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The paper by Devlin and Poldrack entitled ‘In praise of Tedious Anatomy’ deals with an
increasingly important topic. Namely, how do we effectively communicate, with appropriate
accuracy and precision, the ‘where’ of our measurements? They make cogent arguments for
the use of anatomical maps to reference the location of functionally active regions of brain as
measured with fMRI. We agree with this premise and would like to amplify further (with some
additional suggestions) the rationale for equating functional measures with observations about
structure. But before we do that, it might be useful to first generalize this issue, as one that
pertains to 1) comparing data collected across multiple subjects, modalities, experiments and
laboratories and 2) integrating this data as a comprehensive whole.

Specifying the site of activation, in anatomic terms, is intended (in part) to provide the ability
to compare and contrast different studies. The notion of an atlas is, among other things, to help
with this localization. Unfortunately many anatomic terms are sometimes interpreted variably
and the boundaries of anatomic regions are sometimes in dispute. Given the mostly descriptive
history of anatomy, its application, in a traditional sense, to modern volumetric MRI surveys
of the brain sometimes produces more problems than it solves. Atlases such as the (Talairach
and Tournoux, 1988) are woefully inadequate as an anatomic reference but did encourage the
use and further development of spatial normalization schemes to reduce size and shape
variability of brains. Other atlases such as (Ono et al., 1990) and (Duvernoy, 1991, Schleicher
et al., 2005) provide far more complete and detailed delineations but either do not provide any
principles or algorithms for spatial normalization or Cartesian coordinate systems. And finally,
the question of how a single brain based atlas can represent a population is rarely argued
anymore.

Describe Where you are
What then can facilitate this need to compare and contrast brain image data? We believe this
requires more complete descriptions. Just as when we give directions to our house we might
say, “… the address is 123 Main street, it’s the third house on the left after the intersection, it’s
a white house with a porch, two stories tall…”, etc. If using certain Global Positioning Systems
(GPS) we might specify the latitude and longitude, in coordinates. We provide several ways
to locate and identify the house. The different descriptions, collectively, make it easy to find
and often compare it to others that may be geographically close. In brain mapping, this is
difficult because often the only reference we have is an accompanying macroscopic structural
MRI. So we might say the site of activation is in Brodmann area 46 or Talairach and Tournoux
coordinate (x,y,z) or in the pars opercularis of the inferior frontal gyrus. We might say the
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activation occurred in the sulcus near the anterior temporal branch of the posterior cerebral
artery or was concentrated in layer 4 of the cortex. None individually is very precise but in
combination provide increasing degrees of specificity. Collectively, these descriptions make
it easier to identify and compare the region where the activation occurred.

Integrate the data
What makes this notion of utilizing multifactorial descriptors intriguing, is the emergence of
ever more novel classification schemes to help identify regions, circuits and systems of the
brain. No longer are we confined to anatomic divisions defined by cell type or packing density
observed using classical histological techniques. Complementing the cytoarchitectural
descriptions of (Brodmann, 1909), (von Economo and Koskinas, 1925), (Duvernoy, 1991),
(Ono et al., 1990), and (Mai J, 1997) are atlases of chemoarchitecture (Zilles et al., 2002),
neurotransmitters (Schleicher et al., 2005), gene expression patterns (Mansour A, 1995),
angioarchitecture (Nowinski et al., 2005), and white matter connections (Mori et al., 2005),
among other things.

Unfortunately, most of these newer classification schemes are still works in progress. They
may not cover the entire brain. They may still be based on one or few brains. They may not be
compatible with methods to place them in correspondence with experimental data or they may
have limited resolution, etc.

However, when combined, they can overcome their individual limitations. Although not yet
available, efforts to computationally integrate these atlases are in progress ((Nowinski et al.,
1997); (Maldjian et al., 2003); (Carmack et al., 2004); (Nowinski, 2004). Ontologies that
provide relationship definitions between classification schemes are being created (Martin et
al., 2003) and applications of historically important maps to interrogate modern MRI are now
possible (see Figure 1). For these studies, elaborate surface-based and volumetric warping
approaches have been developed to enable the transfer of classical maps into digital
coordinates, and between digital atlases and individual datasets. Once available, the integration
of these atlases will provide a far more specific and descriptive notion of what is where. After
all, the separation of these classification schemes was borne out of necessity to collect the data,
not because any one is more important than any other. Classification schemes each have a role
to play as all are important. However, they should be integrated.

