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1. Introduction
Rapid advancement in biological and medical imaging technologies increases demand for
quantitative, computational anatomy tools. The principal tools of this emerging field are
deformable mappings between images whether they be driven by similarity metrics which are
intensity-based, point-set-based, or both. Several categories of mappings exist in the literature.
Of particular recent interest are diffeomorphic transformations which, by definition, preserve
topology. Topology preservation is fundamental to making comparisons between objects in
the natural world that are thought to differ or change while preserving local neighborhood
relations. Cytoarchitectonic brain mapping studies also suggest that the layout of cell types
throughout the brain is generally preserved (Schleicher et al., 2009), further motivating
diffeomorphic mapping in the context of the brain.

Our limited assessment of published research mirrors the experience of many others who prefer
a working paradigm of reproducible research (Kovacevic, 2006). Dr. Kovacevic describes
“[reproducible research as] the idea that, in ‘computational’ sciences, the ultimate product is
not a published paper but, rather, the entire environment used to produce the results in the paper
(data, software,etc.).” After an informal survey of 15 published papers, she finds “none had
code available” and “in only about half the cases were the parameters [of the algorithm]
specified.” The computational sciences research community also voices concerns about
reproducibility (Yoo and Metaxas, 2005; Ibanez et al., 2006). In this paper, we discuss our
contribution to the open source medical image analysis research community which we call
ANTs (Advanced Neuroimaging Tools). Built on an an Insight ToolKit (ITK) framework, this
software package comprises a suite of tools for image registration, template building and
segmentation based on previously published research. Here, we provide an overview of the
package and detail recent technical advances, in the spirit of previous papers published in this
journal (Neu et al., 2005; Zhang et al., 2008; Patel et al., 2010) and open source registration
tools such as Elastix (Klein et al., 2010b).

The recent outcome from two large-scale comparative image registration algorithm
assessments (Klein et al., 2009), http://empire10.isi.uu.nl is perhaps the most persuasive
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evidence motivating the contributions discussed in this paper. Our Symmetric Normalization
(SyN) transformation model (Avants et al., 2008) performs consistently in the top rank across
all tests in the Klein et al. (2009) study and finished first overall in the phase one Empire-10
evaluation study of intra-subject thoracic CT registration (http://empire10.isi.uu.nl). Unlike
some of the other algorithms in these studies, all of our methods (not just SyN) are open source
software.

One difficulty in interpreting the results of these evaluation studies is that each algorithm uses
a different combination of transformation model (the geometric constraint on the mapping
between brains), similarity metric (the measure that evaluates how similar two images appear),
and multi-resolution, optimization, and resampling strategies and parameter settings. Thus, one
cannot isolate the effect of transformation model from similarity metric or optimization
strategy. Other aspects of implementation may also differ, including whether the authors
recommend using whole head or whole brain data. For instance, the DARTEL algorithm
(Ashburner, 2007) uses whole head data and segmentation to aid performance while the other
methods did not incorporate segmentation. The follow-up evaluation study Klein et al.
(2010a) evaluated ART2.0 (Ardekani et al., 2005), SyN, and Freesurfer (Fischl and Dale,
2000) on whole head data and found that both brain extraction and registration via an
“optimal” (group-generated) template improve performance. However, Klein et al. (2010a)
applied generic parameters for ANTs, including the similarity metric, which might have
resulted in suboptimal performance for the whole head component of the study.

Consequently, here we study the effect of the similarity metric on whole head registration-
based labeling via an optimal template. We evaluate ANTs affine as well as nonlinear
registration performance because accuracy in both stages is critical for successful registration-
based brain segmentation/labeling. Furthermore, this problem is faced routinely in brain image
processing labs (Ségonne et al., 2004; Sadananthan et al., 2010; Park and Lee, 2009; Lim and
Pfefferbaum, 1989; de Boer et al., 2010; Acosta-Cabronero et al., 2008). One advantage of a
consistent and modular framework, such as constructed in ANTs, is that it is possible to evaluate
a single component of the processing stream while holding all other aspects constant.

The paper organization: Section 2 gives an overview of the transformation models and
similarity metrics in ANTs and their use with SyN in population mapping. Section 3 reports
results on a series of large-scale experiments using the LPBA manually labeled dataset to
evaluate ANTs registration applied to cortical and brain labeling. Finally, we close with a
discussion of our findings.

2. Theoretical Overview of ANTs
The following three components provide a common classification schema for registration
methods (Brown, 1992; Ibanez et al., 2002):

• the transformation model, which includes the regularization kernels,

• the similarity (or correspondence) measures, and

• the optimization strategy.

In general, image normalization computes the optimal transformation, ϕ, within a
transformation space which maps each x of image ℐ (x) to a location in image (z) by
minimizing a cost function,  describing the similarity between ℐ and  SyN, explained in
detail below, symmetrizes this formulation and is available in ANTs. A summary of ANTs
transformation models and similarity measures is in Table 1. Details follow in subsequent
sections.
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2.1. ANTs Transformation Models
A researcher in brain mapping may choose from a variety of transformation models with
different degrees of freedom. For deformable transformations, one approach is to optimize
within the space of non-topology-preserving, yet physics-based transformations—an approach
pioneered by Bajcsy (Bajcsy and Kovacic, 1989). Elastic-type models such as HAMMER
(Shen and Davatzikos, 2002), statistical parametric mapping (SPM) (Ashburner and Friston,
2000), free-form deformations (FFD) (Rueckert et al., 1999), and Thirion’s Demons (Thirion,
1998) operate in the space of vector fields, which does not preserve topology. In other words,
without applying ad hoc constraints, these algorithms may allow the brain topology to change
in an uncontrolled way which makes the deformable mappings difficult to interpret in
functional or anatomical studies.

Diffeomorphic transformations provide well-behaved solutions with mathematical guarantees
about distance in deformation space and regularity. Furthermore, the diffeomorphic space has
group structure (Arnold, 1991). Optimizing directly within this space shows remarkable
success in various computational anatomy studies involving longitudinal (Avants et al.,
2007; Fox et al., 2001), functional (Miller et al., 2005), and population data (Avants et al.,
2007). We include three such diffeomorphic algorithms in the ANTs toolbox based on previous
research and a new time-parameterized extension to the standard symmetric normalization
(SyN) algorithm (Avants et al., 2008).

