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The discrete wavelet transform (DWT) is widely used for multi-
resolution analysis and decorrelation or “whitening” of nonstationary
time series and spatial processes. Wavelets are naturally appropriate
for analysis of biological data, such as functional magnetic resonance
images of the human brain, which often demonstrate scale invariant or
fractal properties. We provide a brief formal introduction to key
properties of the DWT and review the growing literature on its
application to fMRI. We focus on three applications in particular: (i)
wavelet coefficient resampling or “wavestrapping” of 1-D time series, 2-
to 3-D spatial maps and 4-D spatiotemporal processes; (ii) wavelet-
based estimators for signal and noise parameters of time series
regression models assuming the errors are fractional Gaussian noise
(fGn); and (iii) wavelet shrinkage in frequentist and Bayesian frame-
works to support multiresolution hypothesis testing on spatially
extended statistic maps. We conclude that the wavelet domain is a
rich source of new concepts and techniques to enhance the power of
statistical analysis of human fMRI data.

Keywords: Scaling; 1/f; Long memory; Permutation; Nonparametric; False
discovery rate

Introduction

A wavelet is a little wave or a brief wave. Unlike sine or
cosine waves, which extend infinitely with a particular
frequency and phase, wavelets are finitely extended or
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compactly supported; their oscillations decay more or less
rapidly to zero (Fig. 1). Over the last 15 years or so, wavelets
have emerged as powerful new mathematical tools for the
analysis of complex data sets.! Intuitively, wavelet analysis can
be understood as a way of decomposing or atomizing the total
energy or variance of a spatial process or time series by an
orthonormal basis of wavelets, each of which is weighted by a
coefficient representing the amount of energy in the data at a
particular scale and location. If we think of the total energy in the
data as a frequency-time or scale-space plane, then the discrete
wavelet transform can be visualized as a tiling or tessellation of the
plane in which each tile has the same area but tiles representing
atoms of energy at fine scales have superior resolution in time or
space compared to tiles representing atoms of energy at coarse
scales (see Fig. 1).

This is evidently a multiresolution analysis in that the energy
of the data has been partitioned among a hierarchically organized
set of scales. Low-frequency components of the energy will be
represented by wavelet coefficients at coarse scales of the
decomposition and higher frequency components will be repre-
sented by coefficients at finer scales. In this respect, wavelet
analysis is conceptually similar to Fourier analysis, which
partitions the total energy of the data among an orthonormal

! History of wavelets: The first orthonormal basis after Fourier was
constructed by Alfred Haar around 1910, and time-frequency analysis was
subsequently developed by Dennis Gabor and John von Neumann in the
late 1940s. The modern era—and the use of the word “wavelet—begins
with work by Jean Morlet and Alex Grossman in the 1970s. Widespread
application to signal processing followed the work of Stéphane Mallat
(1998) and the construction by Ingrid Daubechies (1992) of a family of
compactly supported orthonormal bases with arbitrary regularity or number
of vanishing moments. A review of the historical development of wavelets
is provided by Jaffard et al. (2001).
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Fig. 1. Wavelets and time-scale decomposition of a representative fMRI time series. Top row: Daubechies scaling (father) and wavelet (mother) functions with
regularity R =4. Middle row: A “raw” functional MRI time series measured in the left superior temporal gyrus of a single individual. Bottom row: A time-scale
plane tiling or scalogram illustrating the atomization or decomposition of the time series by the discrete wavelet transform using the Daubechies wavelets. The
plane is covered by a set of rectangles of identical area, each of which is colored to indicate the sign and magnitude of the corresponding wavelet coefficient;
large coefficients are coded dark blue or purple. Note that detail and approximation coefficients for the coarsest scale of the decomposition have the best
resolution of scale (smallest height on y-axis) but the worst resolution of time (greatest width on x-axis) and vice versa for the detail coefficients for the finest

scale of the decomposition.

basis set of sinusoidal functions at different frequencies. How-
ever, wavelet analysis differs importantly from Fourier analysis
by virtue of its natural adaptivity to local or nonstationary
features of the data within scales of the decomposition. For
example, a transient “spike” in a time series will be represented
with difficulty by a set of stationary sinusoidal functions, but it
will be captured quite deftly in terms of a few fine scale wavelet
coefficients located around the corresponding point in time. To
quote Mallat (1998): “If we are interested in transient phenom-
ena—a word pronounced at a particular time, an apple located in
the left corner of an image—the Fourier transform becomes a
cumbersome tool”.

These two aspects of wavelet analysis—its multiresolution
nature and its adaptivity to nonstationary or local features in
data—are sufficient to indicate that it will be of interest in the
analysis of functional magnetic resonance imaging (fMRI) data,
which we expect will include possibly nonstationary features of
interest at several scales. However, there are arguably at least three
additional aspects of wavelet analysis that are advantageous for
fMRI data analysis.

First, the wavelet transform is often a whitening or decorrelat-
ing transform of autocorrelated data, and this may prove to be
statistically convenient in various ways. For example, as we show
below, whitening of an autocorrelated time series by taking its
wavelet transform can facilitate resampling or efficient linear
model parameter estimation. Second, the wavelet transform has
proven to be a useful basis for nonparametric regression,
denoising or compression of large imaging data sets in many
other applications. The signal-to-noise ratio in fMRI is often not

much greater than one or two, so any techniques for enhancing
representation of signal components are potentially valuable.
Third, the discrete wavelet transform implemented by Mallat’s
pyramid algorithm is remarkably quick to compute: the algorithm
has O(N) complexity compared to O(N log(N)) complexity of the
fast Fourier transform. Computational speed is clearly of opera-
tional value in dealing with the large volumes of data (typically
in the order of gigabytes) generated by a single fMRI study.

Wavelets, fractals, and the brain

In addition to these general technical advantages of statistical
analysis in the wavelet domain, there is a related, more
substantive argument favoring the use of wavelet methods
specifically in analysis of brain imaging data that is based on
the expectation that the brain may often demonstrate broadly
fractal properties. The word fractal was originally coined by
Mandelbrot (1977) to define a class of objects with the
characteristic property of self-similarity (or self-affinity),” mean-

2 Self-similarity: Exact self-similarity means that an object will look the
same after rescaling by a single factor in all dimensions (zooming in or out);
statistical self-similarity means that it will look approximately the same.
Self-affinity means that the process will look the same when it is
nonuniformly rescaled by a different factor for different dimensions. For
example, self-affinity of the fractional Brownian motion B(¢), with Hurst
exponent A, means that the rescaled series in time B(st) will have the same
statistical distribution as the rescaled signal on the original time-scale
s"B().
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Fig. 2. Long memory or 1/f-like characteristics of fMRI time series. Top row: “Raw” fMRI time series (left) and the same time series after movement
correction (middle) by regression on the time series of estimated head movements during scanning. A common mode of head movement is low-frequency
drift illustrated by the time series of translations of the image center of gravity in the y-plane during scanning (right). Bottom row: Spectrum of raw time series
(left) and spectrum of movement-corrected time series (middle). It is clear that both time series have disproportionate power at low frequencies and that
correction for head movement relatively attenuates low-frequency power. The slope of a straight line fitted to a plot of log spectral density versus log
frequency (right) is an estimator of the spectral exponent, 7y, for raw time series (solid line; y = —1.05, SE = 0.21) and movement-corrected time series (broken

line; y = —0.94, SE = 0.19).

ing that the statistics describing the structure in time or space
of a fractal process remain the same as the process is
measured over a range of different scales. In other words, the
structure of the process is approximately scale invariant or
scale free.

