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Abstract
Although magnetic fields interact weakly with biological tissues, at high fields, this interaction is
sufficiently strong to cause measurable shifts in the Larmor frequency among various tissue types.
While measuring frequency shift and its anisotropy has enabled NMR spectroscopy to determine
structures of large molecules, MRI has not been able to fully utilize the vast information existing
in the frequency to elucidate tissue microstructure. Using a multipole analysis of the complex MRI
signal in the Fourier spectral space, we developed a fast and high-resolution method that enables
the quantification of tissue’s magnetic response with a set of magnetic susceptibility tensors of
various ranks. The Fourier spectral space, termed p-space, can be generated by applying field
gradients or equivalently by shifting the k-space data in various directions. Measuring these
tensors allows the visualization and quantification of tissue architecture. We performed 3D whole-
brain multipole susceptibility tensor imaging in simulation, on intact mouse brains ex vivo and on
human brains in vivo. We showed that these multipole susceptibility tensors can be used to image
orientations of ordered white matter fibers. These experiments demonstrate that multipole tensor
analysis may enable practical mapping of tissue microstructure in vivo without rotating subject or
magnetic field.
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Introduction
Magnetic fields can penetrate deep into the body since they interact with biological
molecules weakly as evidenced by the routine application of MRI in human bodies. Because
of this weak interaction, MRI has traditionally relied on the amplitude of the nuclear
magnetization from the very beginning to generate tissue contrast (Lauterbur, 1973).
However, at high fields, interaction between magnetic field and the orbital electrons of
biomolecules may introduce a measurable perturbation on the resonance frequency of
surrounding water protons. This perturbation in turn reflects the molecular content and
microstructure of the tissue. A notable example is the relative frequency shift between gray
and white matter and between layers of the cortex which is thought to originate from
variations of magnetic susceptibility (Duyn et al., 2007; Rauscher et al., 2005). Although
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frequency shift has provided a new image contrast for MRI, utilizing this contrast to infer
neural architecture and brain structural connectivity remain challenging.

One potential way to fully utilize this frequency is to borrow techniques from NMR
spectroscopy. Indeed, measuring frequency shift has been instrumental in NMR
spectroscopy for probing molecular structure. While high-resolution NMR techniques
provide a wealth of information (de Beer et al., 1994; Otting et al., 1990; Tolman et al.,
1995; van Zijl et al., 1984), adapting those techniques to high-resolution imaging is not yet
possible. The difficulty is partially due to low sensitivity, limited scan time and vastly more
complex physiological conditions encountered in volumetric brain imaging. Because of
these difficulties, frequency shift measured by MRI has been limited to the zero-th order
information, i.e. the mean frequency of a whole voxel (Dixon, 1984; Glover and Schneider,
1991; Haacke et al., 1995; Rauscher et al., 2005; Weisskoff and Kiihne, 1992). Higher-order
information such as susceptibility anisotropy of dipoles and quadrupoles, if resolved, would
provide important information of sub-voxel tissue and cellular architecture. Similar to the
important role that NMR has played in untangling molecular structure (Cavalli et al., 2007;
Otting et al., 1990; Wishart et al., 1992), imaging higher-order frequency variation could
provide a powerful tool for probing tissue microstructure such as brain connectivity
noninvasively.

The backbone of brain connectivity is composed of bundled long projecting axons.
Structurally, this connectivity backbone may be compared to the backbones of
macromolecules. Ordered arrangement of atoms along the chain axis of macromolecules
gives rise to an NMR measurable anisotropic susceptibility tensor. Similarly, on the tissue
scale, the ordered arrangement of axon bundles also produces anisotropic frequency (He and
Yablonskiy, 2009) and susceptibility (Lee et al., 2010; Li et al., 2012b; Liu, 2010). Although
the mean susceptibility of a voxel can be measured with a gradient echo (de Rochefort et al.,
2008; Li, 2001; Salomir et al., 2003), it does not measure the orientation dependence of the
susceptibility (Li et al., 2011). To measure the anisotropy of magnetic susceptibility, the
method of susceptibility tensor imaging (STI) has been used (Liu, 2010). A recent study also
explored the capability of STI for tracking neuronal fibers in 3D in the mouse brain ex vivo
(Liu et al., 2012). In large fiber bundles, the orientation determined by STI was found to be
comparable to that by diffusion tensor imaging (DTI) of diffusion anisotropy (Basser et al.,
1994, 2000; Moseley et al., 1990). However, this experimental procedure of STI requires
rotating the object or the magnetic field. The requirement is clearly not convenient or even
impractical for routine brain imaging on standard MRI scanners in vivo.

Here, we developed a method to measure higher-order frequency variations based on a
single image acquisition without rotating the object or the magnet. This method utilized a
multipole analysis of the MRI signal in a sub-voxel Fourier spectral space termed “p-space”
for short. By sampling the p-space with pulsed field gradients or by shifted image
reconstruction, we were able to measure a set of dipole and quadrupole susceptibility
tensors. We illustrated the methodology in a simulation of aligned axons and demonstrated
its use for 3D high-resolution imaging of mouse brains ex vivo at 9.4 Tesla and human
brains in vivo at 3.0 Tesla. We anticipate that the p-space approach may provide a powerful
method for studying tissue microstructure and brain connectivity in vivo and non-invasively.