Regardless of current research trends, however, we recognize that selection of the
transformation model is ultimately application-specific, that no single choice is optimal for all
scenarios (Wolpert and Macready, 1997), and therefore, the transformation model must be
chosen in a principled fashion. Indeed, several non-diffeomorphic algorithms perform quite
well in Klein’s comparative study of nonrigid registration algorithms (Klein et al., 2009). For
this reason, ANTs also includes in its generic framework elastic-type methods among its
transformation model options. In this paper, we focus on affine registration and the SyN method
due to their proven reliability, speed and flexibility.

2.1.1. Rigid and Affine Linear Transformations—Image registration strategies often
begin with a linear transformation for initial global alignment, followed by a deformable
transformation with higher degrees of freedom. The linear transformations available within
ANTs optimize either a mean-squared difference (MSQ), cross-correlation (CC) or mutual
information (MI) similarity metric, each of which are optimized with respect to translation,
rotation, and in the case of affine transformations, scaling and shearing. The successive
optimization of each component of the linear transformation allows for careful control over
increasing degrees of freedom. ANTs also composes the affine transformation with the
deformable transformation field before performing any interpolation or downsampling. In this
way, ANTs normalization never requires more than a single image interpolation step and is
able to refer back to the original full-resolution images. The ANTs implementation of rigid
mapping is quaternion-based with additional scaling and shearing terms when affine mapping
is desired. The user enables purely rigid mapping by setting the --do-rigid true flag.

2.1.2. Vector Field Operators for Regularization—Deformable normalization
strategies typically invoke a deformation regularization step which smooths the displacement
field, u, or velocity field, v, or both by a linear operator such as the Laplacian or Navier-Stokes
operator. One may write this regularization as a variational minimization in terms of its linear
operator or in terms of a kernel function operating on the field itself, e.g., usmooth = K *
unot smooth, where K * denotes convolution with the Green’s kernel, K, for the linear operator,
L. ANTs regularization models operate on either the whole mapping ϕ or the gradient of the
similarity term or both. The same regularization scheme is available for both diffeomorphic
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and the recent directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009a)
registration. ANTs users may set parameters such that discretized FFD strategies and
diffeomorphisms are combined. ANTs enables a variety of choices for K including the Gaussian
with varying σ and a variety of B-spline functions, both of which induce adequate regularity
for normalization models used in ANTs. While additional physical operators will be
incorporated in future releases, current B-spline options provide considerable flexibility
(Tustison and Gee, 2005) that has yet to be fully explored.

2.1.3. Diffeomorphic Transformations—Diffeomorphisms form a group of
differentiable maps with differentiable inverse (Ebin and Marsden, 1970; Mumford, 1998) that
is closed under composition. ANTs assumes the diffeomorphism, ϕ, is defined on the image
domain, Ω, and maintains an affine transform at the boundary such that ϕ(∂Ω) = A(Id) where
A(Id) is an affine mapping applied to the identity transformation. The map ϕ, over time,
parameterizes a family of diffeomorphisms, ϕ(x,t) : Ω × t → Ω, which can be generated by
integrating a (potentially) time-dependent, smooth velocity field, υ : Ω × t → ℝd, through the
ordinary differential equation (o.d.e.)

(1)

The existence and uniqueness theorem for o.d.e.’s implies that integrating Equation (1)
generates a diffeomorphism. The deformation field yielded by ϕ is u(x) = ϕ(x, 1) − x.

One typically encounters somewhat complex intensity transfers between one anatomical
instance and another instance ℐ. Thus, ANTs enables a variety of similarity metric
possibilities beyond the conventional squared difference metric. This leads to the following
generalization of the standard Large Deformation Diffeomorphic Metric Matching (LDDMM)
equation (Beg et al., 2005):

(2)

where Π~ is a similarity metric depending on the images and the mapping and λ controls the
degree of exactness in the matching. We discuss established alternatives for Π in section 2.2.

Exploiting the fact that the diffeomorphism, ϕ, can be decomposed into two components ϕ1
and ϕ2, one may construct a symmetric alternative to Equation (2). Now define, in t ∈ [0,0.5],
υ(x,t) = υ1(x, t) and υ(x, t) = υ2(x, 1 − t) when t ∈ [0.5, 1]. This leads to the symmetric variant
of Equation (2),

(3)

Note that the regularization term, here, is equivalent to that in equation 2. The only change is
the splitting of the integral into two time intervals reflecting the underlying optimized
components of the velocity field. The corresponding symmetric Euler-Lagrange equations are
similar to (Miller et al., 2002). The difference, here, is that in finding υ*, we minimize the
variational energy from either endpoint towards the midpoint of the transformation, as
indicated by the data term. This strategy “splits” the optimization dependence equally between
both images. Thus, gradient-based iterative convergence deforms ℐ and along the geodesic
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diffeomorphism, ϕ, to a fixed point midway (intuited by the notion of shape distance) between
ℐ and  motivating the moniker “Symmetric Normalization” (SyN) for the solution strategy.

Other diffeomorphic algorithms in the research literature include DAR-TEL (Ashburner,
2007) and Diffeomorphic Demons (Vercauteren et al., 2007, 2009), both of which use a
constant velocity, exponential model for generating diffeomorphisms. We include—within
ANTs options—these four diffeomorphic transformation models for parameterizing ϕ(·):
Geodesic SyN, Greedy SyN, exponential mapping, and Greedy Exp (based on Diffeomorphic
Demons). As shown in Table 1, each of these transformation models can utilize a host of
similarity measures both individually and in combination.

Greedy SyN. Although the Geodesic SyN algorithm conforms most closely to the theoretical
diffeomorphic foundations culminating in Equation (3), the computational and memory cost
is significant due to the dense-in-time gradient calculations and requisite reintegration of the
diffeomorphisms after each iterative update. While geodesic SyN is available in ANTs 2.0, the
lower-cost, greedy variant called Greedy SyN is also available and was the strategy used in the
large-scale comparative image registration algorithm assessment of (Klein et al., 2009).

Greedy optimization of Equation (3) calculates the gradient only at the midpoint of the full
diffeomorphism, i.e. at t = 0.5,

(4)

for i ∈ {1,2}. ϕ1(x, 0.5) and ϕ2 (x, 0.5) are then updated from the previous iteration according
to

(5)

Choices for the gradient descent parameter, δ, are discussed in section 3.3.3. In this equation,
the gradient at the midpoint is mapped back to the origin of each diffeomorphism. We then
update the full mapping by explicitly enforcing  in the discrete domain, as
described in (Avants et al., 2008).

