. Yet, previous 

studies occasionally arrived at distinct conclusions, which highlight the importance of directly 

comparing feature and dimension changes in identical stimulus conditions and tasks. The present 

results support a visual selection account for target feature changes, and a response selection 

account for target dimension changes, thus providing new insights into the mechanisms of visual 

selection and response selection in visual search. Importantly, the present results also indicate the 

possibility of studying networks responsible for visual selection vs. response selection by 

systematically varying only the intertrial contingencies of the visual input.
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Figure 1. Stimuli and design.  Participants had to detect a target that differed either in color or size from 

the nontargets, and to indicate whether the target was present or absent. Trials in which the target changed 

from red to yellow or vice versa or from large to small or vice versa were classified as feature change 

trials, and trials in which the target changed from a larger or smaller target to a red or yellow target or vice 

versa as target dimension trials.

Figure 1. Stimuli and Design of EEG/fMRI Experiments
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Figure 2. Mean RT and errors for feature and dimension changes. Mean RT and error scores on repeat 

trials, feature change trials and dimension change trials, depicted separately for the EEG 

experiment (left panels) and the fMRI experiment (right panels). Fchange=Feature Change 

Trials; Dchange=Dimension Change Trials. *p<.05; **p<.001.
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Figure 3.Results of EEG experiment: N2pc, s-LRP and r-LRP Grand-average event-related potentials 

(ERPs, in microvolt) measured in the EEG experiment, elicited at electrode sites PO7/8 contra- and 

ipsilateral to the location of a target (top panel). The middle and bottom panels show difference 

waveforms obtained by subtracting ipsilateral from contralateral ERPs at sites PO7/8 (N2pc) and C3/4 

locked to the onset of the stimulus (s-LRP) and the response (r-LRP), separately for repeat, feature 

change, and dimension change trials. 
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Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Results of the fMRI experiment. Changing the target dimension led to an increased BOLD 

response in SPL, frontal areas, and lateral occipital cortex (a). Changing the target feature led to higher 

activation of occipital areas and posterior parietal areas including SPL and IPL (b). Two regions showed 

significant activation for both target feature and target dimension changes, the left SPL (left image) and 

the right TPJ / IPL (right image) (c). All images are in neurological convention (Left side=Left 

hemisphere; Right side=Right hemisphere). 
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