Methods
The spectral space (p-space) of microscopic magnetic field

For a given imaging voxel containing heterogeneous structures, magnetic field within the
voxel is also heterogeneous due to the interaction between tissue and external field. The total
magnetization of the voxel is an integral of all spins within the voxel, each experiencing a

Liu and Li Page 2

Neuroimage. Author manuscript; available in PMC 2014 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



slightly different local magnetic field. The phase angle of the resulting integral represents
the amplitude of the mean field. The spatial heterogeneity, however, is lost during the
ensemble averaging. If the field distribution within the voxel can be recovered, it will allow
us to infer the underlying tissue microstructure.

One way to recover the field distribution is to apply an external magnetic field gradient
which will modulate the resonance frequency of the spins within the voxel. Specifically,
given a voxel of width [v1, v2, v3] centered at location r in the laboratory’s frame of
reference, the field distribution within the voxel can be denoted as B(r+x). Here, x is the
coordinate of a spin in the voxel’s frame of reference whose origin is at the center of the
voxel. Both r and x are normalized by the width of the voxel, thus dimensionless. In the
presence of a pulsed field-gradient G, the voxel-averaged MRI signal s(r) at time t, ignoring
T2-relaxation, is given by

(1)

Here, i is the imaginary number and the index j represents the three axes of a Cartesian
coordinate system with (1, 2, 3) corresponding to (x, y, z) respectively. B3(r + x) is the z-
component of B(r + x) which is along the direction of the B0 field; ρ(r) is the spin density at
position r and γ is the gyromagnetic ratio. Eq. (1) can be rewritten as

(2)

where p is a dimensionless spatial frequency vector with pj = γGjvjt/2π. The symbol r has
been dropped from the integral with the understanding that both ρ and B3 are expressed in
the voxel’s coordinate system. In other words, the magnetization is proportional to the
Fourier spectrum of the complex magnetization distribution function. Herein, this spectral
space will be referred to as the p-space to differentiate it from the k-space that is commonly
used in image acquisition. The Fourier integral in Eq. (2) can be separated into magnitude
m(r,p) and phase Φ(r,p) as

(3)

Both the magnitude and the phase are expected to depend on the applied field gradient.
Notice that if the voxel is an ideal delta function, i.e. ρ(x) e−iγB3(x)t = δ(x), then the integral
in Eq. (2) will be always equal to 1 regardless of the p-vector. In this extreme case, no
additional information can be gained by applying field gradients. In reality, however, all
imaging voxels have a finite dimension with a distributed magnetization. Sampling the p-
space will thus allow us to probe sub-voxel magnetization and magnetic field distribution.

Multipole susceptibility tensors in the p-space
In a second-order multipole expansion (Jackson, 1975) (or Taylor’s expansion in Cartesian
coordinates) (Appendix A), Φ(r,p) can be written as

(4)
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In Eq. (4), the first term is the mean phase. The second term is a dipole moment in which χd
is a rank-2 dipole susceptibility tensor and p̂ is the unit directional vector. The third term is a
quadrupole moment expressed in terms of a rank-2 quadrupole susceptibility tensor χq.
More specifically, Φ0 is the phase when no gradient is applied and it is related to the image-
space dipole susceptibility tensor (rank 2) χ(r) following (Liu, 2010)

(5)

Here, B ̂0 is a unit directional vector (dimensionless). The quadrupole tensor χq, in its
complete form, is a rank-3 tensor (Jackson, 1975). However, since B0 is in the z-direction,
the third dimension of χq is locked to the z-direction, thus reducing it to a rank-2 tensor.

Similarly, the magnitude can be expanded as

(6)

where both ηd and ηq are dimensionless rank-2 tensors. Given a set of p-vectors, Eqs. (4)
and (6) can be used to determine the multipole tensors.

Measuring p-space susceptibility tensors
To measure p-space multipole tensors, a standard gradient-echo sequence could be used
with an added spectral sensitizing gradient (Fig. 1a). The spectrum-sensitizing gradient
induces a shift in the k-space. Utilizing this shifting effect, we achieved spectral weighting
during image reconstruction by simply shifting the k-space data with the desired p-vector.
This strategy allowed the sampling of the p-space without applying physical gradients. By
shifting the reconstruction window in various directions and with various distances, a series
of images can be reconstructed (Fig. 1b). For each shift in the p-space, a linear phase term is
also added to the image as described in Eq. (2). This linear phase must be removed before
calculating the phase spectrum (Fig. 1b).

The p-space can be sampled in many different ways. If it is sampled on a spherical surface
with a constant radius of p, the susceptibility tensors can be calculated by inverting the
resulting system of linear equations defined by Eqs. (4) and (6). Alternatively, the p-space
can be sampled continuously along a given direction, thus allowing the calculation of the
signal variation along that particular direction. If the maximal p-value along a unit-direction
p̂ is denoted by pmax, the standard deviation of the dipolar phase is given by (Appendix B)

(7)

The standard deviation of the quadrupolar phase is given by

(8)

The corresponding frequency terms can be calculated by dividing by 2πt. The standard
deviations of the magnitude are given similarly with χ replaced by η. Given a set of non-
colinear directions, the susceptibility tensors can be calculated by inverting Eqs. (7) and (8).
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Notice that there is a sign ambiguity when taking the square root of the variance. The choice
of positive sign does not indicate whether the material is diamagnetic or paramagnetic as it
is based on p-space moments rather than image-space susceptibility itself. A notable
advantage of calculating the variance is that the absolute susceptibility tensors can be
determined independent of the reference frequency.