Group Statistics
Can an atlas based on any one single individual be representative? The Devlin and Poldrack
paper, makes a clear and convincing argument that this is inappropriate. Numerous other papers
(Van Essen, 2005); (Toga et al., 2006)) have come to the same conclusion and many population
based atlases have emerged in response to this need (Mazziotta et al., 2001). But the same logic
can be carried to the next level by creating many different population based atlases, each
specific to the group demographics, disease, age or other characteristics of the subjects being
studied. These provide not only population statistics within the map but arguably better
represent the morphological signature of that particular cohort. What must be included in all
analyses are confidence statistics on where the activity takes place. Whether this entails a
statistic on probability, percentile or other metric may depend on the experimental design and
other factors.

Adoption of a single normal atlas, even a probabilistic version, for all subject studies provides
for the nominal capability for easier comparisons but in doing so fails to adequately measure
the nuances within each group.
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Taking this discussion into consideration, it seems that it might be prudent to avoid dependency
on a single modality, single group representation for every study as is argued in the Devlin and
Poldrack paper. Any given imaging experiment will be better served by mapping to a
population based atlas that closely resembles the cohort under study. We suggest that
population atlases for groups such as Alzheimer’s (Thompson et al., 2000); (Mega et al.,
2005), schizophrenia (Narr et al., 2001); (Cannon et al., 2006)), pediatric populations (Wilke
et al., 2003); (Gogtay et al., 2004); (Evans and Group, 2006)), autism (Joshi et al., 2004), even
decades of life (Mazziotta et al., 2001) should be utilized, as appropriate, for the subject group.

Standardization is premature
Another of the points made in the Devlin and Poldrack paper is that a practical solution must
be available in order to encourage usage. The MNI atlas was identified because it is in digital
format, represents a population rather than an individual, and is distributed as part of common
image analysis packages that provide algorithms to align data to it. Although it is available,
adoption as THE solution could have the unwanted consequence of reducing enthusiasm for
development of more specific atlases. It also may further encourage adoption of yet another
sanctioned solution to those with limited experience and understanding of the (in)
appropriateness of a particular atlas for interrogation of functional anatomy. Perhaps the paper
title; ‘In praise of Tedious Anatomy’ could be broadened to say ‘In Praise of Tedious Analysis’.

There are also ongoing developments in computational anatomy to create better canonical
image templates to represent subpopulations, while retaining well-resolved anatomical features
that are vital to assist automated algorithms for aligning data to them. These atlases may even
have a time-varying component (Janke et al., 2001), allowing subjects of different ages to be
brought into the atlas using an age-appropriate transformation. Rather than average images
together voxel-by-voxel to produce a blurred template, as was done in many ‘first generation’
statistical atlases, many groups are developing practical methods to create well-resolved
canonical atlas images that represent the statistical mean anatomy for a population, using
deformation averaging (Collins et al., 1995); (Thompson et al., 2000); (Kochunov P, 2002);
(Twining et al., 2005)), Lie group methods on deformation tensors (Woods, 2003); (Lepore et
al., 2006)), or geodesics on groups of diffeomorphic flows (Joshi et al., 2004); (Miller et al.,
2005); (Lorenzen et al., 2006)). These approaches are complex, but are advantageous as they
are close (in a strictly defined mathematical sense) to the brains being normalized to them and
are likely to improve spatial accuracy and reduce sources of bias when comparing datasets in
a canonical coordinate system.