2.2. ANTs Intensity-Based Similarity Metrics
Several intensity-based image metrics appear in the literature with varying performance
depending on their application. We include three of the most widely used similarity metrics
within ANTs and reviewed in (Hermosillo et al., 2002): mean squared intensity difference
(Christensen et al., 1996; Thirion, 1998; Beg et al., 2005; Ashburner, 2007; Vercauteren et al.,
2009), cross-correlation (Gee, 1999; Ardekani et al., 2005; Avants et al., 2008), and mutual
information (Viola and Wells, 1997; Rueckert et al., 1999; D’Agostino et al., 2003; Crum et
al., 2003; Rogelj and Kovacic, 2006; Tao et al., 2009; Loeckx et al., 2010). ANTs
implementation of these metrics all follow the same input/output interface and exist within
metric-specific classes that inherit base functionality from a generic parent class. Each metric
expects only two images as input, along with relevant parameters. The metrics expect the
images to exist within the same physical space. We provide specific implementation details
for each metric below and note that the code for each implementation is freely available. We
restrict discussion to the elements of implementation that are critical to performance.
Additionally, we report the derivatives of a pair of images, I and J, with respect to the identity
transform, that is, after they have been mapped to the same space. Mapping to a different
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domain introduces a Jacobian change of variables as in (Beg et al., 2005) which may be
introduced as a product with the derivative terms given here.

2.2.1. ANTs Mean Squared Intensity Difference—The simplest of the metrics to
implement is MSQ. However, a few details are critical. The MSQ derivative equations available
in ANTs—via different command line options—are based on Demons algorithm variants
(Thirion, 1998). Define g as a gradient vector and D = I(x) − J(x). Then the MSQ forcing
equation may be written

(6)

where g = ∇I(x) or g = gs = ∇I(x) + ∇J(x). These two gradient choices are available as command
line options. Additionally, ANTs metrics all implement the complementary force, i.e. the
similarity gradient with respect to J. This can be gained for MSQ by setting D = J(x) − I(x)
and g = ∇ J(x). Because SyN uses gradients with respect to both I and J, there is no need to
use the “symmetrized gradient” gs (as in (Thirion, 1998)). However, when using an
“asymmetric” ANTs transformation model (e.g. LDDMM, Diffeomorphic Demons or
traditional Demons-style elastic matching), using gs may increase performance by providing
additional image forces.

2.2.2. ANTs Cross-Correlation (CC)—The current version of ANTs bases the correlation
derivative on our prior work (Avants et al., 2008), but is much faster due to a sparse, linearized
neighborhood updating scheme and a polynomial expansion of the CC terms. This new,
accelerated cross-correlation approach is similar to techniques used for efficient low pass,
median and texture co-occurrence filtering (Wells, 1986; Clausi and Jernigan, 1998; Huang et
al., 1979). One may write the cross-correlation as:

(7)

where x is at the center of N × N square window (in two dimensions), µ is the mean value
within the window centered at x and xi iterates through that window. CC is expensive to
compute when done naively but may be sped up by multiplying out the terms and storing local
variables for each resulting term. Consider, in general, the polynomial equation, Σi (ai − µa)
(bi — µb), which multiplies out to Σi(aibi − µb (Σi ai) − µa (Σi bi) + Σi µaµb. Each term in the
CC equation above may be represented as this polynomial. Thus, to compute CC within a
window, one may keep track of each of these five values: Σ I(xi), Σ J(xi), Σ I(xi)2, Σ J(xi)2, Σ
I(xi) J(xi) along with the number of voxels within the window which is constant except near
the edges of an image. With all of these terms, one may compute the derivative of CC as
described in Equations (6) and (7) of (Avants et al., 2008). Furthermore, note that—as one
iterates through an image—only a few of the voxels that comprise Σ I(xi), Σ J(xi), Σ I(xi)2, Σ
J(xi)2, Σ I(xi) J(xi) change. That is, only the boundaries of the window are updated. In 2D,
iterating left to right, the left edge voxels must exit the computation while right edge voxels
must enter the computation. ANTs uses this efficient scheme to reduce the total computational
expense from 3N3m+5N3p to 3N2m+5N2p operations per voxel over a 3D image (with some
additional cost for the data structure that comprises the sliding window), where m is the cost
of a multiplication and p is the cost of addition. This gives a theoretical speed-up of 5.36 when
N = 9, m = 2, p = 1 and 6.65 when N = 9, m = 4, p = 1. In 3D, this results in an empirical speed-
up of approximately a factor of 4 for a brain registration with a neighborhood of size 9×9×9,
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the recommended default for brain mapping with SyN driven by the CC similarity metric. In
comparison, the Klein 2009 paper used a 5 × 5 × 5 window. The CPU, compiler and node usage
all influence the speed-up factor. The fact that our practical speed-up is near the theoretical
limit indicates that an implementation of CC that is not optimized will dominate computation
time for deformable registration. Thus, the ANTs optimizations for gradient-based CC are a
significant contribution and allows the use of a larger correlation window than before (Klein
et al., 2009), which improves performance in whole head image registration. Additionally, our
optimizations are distinct from the well-known paper (Lewis, 1995) which optimized non-
gradient-based CC assuming a constant neighborhood in one of the two images. We used the
default 9 × 9 × 9 window in this evaluation study.