Numerical simulation
A cubic voxel packed with an ensemble of parallel axons was generated. The voxel had a
dimension of d=256 μm on all sides. The axons were aligned along the z-axis. The B0 field
was parallel to the y–z plane, tilted by 50° from the z-axis (Fig. 2a). The inner radius of the
axon was 3.5 μm and the outer radius was 5.0 μm. The distance between two neighboring
axons was uniformly distributed between 11.0 μm and 12.5 μm. The susceptibility of the
axons was set to be −0.082 ppm and the susceptibility anisotropy (χ|| − χ⊥) of the myelin
sheath was 0.163 ppm with χ|| being −0.1 ppm (Li et al., 2012a). Here χ|| is defined as the
susceptibility along the direction parallel to the axon. The susceptibility of the interstitial
space was assumed to be zero as the reference. The voxel was divided into a 512×512×512
grid resulting in a grid size of 0.5 μm. A susceptibility tensor was assigned to each voxel
depending on the tissue type. Only voxels within the myelin sheath had anisotropic tensors.
The major eigenvectors of the myelin tensors were perpendicular to the long axis of the axon
(Li et al., 2012a). The magnetic field at each voxel was computed via the forward Fourier
relationship between susceptibility tensor and magnetic field as expressed in Eq. (5). The
MR signal generated by the voxel was evaluated at TE=20 ms. A total of 10,000 unit p-
vector were generated that evenly cover the surface of a unit sphere. At each orientation, the
p-space was sampled in 128 evenly spaced locations in the range of ±0.5. Gaussian noise
was added in the real and imaginary part of the signal resulting in an SNR of 20. Along a
given direction, the standard deviation was computed for both frequency and magnitude.

MRI experiments
Adult 10-weeks old C57BL/6 mice (n=3, The Jackson Laboratory, Bar Harbor, ME) were
anesthetized and perfusion fixed (Johnson et al., 2002). Brains were kept within the skull to
prevent potential damages caused by surgical removal. Each specimen was sealed tightly
inside a cylindrical tube (length 30 mm and diameter 11 mm). The tube containing the
specimen was placed inside a tightly fitted solenoid radiofrequency coil constructed from a
single sheet of microwave substrate. Images were acquired on a 9.4 T (400 MHz) 89-mm
vertical bore Oxford magnet with shielded coil providing gradients of 2200 mT/m. The
system is controlled by a GE EXCITE MR imaging console. A 3D spoiled-gradient-
recalled-echo (SPGR) sequence was used with the following parameters: matrix size=
512×256×256, field-of-view (FOV)=22×11×11 mm3, bandwidth (BW)=62.5 kHz, flip
angle=60°, TE=[4.4, 7.0, 9.0, 11.0, 13.0, 15.0] ms and TR=100.0 ms. Scan time was 1 hour
and 49 minutes. 3D Diffusion-weighted images were acquired using a pulsed-gradient spin-
echo sequence at a b-value of 1500 s/mm2 and with six encoding directions ([1 1 0], [1 0 1],
[0 1 1], [1 −1 0], [1 0 −1], and [0 1 −1]). One non-diffusion weighted volume was also
acquired in order to calculate the diffusion tensor with a standard linear fitting. The
acquisition parameters were: TE=12 ms, TR=700 ms, matrix=256×128×128,
FOV=22×11×11 mm3. Total scan time for DTI was 22 hours and 19 minutes.

Three healthy adult volunteers were scanned on a 3.0 T GE MR750 scanner (GE Healthcare,
Waukesha, Wisconsin) equipped with an 8-channel head coil and a maximal gradient
strength of 50 mT/m. Images were acquired using a 16-echo 3D SPGR sequence with the
following parameters: FOV=192×192×120 mm3, matrix size=192×192×120, BW=62.5 kHz,
flip angle=20°, TE of the first echo=4.0 ms, echo spacing=2.3 ms and TR=50.0 ms. Total
scan time was 19.2 minutes. A 3D volume of inversion-recovery prepared T1-weighted
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images were also acquired for anatomical reference. The study was approved by the
Institutional Review Board.

p-Space data analysis
A total of 213 orientations in the p-space were sampled. For the convenience of data
shifting, these directions were expressed in signed integer numbers as [n1 n2 n3] without
normalization. The maximal number used was 5. Raw images were first zero-padded to a
cubic N×N×N matrix (N=512 for mouse and 192 for human), thus identical FOV in all three
dimensions. This operation resulted in isotropic resolution in both the k-pace and the image
domain. The k-space data were then shifted by a given p-space vector. Data shifted outside
the prescribed matrix were discarded, while new locations were filled with zeros. Finally, an
N×N×N image was obtained via the inverse Fourier Transform. Along each p-space
orientation, N evenly spaced image volumes were reconstructed. The 15 images on either
end of any direction were discarded to ensure all images have sufficient DC signal.
Consequently, a total of (N-30) images were used for each orientation. If the reconstruction
of an image requires non-integer shift along any dimension, the k-space data were further
upsampled by zero padding along that dimension in the image domain. For example, given
the direction of [1 3 1], one pixel shift in the second dimension requires a third of a pixel
shift in the first and third dimension. To achieve this shift, the k-space was upsampled to a
size of 3N×N×3N.

