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Abstract
A layer of endothelial cells attached to their underlying matrices by complex transmembrane
structures termed focal adhesion (FA) proteins maintains the barrier property of microvascular
endothelium. FAs sense the physical properties of the extracellular matrix (ECM) and organize the
cytoskeleton accordingly. The close association of ahderens junction (A) protein, cadherin, with
the cytoskeleton is known to be essential in coordinating the appropriate mechanical properties to
cell-cell contacts. Recently, it has become clear that a crosstalk exists between focal adhesion
kinase (FAK) and cadherin that regulates signaling at intercellular endothelial junctions. This
review discusses recent advances in our understanding of the dynamic regulation of the molecular
connections between FAK and the cadherin complex and cadherin-catenins-actin interaction-
dependent changes as well as the role of small GTPases in endothelial barrier regulation. This
review also discusses how a signaling network regulates a range of cellular processes important
for barrier function and diseases.
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INRODUCTION
Cell adhesion relies upon specialized transmembrane adhesion proteins, the cell adhesion
molecules, through which cell-cell and cell-matrix interactions are mediated. These families
of molecules act through receptor-ligand interactions that usually extend from the
intracellular space to the extracellular space where they bind to other cell membranes (cell-
cell) or to the cell-matrix. Adhesion sites that defined structural contact between cells and
the ECM were initially described in studies using interference-reflection microscopy and
electron microscopy (Abercrombie and Dunn, 1975; Abercrombie et al., 1971; Izzard and
Lochner, 1976; Izzard and Lochner, 1980). These studies revealed that matrix adhesion
occurs at many specialized, elongated small regions along the ventral plasma membrane
tightly connected with the substrate. Moreover, these sites termed FAs, are associated with
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actin microfilaments at their cytoplasmic aspects and play an important role in the regulation
of actin cytoskeleton organization, the adhesive interaction between integrins and their
extracellular ligand, and the regulation of endothelial barrier integrity. FAK has emerged as
a mediator of crosstalk between integrin-mediated FAs and intercellular adherens junction
(AJs). FAK plays a central role in initiating and integrating various signaling pathways that
ultimately affect barrier function. Evidence points to the importance of FAK activation in
the regulation of microvascular barrier function (Holinstat et al., 2006; Quadri et al., 2003;
Quadri and Bhattacharya, 2007). On one hand, FAK activation is essential in the
maintenance of endothelial barrier properties, and inhibition of FAK activity leads to leaky
microvessels (Holinstat et al., 2006; Quadri et al., 2003; Quadri and Bhattacharya, 2007).
Conversely, FA assembly and activation serve as important signaling events in increasing
endothelial permeability under stimulatory conditions, such as in the presence of angiogenic
factors (Eliceiri et al., 2002; Zachary, 2003) and inflammatory mediators (Uehata et al.,
1997).

Adhesion between cells is mediated by junctional proteins that constitute the intercellular
junctional complex, which has an important role in defining the physiological function of a
cell. Cadherins are plasma membrane proteins associated with AJs that make important
contributions to barrier function, embryogenesis, and tissue homeostasis (Gumbiner, 2005;
Halbleib and Nelson, 2006; Nishimura and Takeichi, 2009). AJs are characterized
ultrastructurally as plasma membrane associated organelles comprised of opposing dense
plaques at cell-cell contacts. The extracellular domains of cadherins are involved in
homotypic interactions required for the formation of AJs; the cytoplasmic domain associates
with catenins that link AJs to the actin cytoskeleton for junctional stabilization (Hirokawa
and Heuser, 1981; Miyaguchi, 2000). The close association of the cadherin molecules with
the cytoskeleton is known to be essential in coordinating the appropriate mechanical
properties to cell-cell contacts. How adhesive interactions between cells generate and
maintain the endothelial barrier remains one of the most challenging questions in
understanding the basis of endothelial barrier function. AJs and the cadherin-catenin
complex are therefore the subjects of intense research. Recent work has greatly advanced
our understanding of the molecular organization of AJs and how cadherin-catenin
complexes engage actin.