2.2.3. ANTs Mutual Information (MI)—The ANTs implementation of mutual information
and its gradient construct an image-based joint histogram and derive marginal distributions
from this joint histogram. This implementation relates to work in (Hermosillo et al., 2002;
Mattes et al., 2003; Rogelj et al., 2003) which describes the theory well. The basis of the ANTs
MI function is the joint histogram of the images I and J which is constructed by locating a joint
intensity value at each position, x, and then incrementing the nearest neighbor bin within the
joint histogram. We then normalize the joint histogram by its sum to construct the two-
dimensional joint probability image Q: [1, nh]×[1, nh] → [0, 1], where nh, default 32, is the
number of bins per dimension in the histogram. We also define a sub-voxel mapping from the
intensity values in the images I and J to Q. That is, the intensity i = I(x) maps to position p
within the columns of the joint histogram and intensity j = J(x) maps to q in the rows where a
linear interpolant is used to find the continuous position. We may then interpolate Q at
continuous positions with a cubic B-Spline kernel as described in (Mattes et al., 2003). The
derivative with respect to I(x) is derived in (Hermosillo et al., 2002):

(8)

where p is the spatial index to the column of the joint histogram that locates the intensity at I
(x) and q is the spatial index to the row of the joint histogram that locates the intensity at J
(x). The term dpQ(p, q) is the spatial gradient of the joint histogram Q in the direction of the
columns, computed with the B-Spline interpolator. The term df(p) is the spatial gradient of the
marginal histogram f for I where the marginal is derived from the joint histogram, as in (Mattes
et al., 2003). As with the other metrics, the ANTs MI function also computes the derivative
with respect to J and uses both in the optimization of the registration.

2.2.4. Feature-Based Metrics—In addition to intensity-based metrics, ANTs contains
similarity metrics for registering labeled point sets or label images. These include a landmark
matching metric and two point-set metrics (Pluta et al., 2009; Tustison et al., 2009b) which
can accommodate point sets of different cardinality. These point-set metrics are applicable
alone for strict point-set registration or in parallel with intensity-based metrics for dual
intensity/point-set registration. Exact matching and partial (or incompletely labeled) (Pluta et
al., 2009) point-set matching are available, though not evaluated here.

2.3. ANTs Template Creation and Labeling
ANTs robustly maps populations to a common space by finding the template and set of
transformations that gives the “smallest” parameterization of the dataset. The SyGN
(symmetric groupwise normalization, pronounced “sign”) method implements this approach
and is fully explained in (Avants et al., 2010b). The size of the parameterization, in the ANTs
implementation of SyGN, is given by the metric distance between the average affine
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transformation and the identity affine transformation as well as the diffeomorphism lengths.
No specific guess for the initial template is required. Instead, the template is derived completely
from the database of n images, {Ji}. We denote such a template as image Ī. Our previous work
(Avants et al., 2010a) updates Ī with respect to both shape and the correlation, but here we use
Euclidean distance as a metric for average appearance. In this study, the initial templates are
obtained by averaging the data before any transformation is applied.

SyGN optimizes the shape of Ī via a diffeomorphism, ψ (which contains an affine
transformation), such that the size and shape of the brain converges to the group mean. This is
achieved, in ANTs, by optimizing the following energy iteratively,

(9)

where ψ is a diffeomorphism representing the initial conditions of each ϕi and SyN gives the
solution for each pairwise problem. The algorithm iteratively minimizes the energy EĪ of
Equation (9) with respect to the set of ϕi through distributed computing (instantiated by the
ANTs script buildtemplateparallel.sh). Additionally, the template appearance and
template shape both approach the group mean in the Euclidean space of appearance, the affine
space of shape and the diffeomorphic space of shape. This is in contrast to methods such as
congealing (Learned-Miller, 2006) or (Joshi et al., 2004) in that neither method explicitly
optimizes the geometric component of the template. Thus, the ANTs SyGN algorithm yields
a robust result across populations, as will be shown in the evaluation section. The method
typically converges in well under 10 iterations (usually three to five depending upon the
complexity of the deformations in the data). Given a template, and a set of labels, the ANTs
program (ImageSetStatistics) labels the template by majority voting (Heckemann et al.,
2006).

2.4. ANTs Implementation: SVN Revision 603+
ANTs, built upon an ITK foundation, maintains the same coding style as its base. For much
of its functionality, ANTs requires version 3.20 of the Insight ToolKit (ITK), necessitating the
installation of ITK prior to installing ANTs. All ANTs source code is available via the online
source code repository SourceForge.1 Binaries for Windows, Mac OS X (OSX), 32- and 64-
bit LINUX (Linus Torvald’s UNIX) are also available from the same online location. For
quality assurance and maintenance purposes we established an ANTs test reporting open source
“dashboard” 2 on our lab website 3 to monitor compilation and testing of the ANTs program.
Such a configuration facilitates reporting of user problems on a multitude of computing
platforms. The methods above are all available within ANTs SVN revision 603 and later,
compiled against stable ITK version 3.20. A user should download the binaries or compile the
source code and run the built-in tests to verify functionality. The ANTs CMakeLists.txt file
contains the commands that define the tests and test data used in automated testing (via the
CMake ctest command) and allows users to evaluate whether they are getting the expected
performance from their own installation. Finally, in Table 2 we give a brief summary of the
arguments available for the normalization in the ANTs package. This includes the
corresponding variable specification. More information can be found on the ANTs website.
This work is based on the 1.9.1 ANTs release at
http://sourceforge.net/downloads/advants/ANTS/.

1http://sourceforge.net/projects/advants/
2http://www.cdash.org
3http://www.picsl.upenn.edu/cdash/index.php?project=ANTS
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3. Experimental Evaluation
We now apply the above methods using Gaussian regularization of the velocity field, the SyN
transformation model, the SyGN template building algorithm and the MSQ, CC and MI metrics
to build templates via cross-validation, label the templates by majority voting and apply the
templates to the LPBA40 validation dataset.

3.1. 3-D LPBA40 Whole Head Image Normalization Evaluation
The LPBA40 dataset (Shattuck et al., 2008) was collected at the North Shore Long Island
Jewish Health System imaging center and is maintained at UCLA. LPBA40 contains 40 images
(20 male + 20 female) from normal, healthy ethnically diverse volunteers with average age of
29.2 ± 6.3 years. Each subject underwent 3D SPGR MRI on a 1.5T GE system resulting in
0.86×0.86×1.5mm3 images. Each MRI in the LPBA40 dataset was manually labeled with 56
independent structures at the UCLA Laboratory of Neuro Imaging (LONI). The test-retest
reliability of the labeling, across raters, was reported as a minimum Jaccard ratio of 0.697 in
the supramarginal gyrus to a maximum of 0.966 in the gyrus rectus. A single labeling of each
image is made available to the public and used, here, as silver-standard data for both training
and testing in our cross-validation scheme.