For each orientation, the standard deviation of the frequency and magnitude was computed.
When computing the standard deviation of the frequency, the phase map at p = 0 was
subtracted from all images on a coil-by-coil basis. This subtraction removed both coil and
background phases and did not require phase unwrapping. The resulting phase maps from all
coils were then summed together. For the magnitude, images from all coils were combined
via the square root of sum of the squares and normalized by that obtained at p = 0. To
calculate the standard deviation of the dipole term, the frequency value at a given p-value
was subtracted from that at −p and the resulting difference was divided by 2. To calculate
the quadrupole term, the frequency at p was summed with that at −p and the resulting sum
was divided by 2. Same procedures were applied for the magnitude. For each orientation, the
pmax value was recorded and used to compute the susceptibility tensors following Eqs. (7)
and (8). A set of tensors was computed for each echo. Tensors from all echoes were
combined to achieve optimal SNR using a weighted summation based on T2*-decay (Wu et
al., 2012). The resulting tensors were diagonalized with eigenvalue decomposition.

Results
Simulation of axon bundles

We first verified the validity of the approach using a simulated bundle of parallel axons that
was situated in a cubic voxel (Fig. 2a). Without noise, both magnitude and frequency
showed a quadratic relationship with p as illustrated for five representative orientations
(Figs. 2b and c). The linear term was absent due to the symmetry of the phantom and the
properties of Fourier transform which state that the Fourier transform of an even function is
even. While the magnitudes were similar among all directions, the frequency curves varied
significantly, demonstrating clear anisotropy (Fig. 2c). Specifically, when the p-vector was
parallel to the axons (direction 1: [0 0 1]), the frequency stayed constant; when the p-vector
was perpendicular to the axons (direction 5: [1 0 0]), the frequency showed the largest
variation. We computed the standard deviation of the magnitude and phase along each
direction. We further illustrated this anisotropic property with a set of 3D color-coded
glyphs (Fig. 2d). For each point on the surface of the glyph, the radial distance from that
point to the origin was scaled by the standard deviation for the corresponding radial
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direction. While the glyph of the magnitude appeared spherical (δm in Fig. 2d), the glyph of
the frequency was donut-shaped (δf in Fig. 2d) with its inverse shaped like an elongated
peanut (1/δf in Fig. 2d). From these glyphs, the orientation of the axons is easily identified
by searching for the minimal standard deviation. In the case with SNR=20, we observed
similar behaviors even though significant fluctuations were present in the signal curves and
the glyphs (Figs. 2e–g).

From these standard deviations, we computed the quadrupole susceptibility tensor for the
magnitude (denoted by ηq) and the frequency (denoted by χq). The dipole susceptibility
tensors (ηd and χd) were absent as there were no linear terms in the p-space signal (Figs. 2b
and c). The resulting tensors were decomposed with eigenvalue decomposition. The
eigenvector corresponding to the minimal eigenvalue (minimal eigenvector for short) was
along the z-axis for χq, the same orientation as the axons. However, for the magnitude, the
minimal eigenvector of ηq was long the y-axis. When noise was added, all eigenvalues
increased. The fractional anisotropy (FA) of χq decreased from 0.727 to 0.155 while the FA
of ηq remains relatively constant at 0.005 (Table 1). FA was computed based on the three
eigenvalues using the same formula as defined in DTI (Pierpaoli and Basser, 1996).

p-Space STI of mouse brains ex vivo
Signal behavior of the mouse brain in the p-space is shown in Fig. 3. Along any given
orientation, neither the magnitude nor the frequency of gray matter showed significant
dependence on the p-value (Fig. 3). White matter, on the other hand, demonstrated strong
dependence on the p-value similar to the simulated axons. Specifically, both magnitude and
frequency demonstrated increasing deviation from their values at the origin respectively
with increasing p-values. These deviations were also orientation dependent. Unlike the
simulation, however, the dependence in the mouse brains demonstrated both dipole and
quadrupole relationship (Fig. 3). At the first echo (TE=4.4 ms), the SNR of the original
images were 15.5 for white matter and 24.1 for gray matter; at the last echo (TE=15.0 ms),
the SNR were 3.7 for white matter and 13.1 for gray matter. For each orientation, we
computed the standard deviations of the dipole and quadrupole terms for the frequency (δfd
for dipole and δfq for quadrupole) and the standard deviations for the magnitude (δmd for
dipole and δmq for quadrupole).

For the frequency standard deviations, both the dipole and the quadrupole term showed clear
anisotropy. Specifically, when the underlying fibers were parallel to the p-vector, the dipole
term δfd was the smallest, e.g. in the hippocampus (hc) when p=[1 0 0] and the genu corpus
callosum (gcc) and the posterior part of the anterior commissure (acp) when p=[0 1 0] (Fig.
4a). In particular, the acp nearly vanished when p=[0 1 0] while it was the brightest when
p=[0 0 1] (Fig. 4a). Similar behaviors were observed for the quadrupole standard deviation
δfq (Supplementary Materials Fig. 1). From the 213 standard deviations, we further
computed the dipole (χd) and quadrupole (χq) susceptibility tensor. The three eigenvalues
of the dipole susceptibility tensor differed significantly from each other (Fig. 4b),
confirming the anisotropy of the p-space dipole tensor. To better visualize this anisotropy,
we generated the glyph of 1/δfd for hc, gcc and acp (Fig. 4b). Similar to the findings in the
simulation, the long axis of the glyph was parallel to the axon orientation. The fractional
anisotropy in the white matter, though high (averaged around 0.6), did not provide good
contrast between gray and white matter (Supplementary Materials Fig. 1). This reduced
contrast was likely caused by the presence of noise as indicated by the simulation.