We reviewed the molecular structure and function of FAK (Sunita Bhattacharya, 2005) and
cadherins (Parthasarathi, 2009). The review addresses FAK and VE/E-cadherin signaling in
endothelial barrier regulation. This review also addresses cadherin-actin based adhesion,
specifically the association between intracellular VE/E-cadherin molecules and the actin
cytoskeleton. In addition to their adhesive function, cell adhesion molecules modulate signal
transduction pathways by interacting with receptor tyrosine kinases and Rho-family
GTPases for example (Braga, 2002; Noren et al., 2003; Yap and Kovacs, 2003). Hence,
changes in the expression of cell adhesion molecules affect not only the adhesive properties,
but also the signal transduction status of a cell. Conversely, signaling pathways modulate the
function of cell adhesion molecules, altering the interactions between cells and their
environment. This leads to changes in cell-cell and cell-matrix interactions, hence,
microvascular endothelial barrier regulation. The combined application of new approaches,
such as live cell imaging with molecular manipulation by DNA, protein transfection, and
gene silencing will continue to provide excellent tools for FA and AJ regulation studies.
Quantitative confocal and two photon microscopy methods that allow for simultaneous
measurements of AJ protein dynamics and permeability in the intact microvessel provide a
unique direction of future studies.
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FAK LOCALIZATION AND FUNCTION
FAK is a major player in mediating signaling initiated at sites of cell-matrix attachment and
at activated growth factor receptors, such as those for platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), and vascular
endothelial growth factor (VEGF) (Chen and Chen, 2006; Garces et al., 2006; Sieg et al.,
2000). FAK is most commonly found at the cell membrane, in FAs, in smaller focal
contacts, or in nascent spreading adhesions (de Hoog et al., 2004; Serrels et al., 2007). In
epithelial cell-cell junctions the FAK NH2-terminal domain targeted to the nuclei and
intercellular junction (Stewart et al., 2002), raises the possibility that the generation of NH2-
terminal FAK fragments by post-translational processing may provide a novel mechanism
for modulating cell junction. Different FAK domains may be postulated to play distinct cell
type specific roles. FAK NH2-terminal fragments are generated during apoptosis (Lobo and
Zachary, 2000). FAK resides in the nucleus, implying that it may ‘travel’ between
subcellular locations. The role of nuclear localization of the FAK NH2-terminal domain is
not known.

Protein interactions with the FAK carboxy-terminal, the focal adhesion targeting sequence
(Hildebrand et al., 1993), are thought to determine its subcellular localization. FAK
localization to focal adhesions is mediated primarily by the COOH-terminal focal adhesion
targeting (FAT, residues 840–1052) domain (Hildebrand et al., 1993). The COOH-terminal
domain of FAK is expressed in some tissues as an alternative transcript encoding a 41–
43kDa protein called FRNK (for FAK-related non-kinase) (Schaller et al., 1993), and this
domain antagonises FAK signaling by competing for binding to focal contacts (Taylor et al.,
2001). Evidence shows (Holinstat et al., 2006) that inhibition of FAK by adenoviral
expression of FRNK (a dominant negative FAK construct) in monolayer prevented
p190RhoGAP phosphorylation, increased RhoA activity, induced actin stress fiber
formation, and produced an irreversible increase in endothelial permeability in response to
thrombin. Expression of FRNK in lung microvessel endothelia increased vascular
permeability. RhoA is known to increase endothelial monolayer permeability by disrupting
adherens junctions and reorganizing the cell-ECM attachment sites (Carbajal et al., 2000).