An informal, familiar example of self-similarity is provided
by the complex branching structure of a tree, which is
approximately preserved on examination of a single branch or
twig, that is, under examination at progressively finer scales of
resolution. The complexity of self-similar structures can be
quantified in terms of their (usually noninteger) fractal
dimensions: for example, a fractal surface will have a fractal
dimension (D) in the range 2 < D < 3, with more complex or
space-occupying surfaces approaching the limit D = 3 and
simpler, more nearly Euclidean planar surfaces having D closer
to 2. Fractal time series which have 1 < D < 2, like the human
electrocardiogram (ECG) or a “raw” fMRI time series (Fig. 2),
typically have long-range autocorrelations (long memory) i
time and spectral density S( f) related to a power law function
of frequency:

SCIfD~1f [Tor log S(If [) = e+ ylog [f . (1)

Fractal or scaling time series often have y ~ —1 and are
therefore sometimes also referred to as 1/f or 1/f-like
processes.’

The fractal or scaling properties of the brain have a bearing on
the suitability of wavelets for brain mapping because it has been
recognized that wavelets are particularly apt for analysis and
synthesis of fractal processes (Vidakovic, 1999; Wornell, 1993,

3 Relations among 7, D, and H: The power law exponent y defining the
slope of the linear relationship between log power and log frequency for a
1/f process is simply related to the fractal dimension of the process in time

3-v

D=T+

where 7 denotes the topological dimension (7 = 1 for a time series). There
is also a simple relationship between the fractal dimension and the Hurst
exponent 0 < H < 1, which parameterizes the covariance matrix of
fractional Brownian motion and fractional Gaussian noise (Schroeder,
1991; Staszewski and Worden, 1999):

D=T+1-H.

The Hurst exponent is in turn simply related to the spectral exponent. If
y<-—-1,y=2H+ 1;ify> -1,y =2H—1.



1996). The key feature of wavelets that makes them a natural
basis for analysis of self-similar or scale-invariant data is that
each level of the (discrete) wavelet decomposition is a scaled (by
factor 2) version of the next smallest scale: a family of wavelets
is a fractal.

Three ways in which wavelets are technically attractive for
statistical analysis of fractal processes are as follows: (i) wavelets
effect a multiresolution decomposition that is advantageous for
analysis of scale-invariant processes that, by definition, will
demonstrate self-similar structure on several scales of measure-
ment; (ii) wavelets are theoretically optimal whitening or decorre-
lating filters for 1/f~like processes (Fan, 2003) and many issues in
estimation and hypothesis testing are simplified by independence;
and (iii) wavelets can be used to construct good estimators for
fractal dimensions, the Hurst exponent and other measures of
complexity (Baraniuk et al., 2002). We will return to these
advantageous aspects of wavelet analysis in greater detail below;
first, we briefly review some of the prior literature on fractal
properties of natural and specifically neurobiological data.

Following Mandelbrot (1977), it has become increasingly clear
that fractal, scale-invariant or scaling properties are shared by a
wide variety of natural and social phenomena—ranging from
Internet traffic (Abry et al.,, 2002) and econometric time series
(Mandelbrot, 1997) through DNA base sequences (Peng et al.,
1995) to collaborative and affiliative social networks (Strogatz,
2001) and ecosystems (Brown et al., 2002). The pathophysiology
of the heart is arguably the human biological system most
productively investigated to date using mathematical tools from
fractal geometry and wavelet theory. It has been shown that the
branching structures of the coronary arterial and His—Purkinje fiber
trees are self-similar and have fractional dimensions. Moreover, the
fractal geometry of cardiac anatomy has been related to the power
law dynamics of the ECG and various fractal and wavelet-based
measures of complexity of ECG data have been developed and
shown to improve diagnosis of coronary artery disease and
prognosis of otherwise sudden arrthythmias (Ivanov et al., 1996).
More generally, the fractal geometry of metabolite exchange
surfaces and vascular transport systems has been used persuasively
to explain the widespread prevalence of non-Euclidean allometric
scaling laws in biology (West et al., 1999).

There have been some comparable applications of fractal
analysis to neurobiological data. Dendritic branching patterns of
single neurons have been quantified in terms of fractal dimensions
(Caserta et al., 1995). Fractal dimensions and 1/f spectral
properties have been measured in electroencephalographic (EEG)
signals (Bullmore et al., 1994a; Linkenkaer-Hansen et al., 2001;
Senhadji et al., 1995). The fractal properties of anatomical
surfaces and boundaries segmented in human MRI data have
been measured (Blanton et al., 2001; Bullmore et al., 1994b; Free
et al., 1996; Kiselev et al., 2003; Thompson et al., 1996). Fractal
methods have been applied to analysis of radioligand SPET and
PET images (Kuikka and Tithonen, 1998), and imaging-orientated
models for cerebral blood flow have been proposed on the basis of
the probably fractal geometry of cerebrovascular architecture
(Turner, 2001). There have also been some preliminary inves-
tigations of 1/f spectral properties in fMRI time series (Fadili and
Bullmore, 2002; Fadili et al., 2001; Shimizu et al., 2004; Zarahn
et al., 1997).

It is probably also relevant to note that wavelets are
increasingly invoked in the theoretical and numerical study of
complex dynamical systems. For example, wavelets have been

shown parsimoniously to capture the rich dynamics of morpho-
logical phenomena such as microbial growth and nonequilibrium
chemical reactions (Guan et al., 2002); to display the flow of
information between scales in nonequilibrium fluid flows (Nakao
et al., 2001); and to predict the behavior of spatially extended
nonlinear dynamical equations (Parlitz and Meyer-Kress, 1995).
These aspects of wavelets may be leading indicators of future
applications to fMRI and electrophysiological data because they
show how wavelets can shed light on the underlying mechanisms
of pattern formation and information flow in complex systems
like the brain.

In short, scale-invariant processes are abundant in nature and
there has already been some successful work applying ideas from
fractal geometry to analysis of several modalities of human brain
mapping data. There is a case for considering wavelets as more
than “just another basis,” one among many possible and equally
plausible mathematical domains for statistical analysis of fMRI
data.

Overview of wavelet-based methods for fMRI data analysis

Previous general reviews of wavelets in biomedical image
processing, including some early work on fMRI, are provided by
Aldroubi and Unser (1996), Laine (2000) and Bullmore et al.
(2003). Statistical issues in wavelet analysis of time series are
addressed comprehensively by Percival and Walden (2000).
Wornell (1993, 1996) makes a detailed case for the general
optimality of wavelets for analysis of fractal signals. Bruce and
Gao (1996) describe the implementation of wavelet methods in
S-PLUS.

Several research groups have pioneered applications of wavelets
to various issues in fMRI data analysis. The most popular
application to date has been image compression or denoising
(Abu-Rezq et al., 1999; Alexander et al., 2000; Angelidis, 1994;
Iyriboz et al., 1999; Maldjian et al., 1997; Weaver et al., 1991; Wink
and Roerdink, 2004; Wood and Johnson, 1999; Zaroubi and
Goelman, 2000). Multiresolution hypothesis testing of spatial maps
of fMRI time series statistics has been explored by Brammer (1998),
Desco et al. (2001), and Ruttimann et al. (1998). Linear model
estimation in the wavelet domain has been described by Fadili and
Bullmore (2002), Meyer (2003) and Miiller et al. (2003). Resam-
pling of fMRI data in the wavelet domain has been developed by
Breakspear et al. (2004), Bullmore et al. (2001a), Hossien-Zadeh et
al. (2003) and Laird et al. (2004). Additionally, there have been
applications of wavelets to the image processing problems of
registering individual fMRI data sets in a standard anatomical space
(Dinov et al.,, 2002) and correcting unidirectional geometric
distortions in echoplanar imaging data (Kybic et al., 2000).