For the magnitude, while the standard deviation of the dipole term (δmd) exhibited similar
anisotropic property as the frequency (Supplementary Materials Fig. 1), the quadrupole term
(δmq) had low anisotropy (Fig. 4c). This low anisotropy was also apparent from the three
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comparable eigenvalues of the quadrupole susceptibility tensor (ηq) (Fig. 4d). Nevertheless,
the quadrupole term provided strong contrast between gray and white matter (Figs. 4c and
d). Interestingly, although the FA of the quadrupole tensor was low (less than 0.2), it still
offered excellent contrast between gray and white matter (Supplementary Materials Fig. 1).
This contrast did not appear to be affected by the noise as much as in the case of frequency,
which was consistent with the findings in the simulation (Table 1).

To illustrate the orientation of the minimal eigenvector of the dipole susceptibility tensor χd,
we color-coded the orientations and scaled the color intensity by the trace of the tensor. The
color scheme was: red representing left-right, green representing anterior–posterior and blue
representing dorsal–ventral (Fig. 5a). The orientations were coherent within white matter
fiber bundles, for example, the genu of corpus callosum (gcc), the anterior commissure (ac),
the hippocampus (hc), and the trigeminal tracts (tt) (Fig. 5). The orientations also appeared
to be consistent with the underlying axon orientation. For example, the gcc appeared mainly
red as it connects the right and left hemisphere. The laminated structure of the commissure
of superior colliculus (csc) was clear visible, interconnecting the superior colliculi on either
side. In the pons and the medulla, the trigeminal tract was mainly green as it runs anterior–
posterior direction. Due to tissue air boundaries, some artifacts were also visible at edges of
the brain, e.g. in the olfactory bulb (Fig. 5a). These artifacts can be reduced with improved
field shimming. The orientation maps of the minimal eigenvectors were similar for χd, χq
and ηd (Supplementary Materials Fig. 1). The orientation map of ηq, on the other hand, was
different and not indicative of fiber orientation. These findings were consistent with the
simulation.

A comparison between the minimal eigenvector of the dipole susceptibility tensor χd and
the major eigenvector of diffusion tensor was shown in Fig. 6. While overall the color maps
appeared to be similar, differences were also observed. When the eigenvector of χd was
scaled by its trace (Fig. 6a), some structures were highlighted that were not clearly visible
when the eigenvector was scaled by DTI FA (Fig. 6b), including, for example, the dentate
gyrus (dg), the csc and one layered cortical structure. Similarly, none of these structures
were present in the corresponding DTI maps (Fig. 6c). The angles between the two
eigenvectors were generally smaller in white matter regions (Fig. 6d). The mean angle in
regions with a DTI FA value larger than 0.35 was 22°±13°. Interestingly, the orientations
within the cortical layer were similar between dipole susceptibility tensor and diffusion
tensor (Fig. 6d), even though the structure was not visible in DTI (Fig. 6c).

p-Space STI of human brain in vivo
At the first echo (TE=4.0 ms), the SNR of the human brain images were 80.1 for white
matter and 75.1 for gray matter; at the last echo (TE=38.56 ms), the SNR were 35.6 for
white matter and 34.0 for gray matter. Similar to the simulation and the mouse brains, the
signal in the human brain white matter also varied significantly as a function of the p-value
while the gray matter stayed relatively constant (Supplementary Materials Fig. 2).

For the dipole terms, the inverse of the standard deviations (i.e. 1/δmd and 1/δfd) showed a
clear dependence on the orientation of the p-vector (Fig. 7a). When the axons were parallel
to the p-vector, both 1/δmd and 1/δfd were the largest in the corresponding white matter
regions such as the posterior corona radiata (pcr) at p=[1 0 0] and the splenium of the corpus
callosum (scc) at p=[0 1 0] (Fig. 7a). In other words, when the axons were parallel to the p-
vector, δmd and δfd were the smallest (Supplementary Materials Fig. 3). Based on this
anisotropy, we computed the dipole susceptibility tensors (χd in Fig. 7b and ηd in
Supplementary Materials Fig. 3). The orientation of the minimal eigenvector was color-
coded with red representing red-left, green representing anterior–posterior and blue
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representing superior–inferior (Fig. 7b). The FA appeared noisy and did not provide good
gray and white matter contrast (Supplementary Materials Fig. 3). The FA was also
susceptible to large field inhomogeneity caused by air-tissue interfaces, for example, in
areas near the sinus. To examine eigenvectors in the white matter, we thus chose to weigh
the color intensity by the product of the fractional anisotropy and a T1-weighted image. The
color map demonstrated a clear heterogeneity of eigenvector orientations within white
matter fiber bundles. For example, the body of the corpus callosum indicated a right-left
direction (red) while the pcr indicated an anterior–posterior direction (green) confirming the
anisotropy observed in the standard deviation map. Finally, the orientations were consistent
between the two dipole tensors (Fig. 7b and Supplementary Materials Fig. 3).