FAK activity is necessary for barrier enhancement (Holinstat et al., 2006; Quadri et al.,
2003; Quadri and Bhattacharya, 2007) and controls diverse cellular processes, as well as
biological properties associated with barrier function (Mehta et al., 2002; Quadri et al.,
2003) and disease, such as vascular development, cardiomyocyte-induced hypertrophy,
fibrosis, and epithelial cancer (Chishti et al., 1998; Lim et al., 2008; Luo and Guan, 2010;
van Nimwegen and van de Water, 2007; Zhao and Guan, 2009). This range of functions is
evidence that FAK performs fundamentally important roles in cells, the details of which
continue to be uncovered. Indeed, at the cell cortex, FAK regulates integrin-dependent cell-
matrix interactions, promoting dynamic actin and adhesion changes at the membrane and
signaling to proliferation and survival pathways. Although FAK associated with cadherin,
but does not have any binding site for cell-cell junctional protein for example cadherin /
catenin, hence FAK does not interact directly with junctional protein. FAK transmit signals
to junctional protein through intermediate molecules. It is not yet clear how the combined
scaffold and kinase functions of FAK integrate signaling outputs that coordinate cell
adhesion and barrier regulation.

FAK AND ACTIN SIGNALING
FAK influences adhesion by its direct or indirect effects on actin and adhesion regulators,
such as the RhoGTPases (Noren et al., 2003). Neural Wiskott–Aldrich syndrome protein (n-
WASP), which is an effector for the RhoGTPase CDC42 (Wu et al., 2004) is a binding
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partner and substrate of FAK. WASP transduces extracellular signals into reorganization of
the cytoskeleton and regulates actin-related protein (Arp2/3). Phosphorylation of n-WASP
on Tyr256 affects its nuclear localization and promotes cell migration (Wu et al., 2004). In
addition to n-WASP, the FAK-FERM domain (N-terminal) also binds directly to the Arp3,
which induces an activating conformational change in the Arp2/3 complex (Fig. 1). This
promotes nucleation by bringing an actin monomer to Arp2/3 via WASP-homology 2
domain, enhancing actin polymerization (Serrels et al., 2007), and stabilizing the newly
formed actin (Winder, 2003). FAK is needed for proper assembly of nascent integrin
adhesions. Arp3 is located at the tip; of nascent adhesion structures as they form (Serrels et
al., 2007). The FAK FERM–Arp3 interaction is an example that directly links integrin
signaling with actin polymerization machinery in the vicinity of nascent adhesions (Fig. 1).

Receptor for activated kinase C1 (RACK1) is found in nascent integrin adhesions but not in
mature focal adhesion structures (de Hoog et al., 2004; Serrels et al., 2007). RACK1 binds
to the FERM domain of FAK, at different FERM sequences to ARP3 (Fig. 1), and this
complex is also located at nascent adhesions (Serrels et al., 2010). The FAK FERM–
RACK1 interaction enables directional responses, and this may contribute to FAK’s role in
an invasive cancer phenotype (Lahlou et al., 2007; Luo and Guan, 2010; McLean et al.,
2004). Although this interaction between two molecular scaffolds (FAK and RACK1) is
important physiologically, it is not clear whether RACK1 binding to the FERM domain
activates FAK kinase activity (Serrels et al., 2010). Key effecter substrates of FAK in
different functions have not widely been identified. The relative importance of the adaptor
and kinase functions in all of FAK’s biological activities and endothelial barrier regulation
remains unknown.