There have also been a number of interesting applications of
wavelets to analysis of human brain mapping data in other
modalities. Turkheimer et al. (2000, 2003) developed methods for
multiresolution analysis and linear modeling (ANOVA, etc.) of
multisubject positron emission tomography (PET) studies in the
wavelet domain; Cselenyi et al. (2002) explored two and three-
dimensional wavelet transforms as spatial filters of radioligand
binding potential maps measured using PET; Raz et al. (1999)
used wavelet packet analysis to decompose auditory electro-
physiological potentials into component waveforms; and Barra and
Boire (2000) reported a technique for brain tissue classification or
segmentation of structural MRI based on fuzzy clustering of
wavelet coefficients.
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Fig. 3. Wavelet resampling in the time domain or “wavestrapping” of simulated 1/f noise. Top row: Raw fMRI time series (left) and its autocorrelation function
(right) demonstrating long memory or persistent structure. Middle row: The wavelet coefficients of the fMRI series at the two finest scales of the
decomposition, level 1 (left) and level 2 (right), are decorrelated or whitened, that is, all the autocorrelation coefficients fall within dashed lines indicating
Bartlett’s 95% confidence interval for zero, 0 & 2//n. Bottom row: The resampled time series (left) and its autocorrelation function (right) generated by taking
the inverse wavelet transform after randomly reshuffling the order of decorrelated wavelet coefficients within each level of the decomposition. The key point is
that although the original time series is strongly autocorrelated, its wavelet coefficients are exchangeable, and their random reordering therefore generates a
resampled time series with an autocorrelation function very similar to the original data.

In what follows, we first provide a brief formal introduction to
some key properties of the discrete wavelet transform (DWT)* and
then discuss in more detail its application to three aspects of
statistical analysis of fMRI data: (i) resampling of fMRI time series
in time and space; (ii) time series modeling in the context of
fractional Gaussian noise (fGn); and (iii) wavelet shrinkage or
multiple hypothesis testing methods to control false discovery rate
and to threshold Bayesian posterior probabilities.

The discrete wavelet transform (DWT)
Notation and definitions

Wavelets can be formally defined as families of functions that
form an orthonormal basis for a large class of physically relevant
(square integrable) functions. A wavelet family is obtained by

4 Existence of nonorthogonal wavelet transforms: Our focus has been
on dyadic, orthonormal wavelets in the knowledge that related methods for
time-invariant or undecimated wavelet transformation, which effect a
redundant or nonorthogonal multiresolution decomposition, are also
available and may have some advantages for aspects of time series analysis
(for details, see Percival and Walden, 2000).

dilating and translating a compactly supported “mother” wavelet s
with zero integral over time [ (¢)dt = 0:

1 t—2k
[ - ;
V2/ ( 2 )

and by dilating and translating a “father” wavelet or scaling
function ¢ with unit integral over time [¢(7)ds = 1:

1 t—2k
-7 )

where j = 1, 2, 3,..., j indexes the scale §; = 2/=24,.,2 to
which the wavelet has been dilated and k =1, 2, 3,..., K = n/2
indexes the location in time or space to which it has been translated
(Fig. 1).

Wavelets can be distinguished by their smoothness (also called
regularity) and by their number of vanishing moments. The
number of vanishing moments of a wavelet i is the largest integer
R that satisfies [/ (t)ds = 0, forall » =0, 1,..., R — 1.

Pi(t) = (2)

& (1)

3)

Multiresolution analysis

The discrete wavelet transform of a spatial process or time
series is a multiresolution analysis that distributes the total variance



or energy of the data over a hierarchy of scales {S;}. At each scale,
the data are decomposed into two orthogonal components—the
detail coefficients d;; and the approximation coefficients a; .
These coefficients are respectively defined as the inner products of
the data and the correspondingly scaled and dilated mother v/, ; or
father ¢;, wavelets. The detail coefficients contain information
about variation in the data at a particular scale and the
approximation coefficients represent the residual of the data after
the information on this and all finer scales has been removed. The
original data y can be perfectly recovered by adding the
approximation at the coarsest scale and the details at this and all
finer scales:

y= ZanSJAk —+ Z Zdﬁk'ﬂ/ﬂk (4)

k Jj<J k

Whitening properties of the discrete wavelet transform

The correlation between wavelet coefficients—both within and
between scales of the decomposition—will generally be small
even if the data are highly autocorrelated (Fig. 3). This is
sometimes called the whitening or decorrelating property of the
discrete wavelet transform and it was first defined theoretically
for the class of self-affine signals known as fractional Brownian
motion (Dijkerman and Mazumdar, 1994; Flandrin, 1992; Tewfik
and Kim, 1992). Wornell (1993, 1996), and more recently Fan
(2003), showed that the DWT has optimally decorrelating or
Karhunen—Loéve properties for the wider class of signals with
1/f-like power spectral density functions. More specifically, we
can say that the correlation between any two detail coefficients
dy and dj

<ﬂ"/Ak,d/h k’>~| 20f — 27 k! |2(H7R) (5)

or that the correlation between any two detail coefficients at the
same scale d; ; and d; 4

<d‘/lk»dek’>~|k7k/|2(H7R> (6)

where R is the number of vanishing moments of the wavelet and
H is the Hurst exponent of the process. Hence, provided that the
number of vanishing moments of the chosen wavelet basis
functions is sufficiently large, R > 2H + 1, the correlations will
decay rapidly.

Wavelet estimators of fractal noise parameters

The Hurst exponent (and thereby the fractal dimension and
spectral exponent)’ of a time series can be estimated from its
wavelet transform. If a 1/f-like noise with Hurst exponent H is
projected onto a wavelet basis with R vanishing moments, and if
0 < (2H + 1) < 2R, then the sample variance of the wavelet
coefficients at the jth scale

Vartd.j} = ﬁ ; (ds - ’j-«f)z’ (7)

is related to the scale by a power law with exponent 2H + 1
(Flandrin, 1992)

Var{d ;} = (2/)*" . (8)

From this expression, various estimators of / can be derived
(Ninness, 1998; Wornell, 1993), of which the simplest is a least
squares fit of the linear model (Flandrin, 1992)

log, (Var{d ;}) =c+ (2H +1)j + ;. 9)

Data resampling in the wavelet domain or “wavestrapping”

Data resampling by permutation or bootstrap offers many
advantages for inference on functional neuroimaging data—in
particular, it obviates the need to make unrealistic assumptions
about spatial auto-covariance and other distributional aspects of the
data. Perhaps for these reasons, an appropriate nonparametric test
can have superior sensitivity compared to a parametric alternative
(Bullmore et al., 2001b; Hayasaka and Nichols, 2003; Nichols and
Holmes, 2002). Moreover, there are many statistics of potential
interest in brain mapping, for example, spatial and multivariate
statistics, that do not have theoretically tractable or well-established
distributions under the null hypothesis and therefore cannot properly
be tested parametrically. In contrast, almost any statistic of interest
may be accessible to inference on the basis of an appropriate
resampling scheme (for examples, respectively, of resampling
spatial and multivariate statistics in brain mapping, see Bullmore
et al., 1999a; Welchew et al., 2002).