For the quadrupole terms, only the frequency demonstrated significant anisotropy (Fig. 7c).
The magnitude showed weak anisotropy (Fig. 7c) but excellent tissue contrast, which was
consistent with the mouse brain experiments. Specifically, the contrast exhibited by 1/δmq
resembled that of a T2-weighted image (Fig. 7c). We then computed the quadrupole tensors
for both the frequency (Fig. 7d) and the magnitude (Supplementary Materials Fig. 3). For
the frequency, the trace and the orientation of its minimal eigenvector were similar to those
of the dipole tensors (Fig. 7d). For the magnitude, the orientation of the minimal quadrupole
eigenvector differed completely from the dipole tensors (Supplementary Materials Fig. 3).
While the quadrupole tensor of the magnitude did not show any correlation with the fiber
orientation, the quadrupole tensor of the frequency demonstrated a clear indication of
underlying fiber structures. These findings were again consistent with the simulation and the
ex vivo experiments.

Discussion
At high fields, the weak interaction between magnetic fields and biological molecules is
sufficiently strong to create a frequency shift in the Larmor frequency of nearby nuclear
spins. Despite the paramount importance that frequency shift has attained in NMR, the
utilization of frequency shift in MRI has been very limited. While measuring frequency shift
and its anisotropy has enabled NMR to determine structures of large molecules, MRI has not
been able to routinely utilize the vast information existed in the frequency. Yet, the
similarity between the frequency shift caused by the atomic arrangement in a large molecule
and that by an ordered cellular architecture cannot be overlooked. The p-space STI method
developed here provides MRI a means to image this higher order frequency information and
utilize it to elucidate tissue microstructure. The method requires only a single acquisition of
3D gradient-recalled-echo images. It also allows high spatial resolution. A notable
advantage of the method is the ability to image anisotropic susceptibility tensors in vivo
without rotating the object or the magnetic field. Although considerable work remains to be
done to improve the accuracy of the tools developed here, we expect the p-space method to
open a new avenue for studying tissue microstructure in general and brain connectivity in
particular.

The ability to quantify anisotropic tissue property with a single image acquisition was made
possible by sampling and analyzing the p-space signal. The p-space can be sampled by
applying a pulsed field gradient prior to data acquisition, or equivalently, by shifting the
acquired k-space data by a desired p-vector. To maintain overall signal consistency, the
central k-space signal (the DC signal) should not be shifted outside the reconstruction
window. As a result, the p-value applied along any direction should be well within the range
of ±0.5. On the other hand, the more orientations are sampled in the p-space, the more
accurate the susceptibility tensors can be estimated. The gain in signal-to-noise ratio (SNR),
however, does not increase linearly with the number of orientations. This restriction is due
to the correlated noise among p-space images that are reconstructed from the same raw data.
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In this study, we used 213 orientations which was a good tradeoff between computational
efficiency and SNR. The shifted reconstruction required zero-filling of the unsampled k-
space. Zero-filling in the k-space introduced a known rippling artifact in the image space
which was visible in some p-space images (Figs. 3 and 7). Such artifacts could be
suppressed with a more optimally designed windowing function rather than the simple step
function associated with zero-filling. Nevertheless, comparison with fully sampled k-space
data (i.e. p-space images were reconstructed at an N/2 matrix) showed that this zero-filling
did not introduce appreciable errors in the multipole tensors. This is likely due to the large
number of orientations used which effectively suppressed the ripping artifact.

Analyzing the signal variations among p-space directions allowed us to determine a set of
dipole (χd and ηd) and quadrupole (χq and ηq) susceptibility tensors. These four multipole
tensors characterize higher-order anisotropic signal behavior in the p-space while the
conventional susceptibility tensor χ characterizes the zero-th order frequency shift. The
anisotropy of the conventional susceptibility tensor χ describes the differential magnetic
response at different field orientations. In contrast to the conventional susceptibility tensor,
the p-space multipole tensors describe the signal heterogeneity within one voxel at any
given external field orientation. By expanding the p-space signal with the Taylor’s series,
we projected higher-rank magnetic multipole tensors onto the direction of the external field.
Although we only characterized the anisotropy with rank-2 tensors, the method can be
readily extended to include tensors of higher ranks. In fact, higher ranks may be necessary to
characterize more complex tissue structures, similar to the use of kurtosis and skewness
tensors in diffusion MRI (Liu et al., 2004). The p-space anisotropy may also be
characterized in the spherical coordinate where the anisotropy can be described by a set of
spherical harmonics (Jackson, 1975).