CADHERIN ORGANIZATION AND FUNCTION
The mechanisms of cellular signaling and adhesion are thought to be closely connected,
such that adhesion components have double (or more) functions and interconnect in a
signaling structural network (Pece and Gutkind, 2000). AJs function as clusters during
zonula adherens assembly and dynamic cell–cell interactions. Cadherins are the principal
components of AJs and clusters at sites of cell–cell contact (Parthasarathi, 2009). The
cadherin family consists of classical cadherins, which are the main mediators of calcium-
dependent cell–cell adhesion, and non-classical cadherins, which include desmosomal
cadherins and the recently discovered large subfamily of protocadherins, which are
implicated in neuronal plasticity. Classical cadherins are a family of single-span,
transmembrane-domain glycoproteins that function specifically as cell–cell adhesion
molecules. The classical cadherins are further subdivided into types I and II on the basis of
sequence homology. These are three major cadherins found: vascular endothelial (VE),
epithelial cadherin (E), and neuronal cadherins (N) (Corada et al., 1999; Liaw et al., 1990) in
the vascular endothelium. VE-cadherin (also cadherin-5) is located at intercellular junctions
of all endothelial types, and its expression has been confirmed both in vitro and in vivo
(Dejana et al., 1999; Liaw et al., 1990). In the intact pulmonary vasculature, large vessels
primarily express VE-cadherin (Gao et al., 2000; Parker et al., 2006; Safdar et al., 2003).
Evidence show strong VE-cadherin expression in arteries, arterioles, and capillaries but
almost no expression in veins and venules, suggesting vessel type-specific expression of
VE-cadherin in regular human lung tissue, independent of age or sex (Herwig et al., 2008).
Rat pulmonary microvessels express E-cadherin (Godzich et al., 2006; Ofori-Acquah et al.,
2008; Parker et al., 2006; Quadri et al., 2003). VE-cadherin belongs to the type II sub group;
only 23% of its sequence is identical with the classical cadherins, E-, and N-cadherins from
the type I sub group (Breier et al., 1996). N-cadherin is not clustered at cell–cell junctions,
but distributed diffusely in the cell membrane (Salomon et al., 1992). A morphological and
functional endothelial heterogeneity has been proven for micro- and macrovascular
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endothelial cells of different organs, different species, and different compartments of the
same organ (Cines et al., 1998; Volk and Kox, 2000).

Crystal structure studies show that cadherins contain a N-terminal extracellular region, a
transmembrane anchor, and a cytoplasmic intracellular region (Fig. 1). The monitoring of
cell aggregation by the binding of cells to immobilized cadherin ectodomains, or the binding
of beads coated with purified cadherins, have led to the concept that cadherins function as
homotypic cell adhesion molecules (Gumbiner, 2005). Cadherin molecules form
homodimers on the cell surface; homotypic adhesion forms zipper-like adhesion, which may
progress to extensive multimer formation (Boggon et al., 2002; Gumbiner, 2000). Functional
features of homotypic adhesion might provide the barrier properties; for example, in mouse
lung endothelial cells, a mutant of VE-cadherin lacking the extracellular domain, ΔEXD,
increases vascular permeability (Broman et al., 2006).

Several groups have determined the three dimensional structures of the type I cadherin
extracellular domain (Fig. 2) (Haussinger et al., 2004; Nagar et al., 1996; Pertz et al., 1999;
Shapiro et al., 1995; Tamura et al., 1998). The extracellular domain consists of five
ectodomains with immunoglobulin-like topology, ranging from the membrane-distal EC1
domain to the membrane-proximal EC5 domain (Boggon et al., 2002; Gumbiner, 2000;
Harrison et al., 2010) Structural studies (Al-Amoudi and Frangakis, 2008; Nose et al., 1990;
Shan et al., 1999), binding affinity measurements (Parisini et al., 2007), sequence analysis
(Kitagawa et al., 2000), and molecular simulations (May et al., 2005; Tamura et al., 1998)
have provided a detailed picture of the trans dimerization process that mediates cell-cell
interaction. Trans dimerization is mediated by an interface formed between two cadherin
molecules from opposing cells that swap the N-terminal β-strands of their EC1 domains,
anchored by binding of the highly conserved Trp2 (Fig. 2). Cadherins show an exquisite
specificity in their homophilic interactions by almost exclusively binding the same type of
cadherin on the adjacent adherence cell. Binding between cadherin extracellular domains is
relatively weak, but cell-cell adhesion may be strengthened by lateral clustering of cadherins
mediated by protein linkages between the cadherin cytoplasmic domain and the actin
cytoskeleton (Jamora and Fuchs, 2002). Thus, intracellular faces of these contacts are
associated with the actin cytoskeleton in AJs (Fig. 1).