However, designing an appropriate resampling scheme for
statistics estimated by analysis of a functional MRI time series is
complicated by nonindependence of the observations under the
null hypothesis. If we write the linear model

y=XB+¢ (10)

where y is the fMRI time series observed at a single voxel, X is the
design matrix summarizing experimental effects of interest, 3 is
the parameter vector to be estimated, and € is the vector of
residuals, then we must allow that the covariance matrix of the
residuals 3 will not generally be diagonal—there may be
appreciable autocorrelation or serial dependency of the residuals
in the time domain (Bullmore et al., 1996) (see Fig. 3).

The causes of residual or endogenous autocorrelation in fMRI
time series are not yet certainly known: they probably include
instrumental noise, head movement in the scanner, and aliased
cardiac or respiratory cycle pulsation. In addition to these
“nuisance” sources of colored noise, there may also be
contributions from substantively more interesting neurophysio-
logical processes. For example, Linkenkaer-Hansen et al. (2001)
used detrended fluctuation analysis (a nonorthogonal multi-
resolution technique) to demonstrate long-range autocorrelations
in no-task or “resting” EEG and MEG data. Specifically,
correlations (“dynamical memory”) in electrical brain activity
were observed over time-scales from milliseconds to tens of
minutes, easily encompassing the time-scale of neuronal activity-
related BOLD response.

The problem for resampling is that it would be inappropriate
in this context simply to “reshuffle” the data points in the time
domain. This will destroy serial dependency or whiten the data
and differentially bias the estimation of any standardized test
statistic in the resampled series. It may also destroy physiolog-
ically important properties of the data. In short, random
resampling in time is not a valid basis for a test because the



reshuffled units of observation are not exchangeable.’ Various
methods have been proposed to circumvent this problem (and are
more completely reviewed by Davison and Hinkley, 1997). Block
resampling involves defining the resampled unit as a block of
consecutive time points; provided the length of each block is long
enough to encompass all (possibly long memory) dependencies in
the time series, the unspecified correlation structure of the data may
be preserved under resampling (Carlstein et al., 1998). Model-
based prewhitening involves specifying a parametric form for the
dependency in € and correcting the data and design matrix so that
the residuals of the corrected model are whitened. For example, if
we specify a first order autoregressive AR(1) model for the residual
series

& =né 1+ ppp ~ N(0,07T) (11)

and transform the data and design matrix by the estimated AR(1)
coefficient 7 so that

YE=ye— 0y
J 12
X=X, —nXi - (12)

then the residuals € * of the transformed model y* = X* B +¢* will
be white, provided the AR(1) model is adequate to account for the
autocorrelation in the observed time series under the null
hypothesis (Bullmore et al., 1996). This method can of course be
generalized to accommodate a higher order autoregressive model
for the observed autocorrelation. The key point is that the data (or
model residuals) are rendered exchangeable, and a permutation test
on this basis is therefore valid, if the serial dependency in the
residual process € is accurately modeled by the specified AR
model.

A third strategy is to resample the observed time series after
orthogonal transformation to another domain. A well-known
example of this approach is to take the Fourier transform of
the observed time series, randomly permute the phases of the
complex valued transform over all Fourier frequencies, then take
the inverse transform of the “phase scrambled” data to obtain a
resampled time series that preserves the spectral density of the
observed data (Laird et al., 2004; Theiler et al., 1992).
Exchangeability is conferred by the independence of the Fourier
transform at different frequencies and by the independence of the
real and imaginary components of the transform at each
frequency. However, if the observed data are nonstationary, or
include long memory dependencies, then this phase scrambling
algorithm may fail adequately to preserve their stochastic
properties (Davison and Hinkley, 1997).

Wavestrapping in time

The discrete wavelet transform provides an alternative device
for this strategy of resampling a time series after orthogonal
transformation. In its simplest form, 1-D “wavestrapping” involves
the following:

1. Computing the discrete wavelet transform of the observed
series;

5 Exchangeability: A set of n units of observation of the random
variable X is termed exchangeable if the joint probability distribution p (X,
Xo, Xs,. .., X,,) is invariant under permutation of the units (for details, see
Lindley and Novick, 1981).

2. Randomly permuting the decorrelated detail and approxima-
tion coefficients at each scale of the decomposition; and

3. Computing the inverse wavelet transform to recover the
resampled series in the time domain.

As illustrated in Fig. 3, this method can faithfully preserve the
autocorrelation structure of a 1/f-like time series because its
wavelet coefficients will be whitened and therefore exchangeable
in the wavelet domain. This method is more fully described by
Bullmore et al. (2001a) for sampling the null distribution of the
linear model parameter vector (3 by fitting the time series
regression model to the fMRI data at each voxel after repeated
permutation in the wavelet domain. Laird et al. (2004) compared
this algorithm to a Fourier-based resampling scheme for activation
mapping of fMRI data and concluded that wavelet resampling was
superior, that is, associated with a greater area under the receiver
operating characteristic (ROC) curve, indicating greater sensitivity
to detect true signals.

One caveat is that f{MRI time series will invariably be finite and
are typically rather short (n ~ 50-500 time points). This potentially
creates a problem for wavestrapping because estimation of wavelet
coefficients at the boundaries of finite time series introduces
artifactual correlations between coefficients. This is notably an
issue with the widely used periodic assumption for boundary
correction, although so-called interval wavelets may be less
problematic in this respect (Cohen et al., 1993).

Breakspear et al. (2003) described two refinements to this
resampling scheme, which more exactly preserved the phase and
amplitude distributions of the original data: block resampling in the
wavelet domain, which involves permutation of blocks of adjacent
wavelet coefficients within each level of the decomposition (see
also Sabatini, 1999), and cyclic rotation of the wavelet coefficients
within each level by a random shift. Breakspear et al. (2003) also
demonstrated that cross correlations between time series in the
same volume of data could be preserved under resampling simply
by decomposing each of the time series in the wavelet domain and
then applying exactly the same permutation to the wavelet
coefficients of each time series. Thus, multiple one-dimensional
resampling of fMRI time series volumes can preserve (approx-
imately) both the autocorrelation and cross-correlation structure of
the original data.

Wavestrapping in space and time

In addition to wavelet resampling of each voxel’s one-dimen-
sional time series (temporal wavestrapping), it is also possible to
resample the data in the spatial domain (Breakspear et al., 2004).
To do this, each two-dimensional slice of data is subject to a 2-D
discrete wavelet transform. This yields, at each scale of the
decomposition, three sets of detail coefficients, capturing the
variance in the horizontal, diagonal, and vertical directions,
respectively. A permutation scheme (random shuffle, block
resampling, or cyclic rotation) is then applied to each of these
sets. Bootstrapped data are retrieved in the spatial domain by the
two-dimensional inverse wavelet transform of the permuted
coefficients. The algorithm is illustrated by spatial resampling of
a test image in Fig. 4, and the preservation of the original image’s
spatial spectrum under blocked 2-D wavelet resampling is
demonstrated in Fig. 5 (Breakspear et al., 2004).