The utility of the atlas is only as good as the method used to map the data into it. Specifying
the ‘where’ of functional activity requires a full and comprehensive description of how that
was determined. What were the mapping algorithms that performed the registration or more
likely the deformation to make the subject and the atlas spatially congruent? There are now
many different approaches, with various limitations and assumptions, for mapping to an atlas.
Some are based on volumetric registration, in which 3D transformations deform the full brain
volume into correspondence with the atlas. These mappings were traditionally linear or
piecewise linear (Talairach and Tournoux, 1988), but it is now more common to use
polynomial, elastic or fluid transformations with thousands or millions of degrees of freedom
to better adapt the individual data to the atlas (e.g., (Ashburner et al., 2000)). The principles
guiding these registration approaches also continue to advance (e.g., (Chiang et al., 2006);
(Leow et al., 2007)). Other approaches directly model the cortex, inducing a spherical or planar
parametric reference grid onto the cortical surface, providing a mathematical framework to
perform higher-order alignments of structure or function within the cortical sheet (Thompson
et al., 2004); (Rasser et al., 2005)).
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A likely innovation, over the coming years, is that surface-based and volumetric registration
approaches may be routinely integrated when transferring data into an atlas coordinate space
(Joshi et al., 2007). Despite their added complexity, surface-based approaches have some major
advantages for integrating and localizing cortically-derived brain maps (e.g., (Fischl et al.,
1998); (Zeineh et al., 2003); (Van Essen, 2005); (Goebel et al., 2006)) in that they respect the
topology of the cortical sheet and allow improved alignment of functional, structural and
architectonic maps across subjects and even across species. However, most brain mapping
studies now use volumetric registration without explicit cortical modeling and without using
cortical features as constraints, producing 3D statistical parametric maps that are difficult to
cross-reference or reconcile with any representation of the cortex. Hybrid approaches using
hierarchical deformations (e.g. (Thompson and Toga, 1996); (Joshi et al., 2007)) allow the full
image volumes to be normalized along with the cortical surfaces and their internal sulcal
landmarks, yielding spatially consistent statistical results in both the 3D volume and the cortical
surface parameter space. These efforts may take some time to become routinely accepted, but
the benefits of linking surface and volumetric data will make this integration highly probable.
For these reasons, it is unlikely that any currently available standardized atlas will offer the
generality and flexibility required to accommodate these future analytic developments.

Full Provenance
Methods sections of published papers are full of program descriptions but not necessarily the
specific algorithms used, their parameters, or the preprocessing steps undertaken before the
programs are executed. We need a way to capture the full history of processing, in all its detail,
to truly make data comparable. There are now several efforts to include this information in
databases (Toga, 2002). There are even programs that retain descriptors of the algorithms
chosen as part of the results (Rex et al., 2003). These must be included as part of any atlasing
approach. If this information is retained as a processing pipeline that is efficient to calculate,
statistics from previously published studies can be recomputed after transferring data to new
coordinate systems, facilitating cross-study comparisons and meta-analysis. Storage of
information on data provenance is vital to ensure that the findings of old studies can be
leveraged in the future. Future analytic developments in data normalization and atlasing can
then be brought to bear on previously published data, even if the findings were originally
reported in coordinate systems that are obsolete or incompatible with current or future ones.
With data provenance, statistical maps previously reported in one coordinate system can be
transferred to another, without requiring us to be dependent on any current atlas, now or in the
future.

Knowledge of the anatomy may be tedious to learn but it is clearly needed and no less important
than all the elements of the experiment and analysis, the imaging protocol, the mathematics,
the reference(s) and the visualization.
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Figure 1. Elastic Normalization of the Brodmann and Schmahmann Atlases to Multisubject fMRI
Data
As noted in Devlin and Poldrack, 2007, functional activations are often reported as occurring
in certain Brodmann areas without any principled method to transfer atlas labels onto incoming
data. Here the classical Brodmann cytoarchitectonic map (Brodmann, 1909) was transferred
to a commonly used MRI-based imaging template (Holmes CJ, 1998) (a) and fluidly
transformed onto new subjects’ BOLD data in a functional imaging study (b). Sulcal landmarks
were accurately matching in this warping process by using them as constraints to guide the
registration of Brodmann areas in the cortical surface parameter space (c), (d). When
multisubject fMRI data were analyzed using only a simple linear normalization to the MRI
template (e), activation clusters were smeared out on the cortex. When fluid registration aligned
fMRI to the group average cortical surface model, boundaries of activations closely matched
Brodmann area 22 (blue colors), and frontal activations were also detected after reducing cross-
subject anatomical misregistration. Such analyses are currently being adapted to transfer the
anatomical partitions in the Schmahmann cerebellar atlas onto multi-subject maps of cerebellar
surface activation, improving localization and interpretation of activation foci (h). This
deformation of a canonical atlas is expandable, in principle, to include surface-based alignment
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of empirical compilations of data on cytoarchecture (Zilles et al., 2002, Schleicher et al.,
2005). [Data adapted from (Rasser et al., 2005); see also (Makris et al., 2003) for related work].
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