CADHERIN-CATENIN-ACTIN INTERACTION
The intracellular domain of classical cadherins, which is lacking in non-classical cadherins
and protocadherins, interacts with various catenin proteins to form the cytoplasmic adhesion
complex (Parthasarathi, 2009). In mice and humans, 5 type I cadherins and 13 type II
cadherins have been described (Posy et al., 2008). Type I and type II cadherins share several
common structural features. They both contain an ectodomain region, which is composed of
five tandem extracellular cadherin domains, each of about 110 amino acids (Boggon et al.,
2002; Nagar et al., 1996). Classical cadherins are anchored by a single-transmembrane
region and have a short cytoplasmic domain with conserved binding sites for β/γ-catenins
and p120 catenins (Ishiyama et al., 2010; Lampugnani et al., 1995), which help to mediate
attachment to the cytoskeleton and to control cadherin trafficking (Liu et al., 2007; Reynolds
and Carnahan, 2004). The cytoplasmic C-terminus of cadherin binds to intracellular
proteins; β-catenin and p120 catenin (Type I cadherin) or γ-catenin (Typ II cadherin). β-
Catenin binds to both the C-terminus of the cadherin intracellular domain and the N-
terminus of α-catenin (Fig. 1). The E-cadherin cytoplasmic domain forms a high affinity,
1:1 complex with β-catenin, which binds with lower affinity to α-catenin (Aberle et al.,
1994; Hinck et al., 1994; Huber and Weis, 2001; Pokutta and Weis, 2000). α-Catenin binds
directly to F-actin of the cytoskeleton (Fig. 1) also through number of actin binding proteins,
such as α-actinin and vinculin. Absence of α- or β-catenin results in defective cell adhesion
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and failure of cadherin-catenin complexes to associate with the actin cytoskeleton. The
Nelson group has challenged this view and suggested alternative roles for α-catenin in the
junction (Drees et al., 2005; Yamada et al., 2005). They demonstrated with purified
recombinant proteins that α-catenin cannot bind to β-catenin and actin simultaneously (Fig.
1), even in the presence of actin binding proteins. In fluorescence recovery after
photobleaching (FRAP) experiments, E-cadherin, β-catenin, and α-catenin displayed very
similar diffusional behaviors on the membrane, whereas actin associated with cell-cell
contacts diffused more rapidly and was more mobile (Yamada et al., 2005). Moreover,
deletion of the cadherin cytoplasmic domain or the actin-binding domain of α-catenin,
which would break the link to actin, did not significantly alter the dynamics of the cadherin-
catenin complex (Yamada et al., 2005). This evidence independently confirms the lack of a
stable linkage between the cadherin-catenin complex and actin through α-catenin at cell-cell
contacts. The Nelson group also has shown that the mammalian α-catenin isoform binds to
actin preferentially as a dimer, and the α-catenin monomer binds to β-catenin (Drees et al.,
2005). Thus, α-catenin may not be able to bind β-catenin and actin at the same time (Fig. 1),
suggesting that α-catenin is not directly involved in the linkage between the E-cadherin–β-
catenin complex and actin filaments (Drees et al., 2005). How cadherin cytoplasmic
domains contribute to the stabilization of cell adhesion and endothelial barrier regulation is
not clear.

REGULATION OF CADHERIN COMPLEX THROUGH SIGNALING
MOLECULES

Cadherins are considered structural proteins, but there is evidence that cadherins are targets
for signaling pathways that regulate adhesion, but also signaling molecules may themselves
that regulate basic cellular processes, such as migration, proliferation, apoptosis and cell
differentiation (Barth et al., 1997; Hulsken et al., 1994; Morin et al., 1997). Cadherin does
not exhibit any enzymatic activity; therefore, their ability to function as signal transducing
receptors depends on their physical interactions with other effectors. For example,
phosphoinositide 3'-kinase (PI3K) is recruited to cell-cell contacts (Singleton et al., 2005;
Sovova et al., 2004), activated by cadherin (Singleton et al., 2005; Sovova et al., 2004) and
E-cadherin interacts with receptor tyrosine kinases, such as epidermal growth factor receptor
(Andl and Rustgi, 2005).