Because of the nonstationary or spatially localized nature of
wavelets, this permutation scheme can be constrained so that only



Spatial (2D) resampling of a
test image by permutation
of its wavelet coefficients at
different scales

Fig. 4. Wavelet resampling in the spatial domain. The test image, shown in panel a, is a standard IEEE image and is chosen to demonstrate spatial wavelet
resampling because certain features of the technique can be easily visualized in this context. In panel b, only the finest details of the wavelet decomposition
have been resampled. In comparison to a, it is evident that the fine details of the scarf and the chair lattice have been moved. However, this structure has not
been smoothed out of the picture but is evident diffusely through the background of the image. The number of scales on which the resampling operates has been
increased to 2 in panel ¢, 3 (panel d), 4 (panel e), and all scales (panel f). Varying the scales at which the permutation acts makes evident the manner in which
the structure at each scale contributes to the information in the image. For example, in panel e, only the coarsest shadows of the face remain in their original
location. Structure at all smaller scales is now present diffusely throughout the image. In panel g, the structure represented by the three smallest scales has not
been resampled. Hence, the detailed facial features and scarf pattern remain in their original spatial location. However, the shadows—which give the image its
depth—are now present diffusely throughout the image. In this image, specific information at various scales conveys certain types of information (detail, depth,
texture, etc.). In neuroimaging data, it is expected that fluctuations in neural activity at different scales are related to different types of neural interactions and
information processing. Reprinted with permission from Breakspear et al. (2004).

those coefficients representing intracerebral tissue in an MR image
are subject to permutation. Extracerebral coefficients are left
unpermuted. In Fig. 4h, the effect of constraining the resampling
of coefficients to an elliptical subdomain of the image is illustrated.
It can be seen that the spatial correlations within this ellipse have
been randomized, whereas those outside it have been unchanged.
Such a spatially localized permutation scheme is unique to
resampling in the wavelet domain. In the Fourier domain, the
spatial localization of data is described by the phase of a complex
two-dimensional Fourier transform and it is precisely the phases
that must be randomized to produce resampled data. Hence, it is
not possible to construct spatially localized 3- or 4-D bootstrap
data using a Fourier-based technique.

The application of spatiotemporal wavestrapping to a full (4-D)
fMRI data set requires a further important constraint: Resampling
of each slice, at each time point, must be done as discussed above
for multiple temporal resampling. That is, exactly the same
permutation must be applied to the wavelet decomposition of each
slice and at each time point in the fMRI experiment. In this way,
cross correlations between slices can be (approximately) preserved.

A multivariate temporal resampling step can be added before or
after spatial resampling. Such a process has been shown to produce
reasonable type I error control in no-task or “resting” fMRI data
sets while allowing identification of functional correlations in a
visual stimulus experiment (Breakspear et al., 2004).

Why bother with spatiotemporal wavestrapping? An emerging
body of research is currently being directed towards the study of
functional connectivity—large scale network correlations—in
neuroimaging data sets (Horwitz, 2003). A variety of novel
connectivity measures have been developed for this purpose.
Resampling of functional MRI data in the spatial and temporal
domains represents a potentially powerful nonparametric approach
to hypothesis testing for any such connectivity measure or
experiment.

However, a crucial issue in the design and validation of
wavestrapping schemes is the extent to which the wavelet
coefficients are indeed decorrelated. For 1/f“like time series, there
is useful theory predicting decay of the correlation between
coefficients within scale as an exponential function of the distance
between them (Egs. (5) and (6); Fan, 2003). There is as yet only
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Fig. 5. Wavelet resampling in the spatial domain preserves the spatial spectrum of the original data. Left panel: Horizontal spatial spectrum of the test image in
Fig. 4a. Right panel: An ensemble of 19 surrogate spectra generated by 2-D spatial blocked wavestrapping of the test image (dotted lines). It can be seen that
the observed spectrum falls within the permutation distribution, indicating that spatial covariance of the image has been well preserved under resampling and
that the key assumption of exchangeability of the resampled units (blocks of spatially adjacent wavelet coefficients) is reasonably well justified in this case.
Violation of exchangeability would be associated with marked “whitening” of the surrogate spatial spectra.

preliminary evidence in support of the assumption that fMRI time
series generally have 1/f-like spectral densities (Fig. 2). This may
not be such an important issue since approximate wavelet
decorrelation has already been extended to a much wider class of
time series models (Whitcher, 2001, 2004a), but the theoretical
constraints on decay of correlation between higher dimensional (2-
or 3-D) wavelet coefficients are not so well known. Initial
theoretical work for 2-D fractional Brownian motion has shown
that the autocorrelation functions for the detail coefficients decay at
an exponential rate depending on the squared distance between
coefficients (Wu and Su, 1998).

Because of the complicated nature of noise structure in the
spatial domain of fMRI data, Breakspear et al. (2004) suggest an
empirical trial and error approach toward finding a suitable spatial
wavestrapping scheme. Whitcher (2004b, in review) has recently
linked wavelet resampling of spatial patterns to a general class of
spatial processes, specifically, the Matérn class of spectral density
functions (Matérn, 1986). The rigid filtering sequence of the
discrete wavelet transform was also generalized to the more
flexible discrete wavelet packet transform (Mallat, 1998). The
discrete wavelet packet transform provides a more adaptive
partition (tessellation) of the time-frequency plane when compared
to the standard discrete wavelet transform. This allows the wavelet
basis set to adapt more easily to unknown, and potentially
complex, spatial autocorrelation. In order to select an adequate
basis set for spatial wavestrapping, a recursive hypothesis testing
procedure is performed—ifrom coarse to fine scales—that produces
a valid orthonormal basis for the two-dimensional discrete wavelet
packet transform. More work is required to match the spatial
structure of fMRI data sets to meaningful neural models and
stochastic processes in order to provide a more rigorous theoretical
underpinning to spatial wavestrapping.

Time series modeling in the wavelet domain

The existence of serially dependent noise in fMRI time series
not only complicates resampling but also impacts on the efficiency
of estimation of the linear model parameter vector 3. It is well
known that ordinary least squares (OLS) will be the best linear

unbiased (BLU) estimator of 3 if the residual series € is white.
However, if € is autocorrelated, OLS will be less than optimally
efficient and will severely underestimate the standard error of 3.
One response to this problem is to formulate a linear time invariant
(LTT) model for the serial dependency in €, the simplest example of
which is the AR(1) model already discussed (Eq. (11)); then use
the estimated parameters of the LTI model to prewhiten the data
and design matrix or diagonalize the error covariance matrix 3.
Variants of this approach—autoregressive least squares (ARLS)—
have been quite widely advocated or discussed in fMRI data
analysis (Bullmore et al., 1996; Friston et al., 2000; Locascio et al.,
1997; Marchini and Smith, 2003; Purdon and Weisskoff, 1998;
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Fig. 6. Spectral exponents of functional MRI data acquired under no-task,
“resting” conditions. Left panel: Frequency distributions of spectral
exponent y estimated in a slice of “raw” fMRI data (red line) and
movement-corrected fMRI data (blue line). In the raw data, the distribution
extends to large negative values of y that are characteristic of fractional
Brownian motion (fBm); the effect of movement correction is to shift the
distribution to the left so that it is approximately centered on zero and falls
largely within the typical range for fractional Gaussian noise (fGn). Right
panel: The spatial distribution of estimated spectral exponents is shown for
a single axial slice of data (z = +16 mm in Talairach space). The largest
negative values—indicating the most persistent, longest memory noise—
occur on the edge of frontal cortex and in medial posterior parietal cortex.



Woolrich et al., 2001; Worsley et al., 2002) but are susceptible to
failure, with consequent loss of type I error control due to
overestimation of standardized test statistics, in the context of noise
structures more complex than predicted, for example, by low order
AR models. Alternative approaches are possible in the wavelet
domain.