3.2. Evaluation Pipeline
The evaluation begins by dividing the dataset of 40 subjects into group A (subjects 1 to 20)
and B (subjects 21 to 40). Then, for each (affine, diffeomorphic) metric pair (MSQ, MSQ),
(CC, CC), (MI, MI), (MSQ, MI), (CC, MI) we:

1. Construct a group A template via SyGN.

2. Construct a group B template via SyGN.

3. Label each template by majority voting.

4. Map group B to template A and group A to template B.

5. Warp the template labels, with nearest neighbor interpolation, to each individual and
evaluate overlap measures with respect to ground truth for both affine and the
combined affine and diffeomorphic maps.

Thus, for each evaluation run, we produce two templates (one for group A and one for group
B) and mapping of all left-out subjects to the opposite group’s template. The scripts that
perform this evaluation are available in supplementary material and in the ANTs script base.
A visual summary of the pipeline is in Figure 1. Note that the affine registration metrics in
ANTs are derived from ITK and explained in ITK documentation. To determine registration
quality, we use the Jaccard metric, defined as

(10)

which measures both difference in size and location between two binary segmentations, R1
and R2. The #(R) operator counts the number of nonzero pixels in the region, R, which
represents a binary object (e.g. a brain or hippocampus labeling).

3.3. Parameter Selection
The theory section characterizes image registration algorithms as a combination of
transformation model, similarity and optimization criterion. Here, we detail our experience
with the most significant parameters in ANTs and explain default choices and useful parameter
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ranges. All of the user-controllable parameter choices made in this work are contained within
the ANTs scripts antsIntroduction.sh which is called by
buildtemplateparallel.sh) and wrapped by the script
LPBA_Leave_N_Out_ANTS_Evaluation.sh, located at the Files section of the ANTs
sourceforge website4.

3.3.1. Transformation Models—The transformation model, itself, is a parameter in ANTs.
That is, does one choose SyN, SyN with time (geodesic SyN), an elastic type of model,
diffeomorphic demons model? In this work, we selected SyN because it provides a compromise
of speed, flexibility and performance. SyN and other diffeomorphic models penalize
deformation linearly whereas elastic-style models penalize deformation quadratically. While
a discussion of these details is beyond the scope of the paper, linear deformation penalties are
fundamental to allowing large deformation and robust brain mappings across many different
brain shapes. The only parameter to SyN, directly, is the gradient descent step-size (discussed
in section 3.3.3). The second important component of the transformation model is the
regularization which is related to the linear operator acting on the velocity and/or deformation
field. In ANTs SyN, the default regularization is Gauss[3,0], which indicates that the velocity
field is smoothed by a Gaussian filter with variance of 3 × the image spacing. Increasing the
value beyond 3 will increase the smoothness of the transformation (and reduce the fineness of
detail in the mapping) and decreasing this value (e.g. to zero) will reduce the smoothness. We
do not typically change this parameter. One may impose regularization on the deformation
field by choosing a non-zero value for the second entry in the regularization option, e.g. Gauss
[3,1]. The ANTs B-Spline regularization options have yet to be fully explored but show
promise in initial experiments.

3.3.2. Similarity Metrics—In this work, ANTs applies two preprocessing steps that impact
the relative appearance of the brain and, thus, the similarity metrics discussed above. ANTs
employs a histogram matching algorithm, described in (Avants et al., 2004; Yoo and Metaxas,
2005), as a default within the scripts that may be turned off by excluding the --Use-
Histogram-Matching option from the command line. This step is suggested in (Noblet et
al., 2006) and shown to be valuable in prior (unpublished) ITK evaluations. We also preprocess
the data with ANTs bias correction which does not change the appearance significantly unless
notable bias is present.

3.3.3. Optimization Strategy—The ANTs gradient descent and multi-resolution
optimization parameters are perhaps the most important to bring to the user’s attention
particularly if the user is interested in using alternative transformation models (in addition to
the need for a good initial rigid/affine mapping before proceeding to deformable registration).
We choose the multi-resolution optimization parameters—for both affine and deformable
registration—based on the resolution of the input data and the structure within the image
relative to this resolution. For typical 1mm3 T1 MRI, we use three levels in a multiresolution
Gaussian pyramid. That is, the registration algorithm begins at the resolution 1mm × 2n, where
n is the number of levels in the pyramid, and proceed through resolutions 1mm × 2n−1, 1mm
× 2n−2 until the full resolution is reached. In our experience, the 1mm3 brain’s resolution is
rarely useful for deformable registration when downsampling proceeds beyond n = 3. However,
further downsampling is sometimes useful for overcoming weak initialization in affine
registration. Thus, when the resolution of input data does not match these expected settings,
the user may want to alter the number of resolutions used in the deformable mapping (controlled
through the --number-of-iterations vector parameter. The gradient descent parameters
employed in ANTs are based on prior evaluation studies in affine registration (Song et al.,

4script location on web: https://sourceforge.net/downloads/advants/ANTS_Evaluation_Scripts/
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2007) and deformable registration (Avants et al., 2008). Due to the linear deformation penalty,
this gradient parameter does not typically need to be changed for SyN. Its useful range—for
geodesic SyN—is between 0.1 and 1.0 where the optimal value will depend upon the nature
of the problem, the regularization choice and the data. For greedy SyN, the useful range is
narrower: 0.1 to 0.5 for most problems and for Gauss[3,0] regularization. Increasing the
deformation field regularization (a non-zero second parameter) may require increasing the
gradient step size. While we have found results to be robust to choices for the gradient descent
parameter, values that are too large will result in energy oscillation while values that are too
small will result in slow convergence.

4. Results
We first establish template stability across population sub-divisions and metrics. We then detail
performance differences by comparing evaluation results across metrics.

4.1. Template Stability Across Metrics and Populations
We quantify template stability by choosing the group A (MI,CC) template (arbitrarily) as a
reference and mapping all other templates to this reference and comparing the overlap between
their labels and the group A (MI,CC) labels. The results are shown in Table 3. The overlap
values, gained by affine registration, exceed the overlaps gained by deformable registration
for any subject in the dataset. After deformable registration, overlap values exceed the
repeatability that is achievable by human raters (Shattuck et al., 2008). The reduction in some
of the A group overlap values after deformable registration suggests we are operating near the
limit of achievable overlap when using nearest neighbor interpolation. See (Klein et al.,
2010a) for examples of this issue. Figure 2 shows the templates derived in this study before
and after registration to the CC group A template. The acutance of the MI template is relatively
reduced in comparison to the MSQ and CC templates. Recalling that MI outperforms MSQ in
terms of Jaccard overlap, one may conclude that the acutance of the template alone is
insufficient in terms of determining the anatomical accuracy of a registration strategy.