Role of receptor tyrosine kinase (RTK) signaling
Tyrosine phosphorylation has been implicated in the regulation of cadherin function
resulting in the disassembly of the cytoplasmic adhesion complex and, subsequently, the
disruption of cadherin-mediated cell-cell adhesion. This includes phosphorylation of
receptor tyrosine kinases, RTKs, which are frequently activated in cancer cells: epidermal
growth factor receptor, hepatocyte growth factor receptor (c-MET), and fibroblast growth
factor receptor. Converse to the regulation of E-cadherin function by RTKs, functional
adhesion junctions can also affect the RTKs activity. For example, E-cadherin-mediated,
cell-cell adhesion has been shown to repress EGF-induced epidermal growth factor receptor
activation (Takahashi and Suzuki, 1996). Ligated E-cadherin also recruits epidermal growth
factor receptor and induces its ligand-independent activation, leading to the activation of
signal transduction cascades, including the PI3K and mitogen activated protein kinase
(MAPK) pathways and to tumor cell survival (Kovacs et al., 2002; Pece and Gutkind, 2000).
E-cadherin-mediated cell adhesion also induces the activation and phosphorylation of the
RTK, resulting in the repression of cell-matrix adhesion (Zantek et al., 1999). However, the
functional implication of this mechanism in barrier function is not known.
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Role of nonreceptor tyrosine kinase (Src)
Disassembly of cadherin includes phosphorylation of the non-RTK, Src, which
phosphorylates E-cadherin, neuronal (N)-cadherin, β-catenin, γ-catenin and p120-catenin
(Fig. 3), resulting in the disruption of cadherin-mediated cell–cell adhesion (Behrens et al.,
1993; Fujita et al., 2002; Hamaguchi et al., 1993). Cadherin molecules are not stably
exposed at the cell surface; rather, they cycle on and off the plasma membrane in a highly
dynamic fashion by exo- and endocytic events (Akhtar and Hotchin, 2001; Xiao et al.,
2005). Internalization of E-cadherin from AJs is initiated by the Src-mediated tyrosine
phosphorylation of E-cadherin (McLachlan et al., 2007; Papkoff, 1997). This
posttranslational modification induces the dissociation of p120 from E-cadherin (Fig. 3), and
the binding of the cbl-like ubiquitin-ligase, Hakai, which results in the ubiquitination of E-
cadherin and internalization within clathrin-coated endosomes (Fujita et al., 2002; Palacios
et al., 2005; Pece and Gutkind, 2002). p120 is a Src substrate and member of the catenin
family (Anastasiadis and Reynolds, 2000) that binds to the juxtamembrane domain of E-
cadherin (Fig. 3). p120 is involved in the maintenance of E-cadherin at the plasma
membrane (Anastasiadis and Reynolds, 2000), (Ireton et al., 2002; Xiao et al., 2005). In an
E-cadherin-bound state, p120 prevents the internalization of E-cadherin (Fujita et al., 2002;
Pece and Gutkind, 2002). How the endocytic machinery regulates adherens junction
formation or opening is an issue that requires further investigation.