Colors of fMRI noise

The power spectral exponent y of a time series (see Eq. (1)) can
be used to locate it on a continuum of colored noises. If y = 0, all
frequencies are uniformly represented in the spectrum and the
noise is said to be white. When y < 0, the time series will have
positively autocorrelated, long memory or persistent structure;
when y > 0, the time series will have negatively autocorrelated or
antipersistent structure. If y = —1, low frequencies predominate in
the spectrum and the noise may be called 1/f or pink; if y = —2,
low frequencies are yet more predominant and the noise may be
called brown or Brownian (Voss, 1988). Two instances of long-
memory noise are fractional Brownian motion (fBm; —3 <y < —1)
and its increment process, fractional Gaussian noise (fgN; —1 <
y < 1). Both fGn and fBm are Gaussian models and subsume
classical Gaussian noise (y = 0) and Brownian motion (y = —2).

If we estimate y at each voxel of an fMRI data set acquired
under no-task or “resting” conditions, we can see that it is
distributed mainly in the range corresponding to persistent fGn
although there are an appreciable number of voxels with spectral
exponents characteristic of fBm and some with spectral exponents
characteristic of antipersistent fGn (Fig. 6). This distribution is, not
surprisingly, conditioned by the extent to which the data have been
corrected for effects of head movement during scanning. Of course
the effects of head movement correction will differ considerably
depending on the type and extent of movement that occurred
during a particular scanning session. However, a very common
mode of movement is a slow, almost linear drift as the subject’s
head relaxes into its most stable position (Fig. 2). If such a data set
is uncorrected for movement, or corrected only by registration or
realignment of each volume in the series with the first image or
average image, then this will be reflected by persistent trends in
the realigned time series. Secondary movement correction proce-
dures, such as regression of the realigned time series on estimated
voxel displacements over time (trigonometrically calculated for
each voxel based on its distance from the image center of gravity
and the rotations and translations over time of the image center of
gravity; Bullmore et al,, 1999b), can attenuate low-frequency
trends and other movement-related features. The distribution of y
shows a corresponding shift towards zero, with fewer voxels
falling in the range of fBm, and the large majority falling in the
range of fGn (Fig. 6). These preliminary results suggest that fGn
will generally provide an adequate and parsimonious model for the
wide range of persistent and antipersistent noises encountered in
fMRI: further empirical work to test this claim is currently
ongoing.

Fractional Gaussian noise

Fractional Gaussian noise is more formally defined as a
stationary process with zero mean and auto-covariance function

(S}

g

s1:7(|r+1|2H72|r|2H+|rf1|2H), (13)

where 7 denotes the lag between time points and s, =s_, for 7 <0.
It is evident that fGn is completely parameterized by its Hurst
exponent H and its variance ¢°.

The spectral density function of fGn is (Beran, 1994; Percival
and Walden, 2000):
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When the frequency is close to zero, the spectral density
function is approximately

o2Cy(2n)*
S(f) ~ T2 15
(f) ik (15)
with
Cy = I'(2H + 1)sin(zH) /(2m)* 1. (16)

Wavelet estimators of time series model parameters in the context

of fGn

Fadili and Bullmore (2002) specified the fMRI regression

problem as
y=XB+¢e &~N(0,Z{H, ¢"}) (17)

that is, € is a fractional Gaussian noise parameterized by H and o>,
Taking the discrete wavelet transform of this model gives

Yw = XW/B + Ew,y Ew ~ N(07 ZWL (18)

where X,, is the result of applying the DWT separately to each
column of the design matrix, and y,, and ¢, are the wavelet
transforms of the data and the error process, respectively. As noted
carlier, the orthonormal DWT is approximately a Karhunen—Loéve
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Fig. 7. Maps of the Hurst exponent (0 < A < 1) and error standard deviation
o estimated by wavelet-generalized least squares at each voxel of a single
movement-corrected image acquired under no-task, “resting” conditions.
Top row: Maps of the Hurst exponent in two slices (left and right located at
z = —12 and +22 mm in Talairach space, respectively). Values of H > 0.5,
indicative of persistent fractional Gaussian noise (fGn), are located in
occipital and medial posterior parietal cortex; values of H < 0.5, indicative
of antipersistent fGn, are located in the vicinity of the lateral ventricles.
Bottom row: Maps of the noise standard deviation in the same two slices,
indicating large (antipersistent) noise variance in the vicinity of CSF spaces.



expansion of 1/f-like processes. To a good approximation, the
variance—covariance matrix of fractional Gaussian noise is there-
fore diagonalized by the wavelet transform, that is, 3, is a
diagonal matrix.

The L, regression problem can be solved in the wavelet domain
using an iterative maximum likelihood (ML) estimator, called
wavelet-generalized least squares (WLS; Fadili and Bullmore,
2002), which incorporated the approximate expression for spectral
density of fGn (Eq. (15)). The WLS estimator was shown to be
asymptotically the BLU estimator of regression model parameters
(3 in the context of fGn; it also provided an ML estimate of the
Hurst exponent and the variance o of the noise at each voxel (see
Fig. 7). Properties of this estimator, including its Crameér-Rao
bounds, were derived theoretically and compared satisfactorily to
its empirical performance on a range of simulated data.

Nonstationary noise models and semiparametric regression

Two further extensions of time series modeling in the wavelet
domain have been described in relation to fMRI data analysis.
Fadili et al. (2001) specified a nonstationary fractal noise model in
which the Hurst exponent was allowed to vary in time. They found
that voxels representing cortical regions of the brain were
particularly likely to demonstrate dynamic changes in fractal noise
properties. Shimizu et al. (2004) described a comparable approach,
using the continuous wavelet transform to estimate the multifractal
spectrum (distribution of Hoélder exponents) in fMRI time series:
they showed that the distribution of Holder exponents was wider,
and its maximum value was greater, in “smoother” activated gray
matter voxels than in unactivated white matter voxels.

Fadili and Bullmore (2002) also noted the possibility of
estimating partial linear or semiparametric models in the wavelet
domain. Such models can be written

y=XB+g() +¢ (19)

where g(¢) denotes a nonparametric function of time. Meyer (2003)
describes the theory and application of semiparametric models to
fMRI data in greater detail.

Nonparametric regression

It is also possible to take an entirely nonparametric approach to
signal detection or denoising in fMRI data analysis by adopting
well-known techniques of wavelet shrinkage (Donoho and John-
stone, 1995). If we write a model of the data as the sum of an
unknown function of time g(¢) plus error

y=g(t)+e (20)

then we can optimally recover an estimate of the denoised signal
$(t) under certain broad assumptions about the form of the signal.®
Wavelet shrinkage algorithms generically consist of three steps:

1. Calculate the wavelet transform of the noisy signal;

¢ Optimality of wavelet shrinkage: It can be proven that soft or hard
thresholding with the universal threshold approximates by a log factor the
minimax risk for estimation of a large class of functions, for example,
Besov space, in Gaussian noise (for details, see Mallat, 1998, and
Vidakovic, 1999).

2. Modify the noisy wavelet coefficients according to some
threshold value and thresholding rule (shrinkage step); and
3. Compute the inverse transform using the modified coefficients.