4.2. Labeling Subjects Outside the Training Set
Five (affine, deformable) metric pairs were chosen for use in the full evaluation pipeline, from
template construction to majority voting to labeling the left out subjects. In the first phase, we
use the same metric consistently: (MSQ, MSQ), (CC, CC), and (MI, MI). In the second phase,
we use MI as the first metric for two more pairs, (MI, MSQ) and (MI, CC), since MI was the
best performer for affine registration in the first phase (see Figure 3). On the affine registration
level, the mutual information performs best for both brain extraction and labeling of finer
structures.

4.2.1. Brain Extraction—The initial affine registration results to the derived template show
a clearly superior performance under MI, as verified by pairwise T-tests in Figure 3. At the
same time, when all of the deformable metrics are given the same initialization with the MI
metric, then they perform similarly, at least on first glance. The concern with using the Jaccard
ratio on brain extraction is that small differences in values (even in the thousandths place) may
correspond to visually meaningful differences in labeling performance. This is due to the fact
that typical errors represent a small component of the binary image. An example of the labeling
from one subject is shown in Figure 5. The mean±sd value of the registration-based
diffeomorphic brain extractions (for all metric pairings) are: (MSQ, MSQ)= 0.938±0.0197,
(CC, CC)= 0.937±0.0210, (MI, MI)= 0.956±0.0056, (MSQ, MI)= 0.955±0.0062, (CC, MI)=
0.958±0.0054. The (MSQ, MSQ) and (CC, CC) results are both significantly lower than the
(MI, MSQ) and (MI, CC) results indicating that the affine MI metric boosts performance for
CC and MSQ deformable mappings. The top performer on the Segmentation Validation Engine
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(the SVE http://sve.loni.ucla.edu/) as of May 10, 2010, shows an average Jaccard ratio of
0.9504 as obtained by user “cgaser” using VBM8.0. Thus, these template-based diffeomorphic
brain extraction methods are competitive with the state-of-the-art. There is a difference in the
brain extractions from the SVE and those distributed with LPBA40. Thus, evaluation numbers
are not strictly comparable. The SVE data is kept hidden to prevent overfitting of data to results.
As this study intends to use only accessible data, we restrict to evaluation on the public
components of LPBA40.

4.2.2. Extraction of Brain Sub-Regions—The trends present in overall brain extraction
persist in the evaluation of the sub-region overlaps. The overall error in the sub-regions is
shown in Figure 3, while the region-wise are shown in Figure 4. The table reveals the specific
regions where performance differs across metrics. Furthermore, unsurprisingly, the trends in
the MI-affine column are reflected in the diffeomorphic results (all of which used the MI-affine
metric to initialize the diffeomorphic matching). Correlations between the diffeomorphic and
MI-affine results are also strong, as in the figure. This further accentuates the importance of
affine initialization in determining the deformable outcome. Note that, as shown in (Rohlfing
et al., 2004), the Jaccard overlap values of different structures is affected by their surface to
volume ratio. One must take this variation into account when interpreting these results.

4.3. Relative Computation Time for Each Metric
We quantify the relative wall-clock computation time of the similarity metrics in terms of the
computation time for the mean squares metric (the simplest and fastest of the three). We run
10 iterations of the metric computation at full resolution (that is, without running a registration)
on a machine that is nominally idle. The input image was three-dimensional with 256×124×256
voxels, as in LPBA40 data. The results are MSQ=1, MI=14.7, CC=19.1 where MSQ took 22
seconds. Thus, the CC metric is the most time-consuming and the MSQ metric may be the
most efficient for performing an initial brain extraction that may be later refined by a post-
processing algorithm.

5. Discussion
5.1. Summary

In this paper, we provide an overview of the ANTs toolkit and detail the ANTs implementation
of MSQ, CC and MI deformable image registration metrics. We also contribute a new
implementation of the CC metric that reduces computation time by a factor of 4–5 with default
parameters in 1mm3 3D brain image registration. We evaluate the impact of these metric
choices—and their affine counterparts—on optimal template construction and template-based
brain labeling. We use a conservative two-fold cross-validation strategy to show template
stability. We establish—quantitatively—that the templates derived from the subsets of the data
are more similar to each other than any individual in the dataset. The law of large numbers in
anatomical variability, combined with effects of diminishing returns, explain these findings.
That is, brains from different individuals sampled in a demographic are coarsely similar and
the somewhat random differences tend to average out. In addition, the similarity metric does
not have a large impact on the overall template shape. Despite a very high similarity of the
templates, there do exist small residual differences after high-dimensional alignment with
different metrics and sub-populations. Future work will be required to understand the nature
and impact of these differences.

Our results show that mutual information-based affine registration, in ANTs, provides the best
initialization for deformable registration. Mutual information, along with normalized mutual
information, has advantages as a similarity metric in dealing with scanner variations and
pathomorphological changes. It is possible that MI’s robustness may prove a requirement, over
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the long-term, for large-scale clinical studies. Indeed, as shown in our own evaluation, MI
performs best of the three metrics for whole head affine registration. It remains to be seen if
some variants of MI are also optimal for deformable registration. It is possible that other
implementations of CC and MSQ affine registration would perform as well as MI, but we
hypothesize that the MI’s quality performance is in part due to its well-known robustness to
non-matching structure (e.g. features that exist outside the brain and exhibit significant inter-
subject variation). The best diffeomorphic results in our study come from initializing with MI-
based affine registration, regardless of the deformable metric used.

One surprising result from our study is the relative similarity in brain extraction performance
across the deformable metrics, after affine initialization with MI. This suggests that extraction
of larger structures is—in this dataset—very sensitive to affine initialization quality and less
sensitive to the deformable metric. However, Figure 5 shows that apparently small variation
in Jaccard metric may result in visually obvious differences in performance. The supplementary
material contains the evaluation values for the Hausdorff distance between brain extractions,
which may be a more sensitive measure in this application.

Two-fold cross-validation reduces bias in our results and tests generalization to new data
(assuming similar resolution, contrast, etc). While all studies should use such a strategy, some
involve sets that are too small to leave out any data (Yushkevich et al., 2009). Other studies
simply accept a biased strategy though it is not necessary (Jia et al., 2010). Results are
artificially inflated when the same data are used in both testing and training (Vul et al., 2009;
Kriegeskorte et al., 2009). This effect makes it challenging to compare results that use cross-
validation and those that do not.