Role of small GTPases
E-cadherin, once engaged in cell-cell adhesion, suppresses Rho activity by activating p190
Rho-GAP, probably through Src-family kinases, indicating that active signals are induced by
the formation of cell junctions (Fig. 3). In addition to interacting with RhoGTPases through
p190 Rho-GAP and p120-catenin, cadherin also communicates with these molecules
through PI3K signaling. Ligation of cadherin molecules between two neighboring cells
recruits PI3K to the cytoplasmic adhesion complex (Fig. 3), thereby generating
phosphatidylinositol-(3,4,5)-triphosphate (PIP3) at the plasma membrane. Guanine
nucleotide exchange factors (GEFs) that contain phosphatidylinositol-(3,4,5)-triphosphate
(PIP3) binding pleckstrin-homology domains, such as TIAM1, are then recruited to the
membrane, activating Rac1, and possibly activateing CDC42 (Fig. 3). Disrupting Rac1 or
Rho interrupts AJ assembly (Braga, 2002; Yap and Kovacs, 2003), whereas CDC42 seems
to regulate AJ maintenance (Kouklis et al., 2004). The Malik group demonstrated in mouse
lung endothelial cells that the mutant of VE-cadherin lacking the extracellular domain
(ΔEXD) increases vascular permeability, and coexpression of dominant-negative CDC42
(N17CDC42) prevents the increase of permeability induced by ΔEXD (Broman et al.,
2006). This was attributed to inhibition of the α-catenin association with the ΔEXD-β-
catenin complex, suggesting that CDC42 regulates AJ permeability by controlling the
binding of α-catenin with β-catenin and the consequent interaction of the VE-cadherin/
catenin complex with the actin cytoskeleton. Rho GTPases RhoA, Rac1, and CDC42 are
important in regulating AJ assembly (Fukata and Kaibuchi, 2001; Zigmond, 2004).
Cadherin-catenin interactions specifically activate Rac1, as seen in response to cadherin-
based cell-cell adhesion (Lampugnani et al., 2002; Noren et al., 2001) and in cells binding to
cadherin-coated substrates (Kovacs et al., 2002; Noren et al., 2001). Rac1 and CDC42 may
support E-cadherin function. There seems to be a fine balance between Rac1 and Rho
activity during AJ assembly. As cells make contact, Rac1 activation occurs at cell-cell
contacts, whereas Rho acts at later contractile cables (Yamada and Nelson, 2007). Crosstalk
between Rac1 and Rho helps the actin reconfiguration during AJ assembly.

Unfortunately, the overall picture of Rho proteins and barrier function is still not clear. For
example, changing the composition of the ECM changed the function of Rac1 from a
proadhesive to an anti-adhesive molecule (Sander et al., 1998). Rho family GTPases are
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certainly involved in many different aspects of the various stages of cell-cell adhesion
formation; however, details of their actual functional roles remain to be determined.

Role of the WNT signaling pathway
Assembly of the cadherin, β-catenin, and γ-catenin complex, which mediates cell adhesion,
also has important functions in the canonical WNT signaling pathway (Bienz and Clevers,
2000) (Fig. 4). Non-sequestered, free β-catenin and γ-catenin are rapidly phosphorylated by
glycogen synthase kinase 3β (GSK-3β) in the adenomatous polyposis coli (APC)-axin-
GSK-3β complex and are subsequently degraded by the ubiquitin-proteasome pathway. If
the tumor suppressor APC is non-functional, as in many colon cancer cells, or if the
activated WNT-signaling pathway blocks GSK-3β activity, β-catenin accumulates at high
levels in the cytoplasm (Fig. 4). The WNT ligand ultimately results in the stabilization of
cytoplasmic β-catenin, which is then free to enter the nucleus. Subsequently, β-catenin
translocates to the nucleus, where it binds to members of the transcription factor TCF/LEF1
and modulates the expression of their target genes. This dual function of β-catenin raised the
question of whether the loss of cadherin function would subsequently lead to the activation
of the WNT signaling pathway. In various cellular systems, it has been demonstrated that
sequestration of β-catenin by E-cadherin competes with the β-catenin/TCF-mediated
transcriptional activity of the canonical WNT signaling pathway (Fig. 4). The fact that E-
cadherin does not completely deplete cytoplasmic catenin indicates that β-catenin exists in
different functional pools (Gottardi et al., 2001; Orsulic et al., 1999; Stockinger et al., 2001).
Since the activation of transcription factor Kruppel-like factor (KLF4), regulates VE
cadherin expression (Cowan et al. 2010), and also interacts with C-terminal domain of β-
catenin (Evans et al. 2010), might inhibits Wnt signaling (Fig. 4). Hence maintains the
integrity of AJs, preventing vascular leakage in response to inflammatory stimuli.