Within this general scheme, several choices of threshold 4 and
thresholding rule are available. If we are prepared to assume € is
i.i.d. normal, then there is an argument for using the universal
threshold proposed by Donoho and Johnstone (1995):

Au = a+/2log(n) (21)

where 7 is the number of data points in the time series and ¢ is the
standard deviation of the noise, robustly estimated by the median
absolute deviation (MAD) of the wavelet coefficients at the finest
scale of the decomposition: ¢ = MAD/0.6745. However, subband
adaptive algorithms, by which coefficients are compared to a level-
dependent threshold, often have superior performance compared to
rules that apply a universal threshold; an example is SureShrink
(Donoho and Johnstone, 1995), which uses level-dependent
thresholds to minimize Stein’s unbiased risk estimate (SURE).

The most widely used thresholding rule is probably soft
thresholding. The main idea of soft thresholding is to subtract
the threshold value 4 from all coefficients {d} larger than 1 and to
set all other coefficients to zero. It can be defined as

soft(d, A) = sign(d)(|d| — A)+ (22)

where (s)+ is defined as

0 ifs<O0
(5): = {s otherwise (23)

Hard thresholding simply sets to zero any wavelet coefficient,
which has absolute value less than the threshold and does not
change coefficients which exceed the threshold.

Relatively speaking, hard thresholding is a low bias—high
variance solution to the shrinkage problem; soft thresholding is a
high bias—low variance solution. Numerous other thresholding
rules and estimators of 4 have been proposed in the signal
processing literature and several have been explored in fMRI.

Alexander et al. (2000) described the application of wavelet
shrinkage to complex- and real-valued fMRI data and compared
hard and soft thresholding rules to wavelet domain Wiener
filtering. They advocated estimating the variance of the noise
specifically for each level of the decomposition rather than
estimating ¢ from the finest scale wavelet coefficients and
assuming that it applies universally to the variance of the noise
at all scales of the decomposition. Level-specific thresholds are
appropriate to shrinkage of the more general class of data in which
errors are correlated (Johnstone and Silverman, 1997). LaConte et
al. (2000), Ngan et al. (2000) and colleagues described a time-
varying filter based on the stationary or translation invariant
wavelet transform and applied it to denoising of event-related
fMRI time series. The threshold for shrinkage of wavelet
coefficients was estimated by a “leave-one-out” cross-validation
procedure and the method was shown to be robust to reasonable
choices of wavelet. Von Tscharner and Thulborn (2001) used a
wavelet tuned to the frequency of periodic alternation of the
experimental input function to optimize time-frequency analysis of
fMRI data acquired using a blocked periodic activation paradigm.
Long et al. (2004) have shown that allowing the wavelet threshold
rule to be spatially variant—and using the local temporal variance
structure as the constraint on this rule—is associated with lower



mean squared error and better localization in both simulated and
experimental fMRI activation maps.

It is perhaps surprising that wavelet shrinkage has not yet been
explored more extensively for 2- or 3-D denoising of fMRI
statistic maps, prior to hypothesis testing in the spatial domain,
although Gaussian smoothing is very widely applied for this
purpose. Gaussian smoothing customarily entails application of a
single smoothing kernel (for a multiresolution approach to PET
data in Gaussian scale-space, see Worsley et al., 1996) with the
obvious risk of loss of power to detect spatial features incom-
mensurate with smoothing kernel size. Smoothing by wavelet
shrinkage has the relative merit of locally adaptive bandwidth so
that the power to detect spatial features of varying extent is not
constrained by the arbitrary choice of a single kernel size. Wink
and Roerdink (2004) compared Gaussian smoothing with wavelet
denoising methods using several criteria to cross validate these
alternatives: signal-to-noise ratio, the shape of activated regions,
and quality of the resulting activation maps. They found that for
medium to high levels of noise, the less-smoothing wavelet
methods improved the signal-to-noise ratio, better preserved the
shape of activated regions, and produced less overall errors
(though more false negatives) than Gaussian smoothing. The
relationship between Gaussian smoothing and wavelet shrinkage
has also been explored theoretically and empirically by Fadili and
Bullmore (2004).

Multiresolution hypothesis testing

Some work on wavelet-based denoising has taken a more
probabilistic approach to defining threshold values and rules
(Hyvarinen, 1999). It is easy to see that, by this slight change of
emphasis towards a more statistical perspective, algorithms for
wavelet shrinkage applied to fMRI can be reformulated as methods
for massively univariate hypothesis testing and control of type I
error in the context of multiple comparisons.

Ruttimann et al. (1998) exploited the multiresolution and
decorrelating properties of the wavelet transform of spatial statistic
maps in an attempt to mitigate the multiple comparisons problem.
They assumed that the noise in the image was i.i.d. Gaussian € ~
N(O, 0'2), so the wavelet coefficients were also ii.d. Gaussian’
under the null hypothesis d ~ N(0, ¢%), and therefore the sum of
squared, standardized wavelet coefficients at each scale and
orientation of the 2-D wavelet transform was distributed approx-
imately as chi squared, that is,

> (") ~ 4)

k=1

on K’ d.f.,, where K’ = n/2’ is the number of coefficients in the jth
level of the decomposition. Levels of the decomposition for which
the null hypothesis could not be refuted by this “omnibus” test were
not examined further. Levels at which the null hypothesis was
refuted were investigated further by individually testing each
coefficient against the standard normal distribution. The independ-
ence both between levels and between coefficients within levels
that is implied by the assumption of i.i.d. Gaussian noise in the

7 The discrete wavelet transform of Gaussian white noise is Gaussian
white noise.

data-motivated control of the family-wise error by Bonferroni
correction for both stages of the hypothesis-testing algorithm. An
activation map was finally constructed by the inverse wavelet
transform using only those coefficients that had survived both tests
for significance. This innovative approach had the merit of
reducing overall the number of tests to be conducted, but the
validity of the x> and normal approximations, and of the
Bonferroni correction, all depend on the assumption that the errors
in the imaging data have an independent normal distribution,
which seems unlikely to be realistic in general.

Miiller et al. (2003) extended Ruttimann’s method to hierarch-
ical hypothesis testing on spatial maps of an arbitrary linear model
parameter and applied this to analysis of event-related fMRI data.
They demonstrated superior SNR compared to monoresolution
Gaussian smoothing and robustness of the method to choice of
wavelet. In agreement with studies of simulated data (Desco et al.,
2001), they reported that lower order wavelets achieved better
performance.

Hilton et al. (1996) and Brammer (1998) both explored a
related approach whereby the coefficients within each level of the
wavelet decomposition were recursively tested against the null
hypothesis that they resembled a white noise process. For
example, Brammer (1998) estimated the “Brownian bridge
process”

k < Kj
1 J

B*(i/K) = AR
oV2K

(@ -2, (25)

and tested the maximum value of this cumulative sum process
against critical values of the Kolmogorov—Smirnoff statistic. The
coefficients corresponding to maxima of BZ(i/K) were repeatedly
removed and replaced by linear interpolation until the maximum
nowhere exceeded its expected value under the null hypothesis.
This process can be regarded as one way of recursively or
iteratively identifying wavelet coefficients that depart, both in
terms of their absolute magnitude and their relation to neighbor-
ing coefficients, from the white Gaussian behavior predicted
under the null hypothesis that the errors in the spatial map are
i.i.d. Gaussian.

False discovery rate control in the wavelet domain

Some more recent statistical approaches to multiple hypothesis
testing on maps or images in the wavelet domain have included
efforts to control type I error in terms of the false discovery rate
(FDR), to estimate and test statistics that are informed by the
spatial relations between large coefficients within and between
levels of the decomposition (Sendur and Selesnick, 2002a; Shen et
al., 2002), and to incorporate prior distributions for wavelet
coefficients under the alternative hypothesis in Bayesian rules
(Vidakovic, 1999).

