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Abstract
Oxidative stress and amyloid-β are considered major etiological and pathological factors in the
initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of
such oxidative stress, transition metals, such as iron and copper, which are found in high
concentrations in the brains of AD patients and accumulate specifically in the pathological lesions,
are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of
amyloid-β is dependent upon transition metals. As such, chelating agents that selectively bind to and
remove and/or “redox silence” transition metals have long been considered an attractive therapeutic
target for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators
has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously
suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators
into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this
study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated
its ability to protect human cortical neurons from amyloid-β-associated oxidative toxicity.
Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-β
aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated
to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative
diseases associated with excess transition metals.
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Introduction
Although the development of Alzheimer disease (AD) is incompletely understood, amyloid-β
(Aβ), a 39-43 amino acid peptide, is thought by many [16,17], though not all [8,28], to play a
major role in disease pathogenesis. The neurotoxicity of Aβ may result from the formation of
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protease-resistant oligomeric and fibrillar forms of Aβ [45], and blocking Aβ aggregation may
provide a valuable therapeutic approach [11].

Metal chelators are among the agents with potential to prevent and reverse Aβ aggregation
[13,29,48]. Chelators provide a “three pronged” mode of action. First, since iron and copper
are suggested to play an important role in the self-assembly and neurotoxicity of Aβ [2,6,15,
24], not surprisingly Aβ toxicity is markedly attenuated by such chelators [23,37,42,44]. In
fact, the ability of Aβ to sequestrate redox metals likely explains conflicting in vivo and in
vitro reports demonstrating Aβ as both oxidant [3] and antioxidant [19,35,36,49]. Second,
redox metals, as redox-active centers, lead to free radical generation [4,9,43,50] and oxidative
stress, which contribute to the initiation and promotion of neurodegeneration [7,34,39,52].
Third, since oxidative stress, some of which is consequent to metal-mediated processes [43],
is associated with increased Aβ [55]—a consequence of the coordinated upregulation of
amyloid-β protein precursor (AβPP) [55] and β- and γ-secretases [53,56]—it is also not
surprising that treatment of AβPP-overexpressing transgenic mice, a model of AD that displays
significant Aβ deposition and oxidative stress [38,51], with chelating agents results in less
Aβ deposition [1,10].

Overall, the aforementioned data suggests chelating agents as a potential and powerful
therapeutic approach to prevent and/or treat AD. Indeed, metal chelating compounds, such as
desferrioxamine, ethylenediaminetetraacetic acid (EDTA), and iodochlorhydroxyquin
(clioquinol), have been used to treat patients with AD and provided significant clinical
improvement [12,40,41]. Limitations concerning chelator bioavailability such as blood-brain
barrier (BBB) penetration and toxic side-effects have hindered further investigation, limiting
both the understanding of the pathologic role of metal dysregulation in AD as well as the
evaluation of the efficacy and safety of chelation therapy.

Drug delivery using nanoparticles to target the brain has shown promise in improved drug
efficacy and reduced drug toxicity [26,27]. Nanoparticles are able to cross the BBB by
mimicking low density lipoprotein (LDL), enabling them to interact with the LDL receptor,
resulting in their uptake by brain endothelial cells [26,27]. Nanoparticles may also employ
transferrin transcytosis for their transport [26,27]. Significantly, our previous studies have
suggested that nanoparticles covalently conjugated to chelators may have the potential to
deliver chelators into the brain without altering metal chelating capability [30].

Here, we report on the synthesis of new nanoparticle-chelator conjugates and their ability to
protect normal human brain cells from Aβ-associated neurotoxicity. These nanoparticle-
chelator conjugates can also inhibit Aβ aggregation, a possible mechanism by which the
conjugates inhibit this neurotoxicity.

A prototype nanoparticle-chelator conjugate (Nano-N2PY) was synthesized according to
earlier studies (Figure 1) [31,32]. Briefly, carboxylic functionalized polystyrene nanoparticles
(240 nm diameter; Bangs Laboratories, Indiana) were activated by N-cyclohexyl-N’-(2-
morpholinoethyl)carbodiimide methyl-p-toluensulfonate (CMC) and then reacted with the iron
chelator, 2-methyl-N-(2’-aminoethyl)-3-hydroxyl-4-pyridinone (MAEHP) in 2-(N-
morpholino)ethane sulfonic acid buffer solution (MES). After synthesis, the conjugation yield
(> 85%) was determined by measuring the chelator concentrations before and after conjugation
spectrophotometrically at λmax 281nm. To confirm the conjugation, nanoparticle samples
spread on KCl crystal IR sample cards (Aldrich-Sigma, Wisconsin) were examined using a
FT-IR Spectrophotometer (Perkin-Elmer Spectrum 1000). Comparing the carboxylic
functionalized nanoparticles with their MAEHP conjugates, the band around 1737 cm-1 due
to the carbonyl stretch of carboxylic acids was virtually diminished, implying the conversion
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of the acids into amides. Because the polystyrene nanoparticles show very strong signals in
the spectra, other characteristic bands of carbonyl groups could not be distinguished.

The metal binding of the conjugate was investigated by reaction with iron. Freshly prepared
solution of Fe(NO3)3 was incubated with Nano-N2PY [31,32], the particles washed thoroughly
with EDTA solution (5 mM), and stained with Perl’s method [47]. The particles changed from
white to blue, indicating the presence of iron. Transmission electron microscopy (Philips
Tecnai 12 TEM, Eagle, FEI Company) examination at X37,000 magnification confirmed
ferric-ferrocyanide granules on the nanoparticle surface, which did not affect the particle size
(Figure 2). According to previous studies, the conjugation may convert two MAEHPs
(bidentate chelator) into a hexadentate chelator [31,32], with advantages including kinetic
stability, concentration independence of iron affinity, and low toxicity [22].