Multipole susceptibility tensors originate from sub-voxel tissue heterogeneity and structural
asymmetry. If the magnetization is uniform within a voxel, there will be no phase terms in
the p-space signal based on the Fourier relationship (Eq. (2)). If the magnetization vectors
are non-uniformly distributed, signal phase and thus multipole tensors are non-vanishing. If
a voxel has completely symmetrical magnetization distribution (a low probability event), the
odd terms, thus the dipole tensors, in the p-space signal vanish. However, the quadrupole
tensors still exist as they are derived from the even terms. The current work proposed and
developed a practical method for imaging these anisotropic susceptibility tensors. A
complete understanding of the relationship between these tensors, cellular organization and
fiber orientations requires further investigation. Correlating the results with DTI may
provide additional insights. In the simple case of parallel axons, we identified the minor
eigenvectors of three susceptibility tensors were aligned with the axons. In these parallel
fibers, we showed that anisotropy is high in simulation and in ex vivo imaging at 9.4 Tesla;
however, anisotropy is reduced in the presence of noise especially in the in vivo case. As a
result, anisotropy value did not provide high contrast between the gray matter and white
matter in vivo at 3.0 Tesla. It is also likely that gray matter may exhibit intrinsic anisotropic
multipole tensors due to their structural complexity, thus further contributing to the reduced
contrast between gray and white matter in the human brain.

While the multipole tensors of the mouse brain measured at 9.4 Tesla were generally of high
quality and provided excellent image contrast, the challenge of p-space imaging of human
brains in vivo at 3.0 Tesla remains to be fully resolved. At 3.0 Tesla, the field perturbation
within a voxel is much smaller. The corresponding contrast between different tissue types
and among fibers of different orientations is also reduced thus becoming more susceptible to
noise contamination. For example, the contrast between gray and white matter is
significantly smaller in the human data compared to the mouse data (Figs. 4 and 7). The
agreement between the minimal eigenvector orientations and the underlying fiber
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orientations is also reduced at 3.0 Tesla. For example, the cortical spinal tract has a mixture
of green and blue colors and is not always consistent with the tract orientation (Figs. 7b and
d). In addition, large field gradients introduced by tissue-air boundaries pose additional
difficulties in the multipole tensor calculation as these gradients are not completely removed
in the p-space processing. Residual gradients caused noticeable artifacts such as the dark
region in the frontal lobe when the p-vector is in the [0 0 1] direction, i.e. parallel to the
residual gradients (Fig. 7a). Future implementation of multipole susceptibility tensor
imaging in the p-space will therefore greatly benefit from improved field shimming.

With the p-space method, probing brain microstructure in vivo may become possible at
resolutions higher than what current MRI methods are capable of. Higher field strength will
further extend the ability of the method to quantify susceptibility anisotropy. At higher field,
each spin accrues more phase offsets (Duyn et al., 2007) thus increasing the signal range
along any given and improving our ability to quantify higher-order anisotropy. Exploring the
capability of the p-space method for imaging neuronal and muscular fiber connectivity
could be of great interest for applications in which diffusion tensor imaging reaches its
limits, such as imaging at high spatial resolution and at ultra-high field strength when tissue
heating becomes problematic (Hoult and Phil, 2000; Vaughan et al., 2006). In the future, p-
space STI could be implemented to study moving organs such as kidneys, livers, fetus brains
and even beating hearts as gradient echo can be easily gated and far less sensitive to motion.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A
In a Cartesian coordinate, the phase of the p-space signal, Φ(r,p), can be expanded in a
Taylor’s series with respect to p as follows,

(A.1)

Keeping terms up to the second order (n=2), Eq. (A.1) can be rewritten as

(A.2)

Here, p ̂ is the unit directional vector and Φ′i is the first-order partial derivative with respect
to pi. Einstein’s summation convention is used in Eq. (A.2). That is, summation over all
possible values is assumed for repeated index variables. Analogous to the multipole
expansion of the electromagnetic potentials (both electric scalar potential and magnetic
vector potential), these three terms correspond to a monopole, a dipole and a quadrupole
respectively. The next order of multipole that is omitted here is called octupole.
Alternatively, the expansion can also be expressed in a spherical coordinate where the
orthonormal spherical harmonics are used as the basis function.

The monopole term (n=0) denoted as Φ0 (r) = Φ(r, p′ = 0) is the mean phase of the voxel at
position r. It is related to the image-space dipole susceptibility tensor (rank 2) χ(r)
following (Liu, 2010)

(A.3)

Here, B ̂0 is a unit directional vector (dimensionless) corresponding to the magnetic flux
density B0.

The dipole term (n=1), though defined by a vector Φ′i, can be expressed more generally in
terms of a rank-2 dipole susceptibility tensor as

(A.4)

This expression is identical to the dipole term in Eq. (A.2) when the off-diagonal elements
of the rank-2 tensor χd are zero. However, due to the truncation of the Taylor’s series, the
off-diagonal elements may not be zero in practice.

The quadrupole term (n=2) can be expressed in terms of a quadrupole susceptibility tensor
χq as follows,
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(A.5)

Comparing to Eq. (A.2), it is easy to see that

(A.6)

Combining Eqs. (A2), (A4) and (A5), one obtains

(A.7)

Similarly, the magnitude can also be expanded in a Taylor’s series as

(A.8)

where both ηd and ηq are dimensionless rank-2 tensors.