A wavelet-based algorithm for controlling the FDR was
described by Fadili and Bullmore (2004). The FDR of empirical
wavelet coefficients was conventionally defined as the expected
false positive fraction E (FPF), that is, the proportion of all
positive tests that are falsely positive. Following Abramovich et
al. (Abramovich and Benjamini, 1996; Abramovich and Sapati-
nas, 1996), the maximum number of observed wavelet coef-
ficients was retained subject to the constraint E (FPF) < o, using
the following algorithm to calculate a global threshold for
elimination/retention:



1. For each of the n wavelet coefficients d; ; inside the brain at
scale j, location k and each orientation, calculate the corresponding
double-sided P value, p; , under H:

=i o(1421)) -

where ® is the cumulative standard normal distribution and ¢ is the
robust estimate of the standard deviation of the noise (MAD/
0.6745).

2. Sort the p; 4 in an ascending order, p; < p> < p3... <p,.

3. Find the last index such that ippr = max [i/p; < (i/n)o].

4. For this index, calculate the critical threshold corresponding
to this double-sided P value:

) (27)

5. Use Appr and apply classical hard thresholding or soft
thresholding rules.

6. Apply the inverse DWT to obtain the thresholded image in
the spatial domain.

A more powerful variant of the FDR control algorithm,
called enhanced false discovery rate (EFDR) control, has
recently been proposed by Shen et al. (2002) and applied to
fMRI by Pavlicova et al. (2003). The basic idea of EFDR is to
reduce the number of hypothesis tests before applying a
standard FDR procedure to the reduced set of test statistics
in the wavelet domain. It has been shown that EFDR inherits
the desirable type I error control properties of FDR, that is, it
also controls the family-wise error, but is more powerful by
virtue of testing a smaller number of hypotheses. Shen et al.
(2002) used a test statistic that was informed by a local
neighborhood of wavelet coefficients to take advantage of
anticipated dependencies between neighboring wavelet coeffi-
cients and defined the reduced set of hypotheses to go forward

JFDR = 6! (1 fpleDR

Enhanced FDR control

Noise, SD

to testing by the FDR algorithm using the generalized degrees
of freedom (Shen et al., 2002).

This logic can be used to develop algorithms that use different
test statistics or different methods for restricting the number of tests
in the wavelet domain. This more general wavelet-based EFDR
algorithm can be summarized as follows:

1. Calculate the wavelet coefficients of the image.

2. Use a nonparametric wavelet shrinkage algorithm to eliminate
the majority of noisy coefticients, retaining a reduced number
of coefficients n*.

3. Apply a standard FDR algorithm, as already defined, to test
the reduced set of coefficients.

4. Estimate the signal by the inverse wavelet transform using
only those coefficients which survive step 3.

As shown in Fig. 8, the EFDR algorithm provides considerably
greater power than Bonferroni and classical FDR algorithms at the
same level of type I error control.

Bayesian hypothesis testing in the wavelet domain

Bayesian methods for wavelet thresholding were described in
detail by Vidakovic (1999) and seem likely to offer improved
sensitivity in many applications. The Bayesian approach here
means putting a prior distribution on the variability of the sparse
wavelet coefficients of the true (unknown) image. The question
arises: What is a good model for the prior distribution of the
wavelet coefficients? Most often, the coefficients have been
assumed to be independently distributed under Gaussian, Lap-
lacian, generalized Gaussian, or other distributions (Fadili and
Bullmore, 2004). For example, the classical soft thresholding
operator can be obtained by a Laplacian assumption. Bayesian
methods for image denoising using other priors have also been
proposed (Gao, 1998).

Motor system activation mapping by
Bayesian multiresolution shrinkage

Fig. 8. Multiresolution hypothesis testing in the wavelet domain. Left panel: Wavelet-based methods for control of the false discovery rate (FDR) show
decreasing power to detect simulated signals as a function of increasing spatial noise. At any level of noise, Bonferroni correction of multiple tests on wavelet
coefficients (blue line) is less powerful than the FDR control procedure of Abramovich and Benjamini (1995) (red line). An enhanced FDR control algorithm
(green line; Shen et al., 2002), incorporating a bivariate wavelet shrinkage algorithm (Sendur and Selesnick, 2002a) to define the reduced set of hypotheses to
be tested, is more powerful than conventional FDR. Right panel: Experimental fMRI data acquired during an event-related right-hand finger-tapping task were
mapped by a Bayesian multiresolution hypothesis testing algorithm in the wavelet domain (posterior probability threshold « = 0.01), incorporating a Gaussian
prior for the sparse wavelet coefficients of the true image. Left brain is shown in the left side of each slice. There is intense, focal activation of contralateral

motor cortex and ipsilateral cerebellum and more diffuse activation of supplementary motor area and ipsilateral motor cortex.



Sendur and Selesnick (2002a,b) proposed a non-Gaussian
bivariate probability distribution function to model the bivariate
statistics of wavelet coefficients of natural images (Field, 1987,
Simoncelli and Olshausen, 2001). The model captures the depend-
ence between a wavelet coefficient and its parent, that is, the
coefficient at the same location but an immediately coarser scale.
Using Bayesian estimation theory a simple nonlinear shrinkage
function for wavelet denoising was derived from this model, which
generalized the classical soft thresholding approach. The new
shrinkage function, which depends on both the coefficient and its
parent, yields improved results for wavelet-based image denoising.

Let 61 = 0; + 14 represent the “parent” of 9, = §; , both being
wavelet coefficients of the true image. We can write d; = d; + ¢,
and d, = 0, +€,, where d, and d, are noisy observations of ¢, and
0,; €1 and €, are noise. The proposed non-Gaussian bivariate pdf
for the coefficient and its parent can be written as

S s 3 V3 /5o
Py(61,62) = g2 P (T 01 +03 ). (28)
The maximum a posteriori (MAP) estimator of J, is derived to
be:
(v
01 = + (29)

Vdi +d3
which can be interpreted as a Bayesian bivariate shrinkage function.
An alternative approach to Bayesian thresholding was devel-
oped for fMRI by Fadili and Bullmore (2004) who used a Gaussian
prior. For this model, Abramovich and Sapatinas (1996) have
proposed a closed form expression for the ratio test (RT) statistic as
the Bayes thresholding rule and an EM algorithm to estimate the
hyperparameters including the level-dependent variance of the
Gaussian pdf. In Fadili and Bullmore (2004), only wavelet
coefficients with posterior probabilities greater than an arbitrary
critical threshold were retained in the reconstruction by hard
thresholding (for an illustrative activation map produced by this
technique, see Fig. 8).

Conclusions

These are early days in the application of wavelets to the
particular challenges of fMRI data analysis and much remains to be
tried and tested. However, it already seems clear that the wavelet
domain is a rich source of relatively new concepts and techniques
to enhance the power of statistical analysis of scale-invariant time
series and spatial processes. We have highlighted applications to
the problems of resampling, time series modeling, and multiple
hypothesis testing in fMRI, but there are many wavelet methods
that have not yet been properly explored in relation to fMRI and
there are many apparently suitable problems in fMRI—for
example, the scaling properties of functional connectivity—that
have not yet been addressed in the wavelet domain. It seems likely
that interesting further developments lie ahead.
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