The ability of Nano-N2PY to inhibit Aβ-associated cytotoxicity was evaluated in vitro with
human cortical neuronal cells (HCN-1A; ATCC, Maryland). Cells (5,000/well) in a 96 well
micro-plate were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco,
California) with 1% fetal bovine serum (FBS; Gibco, California) at 37°C in a 5% CO2
atmosphere. The conjugate and Aβ (Bachem, California) were added to final concentrations
of 2 μM (based on chelators) and 1 μM, respectively [54]. After three days culture, Aβ-induced
cytotoxicity was investigated using a Cytotoxicity Detection Kit (LDH) (Roche, Indiana). The
conjugate significantly protects cells from Aβ-associated cytotoxicity compared to cells treated
with Aβ alone (Figure 3).

In addition, cell proliferation was examined with a Cell Proliferation (Roche, Indiana) after
three days-culture. Cells treated with the conjugate/Aβ (2:1 molar ratio) have a similar
proliferation value as the control cells, significantly higher than the Aβ-treated cells (Figure
4). Thus, Nano-N2PY is effective at protecting neuronal cells against Aβ-associated
cytotoxicity in vitro and has no significant adverse effects of Nano-N2PY on cell growth/
proliferation.

To investigate the possible mechanism by which the conjugate inhibits Aβ neurotoxicity. Nano-
N2PY and Aβ were incubated in Phosphate Buffered Saline (PBS, 10 mM, pH 7.4) at a molar
ratio of 2 to 1 at 37°C [54]. To follow Aβ fibril formation, at specific incubation times, Congo
red (CR; 3 μM) in PBS (10 mM, pH 7.4) was mixed with an aliquot of the solutions and
duplicate samples examined spectrophotometrically. When the CR is bound to Aβ fibrils, the
complex formed has a characteristic absorbance, which can be used for detecting Aβ aggregate
formation [25]. Aβ aggregate formation observed under fluorescence microscopy (AmScope,
X 400 magnification) could be completely prevented by co-incubation with Nano-N2PY (Fig.
5a,b).

In this study, a new prototype nanoparticle-chelator, Nano-N2PY, is shown to protect neuronal
cells from Aβ-associated neurotoxicity by inhibiting Aβ aggregation. A derivative of
deferiprone, with high affinities for iron, aluminum, copper, and zinc and lacking the ability
to bind calcium and manganese [21], makes Nano-N2PY a suitable choice for AD therapy,
only depleting excess metals without affecting essential ions.

DFO, an iron chelator approved by the FDA for the treatment of iron overload, has been shown
to slow progression of AD [12], however, it has serious side effects including neurotxicity and
neurological changes [5] and cannot penetrate the BBB due to its hydrophilic nature [33]. While
small molecular weight lipophilic chelators, like bi- or tridentate iron chelators, have the ability
to penetrate the BBB, they have considerable neurotoxicity [20] and do not remove iron from
the brain despite effectively binding iron [14]. Thus, the use of these chelators is currently
limited by their bioavailability and/or toxic side-effects.
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However, nanoparticles, such as Nano-N2PY, have the potential to transport iron chelators
across the BBB and the metal binding ability of chelators is not affected by conjugation [30].
The lipophilic character of the chelator is attenuated upon conjugation and therefore does not
contribute to potential toxicity. This novel approach to chelator therapy could provide a safe
and effective chelation treatment strategy in AD and other neurodegenerative diseases. Thus,
studies are warranted in AD transgenic animal models with the nanpoarticle-chelator
conjugates.

In conclusion, nanoparticle-chelator conjugates can effectively inhibit Aβ aggregate formation
and, thereby, protect human brain cells from Aβ-related toxicity. As such conjugates have the
potential to cross the BBB and thereafter be actively transported out of the brain, this approach
may offer great potential for AD therapeutics. Moreover, this novel approach of nanoparticle
chelator delivery could significantly improve the efficacy and reduce the toxicity of chelation
therapy. This approach could also provide a valuable tool to uncover the role of metals in AD
pathogenesis.
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Figure 1.
Synthesis of a nanoparticle-chelator conjugate (Nano-N2PY). (a) Reaction of carboxylic
functionalized nanoparticles with CMC in MES buffer solution at room temperature for a half
hour. (b) Conjugation of activated carboxylic nanoparticles with excessive MAEHP in MES
at room temperature (a half hour).
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Figure 2.
TEM images of nanoparticle samples. (a) Nanoparticles without chelator conjugation and iron
binding. (b) Nanoparticles with both reactions. The samples were dispersed in Milli-Q water,
drop-cast onto carbon-coated copper grid and examined via TEM after air dry at room
temperature.
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Figure 3.
Cytotoxicity of Aβ, Nano-N2PY and Aβ/Nano-N2PY (compared with control) when incubated
with neuron cells as measured by LDH cytotoxicity detection assay. Absorbance wavelength
measured in this experiment was 490 nm with a reference at 630 nm. Values were represented
as mean ± standard errors (n = 5. *Significantly different from control group at P < 0.05).
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Figure 4.
Effects of Aβ, Nano-N2PY and Aβ/Nano-N2PY on cell proliferation of neuron cells as
determined by WST assay. Absorbance wavelength measured here was 450 nm and a reference
600 nm. Results were represented as mean ± standard errors (n = 3. *Significantly different
from control group at P < 0.05).
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Figure 5.
Fluorescence microscopy images. (a) Precipitates of Aβ aggregates formed in PBS without
Nano-N2PY. (b) No such precipitates from PBS containing Nano-N2PY.
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