Appendix B
The mean phase of the dipolar term, Φ̄d, is zero. The mean phase of the quadrupolar term
along the unit-direction p̂ can be derived as follows

(B1)

The mean of the squared phase is derived as

(B.2)

(B.3)

Therefore, the variances are given by

(B.4)

(B.5)
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Appendix C. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/
j.neuroimage.2012.10.050.
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Fig. 1.
Flowchart for constructing the p-space. (a) MRI pulse sequence for sampling the p-space
which can be achieved by applying pulsed field gradients or by shifting k-space data.
Gradients for sampling the p-space and the corresponding p-vector are drawn in red. These
gradients can be varied to achieve different p-vector. Since these gradients simply cause
shifts in the k-space, these shifts can be achieved easily in post-processing without actually
applying the physical gradients. Sampling of the k-space is achieved by the data acquisition
gradient Gx (DAQ) and phase encoding gradients Gy and Gz. (b) Basic steps of analyzing
p-space signal. At each location in the p-space, a complex image is reconstructed by inverse
Fast Fourier Transform (IFFT). A linear phase is removed from the image. The magnitude
and phase images are then normalized by those at p=0 via division and subtraction
respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2.
Analysis of a simulated bundle of parallel axons in the p-space. (a) A schematic
representation of the axonal bundle and the frequency distribution in the axial plane. Two
scenarios were evaluated: one without noise (b–d) and the other with SNR=20 (e–g). (b)
Magnitude profile along five p-space orientations showing small orientation dependence. (c)
Frequency profile along the same five orientations showing significant orientation
variations. The largest p-value dependence was found at direction 5 when the p-vector was
perpendicular to the axons. (d) Surface rendering (glyph) of the orientation distribution for
the standard deviations of magnitude and frequency. The orientation of the axons can be
clearly identified from the frequency glyphs as the minimum in δf and maximum in 1/δf.
Similar results were found for SNR=20 (e–g). Color coding of the glyphs was as follows:
red representing the x-axis, green representing the y-axis and blue representing the z-axis.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 3.
Signal behavior of mouse brain in the p-space. (a) A representative magnitude image at p=0.
(b) Three normalized magnitude images at p=−0.45, −0.25 and 0.45 respectively with the p-
vector along the x-axis (vertical). Increased contrast was seen at larger p-values. (c)
Corresponding phase image at p=0. (d) Corresponding normalized frequency images at p=
−0.45, −0.25 and 0.45 respectively. Increased contrast was seen at larger p-values similar to
the magnitude. (e) Normalized magnitude as a function of the p-value in the corpus callosum
(CC), internal capsule (IC) and gray matter (GM). The voxel locations were shown in (a). (f)
Normalized frequency as a function of the p-value in the same three voxels. While little p-
value dependence was observed in the gray matter, significant dependence was evident in
the white matter for both magnitude and frequency. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4.
Representative multipoles computed from dipole frequency and quadrupole magnitude. (a)
Standard deviations of the dipole frequency along three orthogonal p-space orientations: [1
0 0], [0 1 0] and [0 0 1]. The contrast within the white matter showed clear orientation
dependence (arrows). gcc — genu of corpus callosum; hc — hippocampus; acp —posterior
portion of anterior commissure. (b) Eigenvalues of the dipole susceptibility tensor computed
from the frequency. Anisotropy was evident from the differences in the eigenvalues and the
elongated glyphs in the gcc, hc and acp. The glyphs were constructed based on 1/δf as in
Fig. 2. (c) Standard deviations of the quadrupole magnitude did not show significant
orientation variations among the three directions. (d) Eigenvalues of the quadrupole
susceptibility tensor computed from the magnitude did not show significant differences.
However, they provided high contrast between gray and white matter. The magnitude was
normalized by that at p=0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 5.
Eigenvector orientation of dipole susceptibility tensor in the white matter of mouse brain. (a)
Two representative axial slices of color-coded minor eigenvector of dipole susceptibility
tensor χd. Color schemes were: red representing left-right, green representing anterior–
posterior and blue representing dorsal–ventral. Orientations of major fiber tracts could be
identified. gcc — genu of corpus callosum; ic —internal capsule; hc — hippocampus; csc —
commissure of superior colliculus; ac —anterior commissure; tt — trigeminal tract. (b) A
representative sagittal slice. (c) Two coronal slices of the same brain. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6.
Comparison of eigenvector orientations between dipole susceptibility tensor χd and
diffusion tensor. (a) Orientations of the minimal eigenvector of dipole susceptibility tensor
weighted by its trace. A layered cortical structure was visible in the coronal slice. dg —
dentate gyrus. (b) Orientations of the minimal eigenvector of dipole susceptibility tensor
weighted by DTI FA. (c) Orientations of the major eigenvector of diffusion tensor weighted
by its FA. (d) Maps of angles between the minimal eigenvector of χd and the major
eigenvector of the diffusion tensor. Smaller angles were observed in the white matter. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7.
Multipole susceptibility tensor imaging of human brain in vivo. (a) Inverse standard
deviations of the dipole magnitude and dipole frequency along three orthogonal orientations.
White matter contrast is clearly orientation dependent, e.g. in the pcr and scc. pcr —
posterior corona radiata; scc — splenium of the corpus callosum. (b) Inverse trace of the
dipole susceptibility tensor χd and color-coded minor eigenvectors in the axial, coronal and
sagittal planes. (c) Inverse standard deviations of the quadrupole magnitude and frequency
along three orthogonal orientations. White matter contrast is orientation dependent for the
quadrupole frequency but not for the quadrupole magnitude. (d) Inverse trace of the
quadrupole susceptibility tensor χq and color-coded minor eigenvectors in the axial, coronal
and sagittal planes. In the axial planes, color schemes were: red representing left-right, green
representing anterior–posterior and blue representing superior–inferior. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this
article.)
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