The current study also highlights the impact of quality affine initialization in brain labeling
performance. We report correlations greater than 0.92 between the initial affine registration
result and the final deformable registration result that persists across metrics. Consequently,
initialization quality in diffeomorphic image registration is of critical importance.

5.2. Relation to Other Work
In addition to (Klein et al., 2009) and (Klein et al., 2010a), a few other studies compare metrics
in affine registration (Studholme et al., 1997; Woods et al., 1998) and deformable registration
(Woods et al., 1998; Noblet et al., 2006). Noblet et al (Noblet et al., 2006) use an intensity
difference metric (and a few transformations thereof) to show superior performance of a B-
Spline algorithm relative to the Demons algorithm. Many aspects of the method were validated,
but the method and results were not made public, to our knowledge. Studholme found
(Studholme et al., 1997) that mutual information was more robust for rigid registration of PET-
MRI head data when compared to other metrics, including cross-correlation. Perhaps the best
known evaluation, historically, is that by Hellier et al (Hellier et al., 2003). Relative to Hellier’s
evaluation, the current work uses a single framework to test different similarity metrics without
the confound of different pre-processing and transformation implementations. That is, of the
three registration components detailed in the introduction, we hold two constant and evaluate
one. Furthermore, in the spirit of open science, our code base, evaluation data, and evaluation
software are made fully available.

A comparison of results reported here and those in a recent paper (Heckemann et al., 2010)
suggests that multi-template labeling outperforms single-template labeling. As may be seen in
Klein 2009, specifically Figure 5, relative overlap performance across algorithms is largely
consistent across evaluation datasets. However, absolute performance values have notable
variation. Thus, one must take care in directly comparing overlap values from LPBA40 data
with those from Hammers 2003/Heckemann 2010, in particular because LPBA40 data is lower
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resolution. Furthermore, the current study evaluates labeling via whole-head normalization,
whereas Heckemann 2010 (and Klein 2009) normalize brain-extracted images.

Despite these caveats, multi-template labeling likely yields a performance advantage, in
general, and therefore we provide a script ants_multitemplate_labeling.sh at
https://sourceforge.net/downloads/advants/ANTS_Evaluation_Scripts/ that implements the
multi-template strategy with ANTs. In fact, the methods used in this paper to label our group
template and those used in standard multi-template labeling are fundamentally similar. Thus,
no new developments are needed to implement multi-template labeling with ANTs. We also
provide, at the above location, multi-template labeling results derived from the Hammers
dataset by applying the ants_multitemplate_labeling.sh script to the 19 datasets at
http://www.brain-development.org/ (Hammers et al., 2003; Heckemann et al., 2006). Results
are competitive with both (Heckemann et al., 2006, 2010) though the latter appears to use a
different label set. The closest comparison may be made with (Heckemann et al., 2006), which
uses almost the same label set, though with 30 datasets in total. Our results only incorporated
the 19 currently available online. However, we currently focus on single-template labeling
strategies due to the significant human effort required to generate consistent manual labels
across datasets. A common, single template space is used in the large majority of population
studies and the main purpose of this paper is to detail an open-source framework to implement
and benchmark such studies. Some of these studies are discussed below.

ANTs users employ this technology in a variety of application domains, including but not
limited to, fMRI analysis (Yassa et al., 2010), morphometry (Hanson et al., 2010), anatomical
labeling of both human and mouse anatomy as well as in computer vision. ANTs has proven
successful in large-scale normalization studies in not only healthy subjects, but also diseased
subjects with large anatomical variance Avants et al. (2008); Klein et al. (2010a). The SyN
method from ANTs recently finished as the top performer in an unbiased registration evaluation
using manually landmarked intra-subject pairs of thoracic CT volumes (the EMPIRE-10
challenge for MICCAI 2010, http://empire10.isi.uu.nl). ANTs large-deformation methods
easily adapt to processing subjects with epilepsy-induced sclerosis (Avants et al., 2010b),
Alzheimer’s disease (Yushkevich et al., 2010), mild cognitive impairment (Yassa et al.,
2010), and subjects with autopsy-confirmed frontotemporal dementia, which induces severe
ventriculomegaly (Avants et al., 2010a). Finally, a subset of the ANTs toolkit is under
development for inclusion in version 4 of the Insight Toolkit which will bring these methods
to more users, increase robustness and ensure continued user support.

5.3. Shortcomings of this Study
The goal of this paper was to use the similarity metric as the variable of interest. As such, we
did not evaluate the impact of the transformation and regularization models on registration
accuracy and leave this to future work. A large number of parameter or algorithm design
choices, both subtle and obvious, were also selected by relying upon experience and good
engineering principles, but without direct evaluation. For instance, we did not explore the many
ranges of possible downsampling strategies that could be employed in our multiresolution
framework. As a second example, we did not use partial volume interpolation in our MI
implementation as recommended by Maes (Maes et al., 1997). The size of the joint histogram
in MI may also impact performance. However, we believe that there is a more fundamental
issue with using a global MI measure for intra-modality registration. The more “flexible” MI
correspondences (relative to CC or MSQ) may reduce precision. Despite this claim, it is
difficult to prove, due to the importance of implementation details, use of normalized or
unnormalized MI, or other implementations such as the maximum distance-gradient-
magnitude similarity measure (Gan and Chung, 2005). ANTs also provides the ability to
incorporate cortical constraints, shown to benefit brain registration (Hellier and Barillot,
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2003), but such data is not leveraged in this analysis. Furthermore, we did not evaluate on non-
brain or non-MRI data. Thus, we may not be able to generalize these results to other modalities
or other organs. Lastly, we note that measuring brain labeling accuracy with respect to expert
raters, itself, has limitations. For instance, raters may be systematically incorrect in some
structures. Secondly, the biological plausibility of the mappings is not rated, nor is the detection
power for subtle group effects on brain structure.

5.4. Final Conclusions
This paper details the primary ANTs normalization strategies and provides overview on other
aspects of the toolkit. We focus on the deformable similarity metrics and some of the
transformation models available in ANTs, provide the philosophy of implementation and give
quantitative justification for default ANTs similarity metrics in both deformable and affine
registration. We provide a new fast implementation of the CC metric for deformable
registration, quantify the latest ANTs performance on brain labeling the LPBA40 dataset and
show that brain extraction performance is competitive with the best available results. However,
it is currently challenging to compare our region-wise results on LPBA40 data with other
methods. This is in part because there are few reported results on LPBA40 data in the literature,
and, secondly, those that exist in the literature use different approaches to or lack of cross-
validation. We also highlight the similarity of templates derived from data within a
demographic and affirm the importance of affine registration to deformable registration
performance. Most importantly, this study provides reference scripts (written in bash with a
translation in python) and code that may be reproducibly applied to a common evaluation
dataset. We encourage other researchers to compare against these results using a similar two-
fold cross-validation design, along with the Jaccard ratio as an evaluation metric.
Supplementary material provides Dice overlaps, true/false positive ratios and Hausdorff
metrics as well if other researchers prefer these measures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The evaluation pipeline employs two-fold cross-validation and evaluates the following (affine,
deformable) metric pairs: (MSQ,MSQ), (CC,CC), (MI,MI), (MI,MSQ), (MI,CC). The LPBA
dataset’s labels provide the ground truth for the subject registration being evaluated.
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Figure 2.
Two rows of axial slices (neurological convention, i.e. subject left is viewer’s left) taken from
each of the templates, constructed from subject group A or B, and by (affine, diffeomorphic)
registration according to (MI, MSQ), (MI, CC), or (MI, MI). The top row shows the templates
before registration to the (MI, CC) group A template and the bottom row shows them after
diffeomorphic registration. The high Jaccard overlaps between these templates’ label sets
quantifies and affirms, from an anatomical perspective, the visual similarity in the appearance
of the templates. One may see, in the top row, the relative clarity of the MSQ, CC and MI
templates. As template acutance does not strictly increase with our performance evaluation
outcome, one may conclude that template clarity, alone, is insufficient to determine the
neuroanatomical accuracy of an algorithm.
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Figure 3.
We use the Jaccard overlap metric (intersection of coregistered labeled regions over their
union) to compare performance in this evaluation. The data is visualized with a box and whisker
plot, with notches. These plots show the median toward the center of the box. The edges of the
box delimit the medians of the data above and below the median. The whiskers and points
show the minimum and maximum of the data and any points that are plotted may be considered
outliers. We used pairwise Student T-tests to determine whether performance differences are
significant. In this figure, the MSQAff, CCAff and MIAff overlap results all report the quality
of the affine mapping to the derived template from the (MSQ, MSQ), (CC, CC) and (MI, MI)
results. Deformable results for these three runs are not shown. The MI-based affine registration
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gave the best performance for both brain and cortex labeling thus providing the best
initialization for follow-up deformable registration. For this reason, the MSQDiff, CCDiff and
MIDiff results all use the MI metric for the affine component and MSQ, CC and MI during
deformable registration.
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Figure 4.
A table representing the data used within the box plots of Figure 3 and also showing region-
by-region performance for each method. The correlation of the results in the MIAff column
with the (MSQ, CC, MI)Diff columns is (0.921, 0.922, 0.944), suggesting the critical role of
the affine initialization.
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Figure 5.
The Jaccard ratios may be similar but show very different errors, as identified visually. We
highlight one region of error in the circled region. The Jaccard values are, from left to right,
0.945078, 0.951205 and 0.952316. The (MI,CC)-based Jaccard mean/sd for diffeomorphic
brain extraction, over the full dataset, is: 0.958 ± 0.005. This number is determined from taking
the mean and standard deviation of the brain extraction overlaps from mapping the group B to
the (MI,CC) group A template and vice versa.
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Table 1

Transformations and similarity metrics available in ANTs.

Category Transformation, ϕ Similarity Measures Brief Description

Linear
Rigid† MSQ, CC, MI translation and rotation

Affine† MSQ, CC, MI rigid, scaling, and shear

Elastic
Deformable CC, PR, MI, MSQ, JHCT, PSE Demons-like algorithm

DMFFD CC, PR, MI, MSQ, JHCT, PSE FFD variant

Diffeomorphic

Exponential CC,PR, MI, MSQ, JHCT, PSE minimizes υ(x)

Greedy SyN† CC, PR, MI, MSQ, JHCT, PSE minimizes υ(x, t) locally in time

Geodesic SyN† CC, PR, MI, MSQ, JHCT, PSE minimizes υ(x, t) over all time

Similarity metric acronyms: MSQ = mean squared difference, CC = cross correlation, PR = CC after subtraction of local mean from the image, MI =
mutual information, JHCT = Jensen-Havrda-Charvat-Tsallis divergence, PSE = point-set expectation.

ANTs also provides the inverse of those transformations denoted by the ‘†’ symbol. Only the MSQ, CC and MI metrics are available for both affine
and deformable registration and are evaluated here with the Greedy SyN transformation model.
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Table 2

The various flags and variables for a variety of image registration possibilities. Additional information can be
found on the ANTs website (Avants et al., 2009). The variable Δ represents the gradient step length.

Argument Flag Variables / Sample Parameters

Linear

Iterations --number-of-affine-iterations N1xN2xN3x…

Similarity --affine-metric-type MI,CC,MSQ

Affine or Rigid --do-rigid true / false

Deform.

Image Similarity --metric,-m MI,CC,PR,MSQ [� ,param, 1]

Point-Set Similarity --metric,-m PSE,JHCT [�  X, Y]

Iterations/Level --iterations,-i N1xN2xN3x…

Regularization --regularization,-r Gauss, DMFFD σgradient
2 , σtotal

2

Transformation --transformation,-t GreedyExp, Elast, SyN, Exp [Δ]

Transformation --geodesic SyN [Δ,# time points,dT]

Misc.

Histogram Match ℐ,
--use-histogram-matching 1

NN Interpolation --use-NN 0

Mask Image --mask,-x mask.nii

Output Naming --output-naming,-o filename.nii
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Table 3

Template stability results across metrics and affine and deformable registration.

Template Stability

Similarity Metrics A → A B → A

(MI, MSQ) Aff 0.873 0.763

(MI, MSQ) Diff 0.865 0.799

(MI, CC) Aff 1 0.775

(MI, CC) Diff 1 0.815

(MI, MI) Aff 0.880 0.777

(MI, MI) Diff 0.866 0.809
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