CROSS TALK BETWEEN FAK AND CADHERIN-MEDIATED ADHESIONS
FAK is a critical bidirectional linkage between the actin cytoskeleton and the cell-matrix
interface, thus providing stability that maintains endothelial cell barrier integrity. FAK
activation and enhancement of AJs associated with RhoGTPase (Birukov et al., 2002;
Shikata et al., 2003). RhoGTPase activity is subject to regulation by GEFs, guanine
nucleotide dissociation inhibitors (GDIs), or GTPase activating proteins (GAPs). RhoGDI-1
(RhoGDIα) represses RhoA activation and thus protects endothelial cell junctions from
disassembly (Gorovoy et al., 2007). RhoA activity also inhibited through the activation of
p190RhoGAP (Holinstat et al., 2006). FAK activates p190RhoGAP after thrombin
stimulation to inhibit the increase in permeability facilitated by RhoA (Fig. 3) and
reassembles disrupted endothelial cell junctions, (Holinstat et al., 2006).

In a barrier protective effect, cAMP directly activates Epac, a Rap1GEF, (de Rooij et al.,
1998) enhancing VE-cadherin junctional integrity and actin reorganization to decrease
endothelial permeability (Kooistra et al., 2005). Rap1 decreases basal endothelial
permeability by enhancing distribution of both AJs and tight junctions (Cullere et al., 2005;
Kooistra et al., 2005), and Rap1 antagonizes thrombin-induced increased permeability by
inhibiting activation of RhoA (Cullere et al., 2005; Kooistra et al., 2005). Since activation of
FAK and CDC42 (Fig. 3) also parallels the time course of re-formation of AJs and
endothelial barrier protection following thrombin challenge (Kouklis et al., 2004; Schilling
et al., 1992), it is likely that Rap-1, FAK, and CDC42 act in concert to down regulate RhoA
activity and to promote the reformation of endothelial cell junctions.

The effect of FAK, barrier strengthening or weakening, varies depending on the nature of
stimuli and the physical or chemical states of surrounding matrices. For example, inhibiting
signaling through FAK or decreasing FAK expression can promote assembly or disassembly
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of cadherin-mediated cell-cell adhesions, respectively, depending on cell context and
cadherin type (Avizienyte et al., 2002; Yano et al., 2004). In one case, loss of FAK or
paxillin from HeLa cells leads to increased peripheral Rac1 activity and deregulation of N-
cadherin-mediated cell–cell adhesion. In contrast, it is reported that integrin-induced
activation of FAK can also result in activation of Rac1 via a p130Cas/CrkII/DOCK180
complex with DOCK180 acting as a Rac1 GEF (Cheresh et al., 1999; Hsia et al., 2003) (Fig.
3). This suggests that FAK can signal to Rac1 via different effectors and that these signaling
pathways may have distinct, and probably localized, biological consequences.

From our studies using rat lung microvascular endothelial cells, it is evident that E-cadherin
acts as a switch to either increase or decrease barrier strength through FAK signaling, which
in turn regulates cadherin accumulation or clustering (Quadri and Bhattacharya, 2007).
Moreover, H2O2 exposure induces an immediate loss of surface E-cadherin that then
progressively increases with time. This response may be due to focal adhesions driving E-
cadherin toward the surface. Thus, inhibition of FAK activation may block the signal for E-
cadherin translocation to the surface, thereby compromising the integrity of the
microvascular barrier. This suggests that in ECs, FAK activation is required for proper
localization of E-cadherin to the cell periphery and for consequent strengthening of the
endothelial cell barrier (Quadri and Bhattacharya, 2007). By contrast in other cell types, as
in KM12C colon cancer cells, Src induced deregulation of E-cadherin requires αv/β1
integrin and Src-dependent tyrosine phosphorylation of FAK, suggesting Src–FAK has a
negative influence on cadherin-mediated intercellular adhesion in motile phenotypes
(Avizienyte et al., 2002). Since p120 is a Src substrate (Anastasiadis and Reynolds, 2000),
cytoplasmic p120 binds the Vav2 exchange factor (Fig. 5) and regulates the activity of the
small G-proteins Rac1, CDC42 and RhoA (Noren et al., 2001); could explain the cadherin-
mediated intercellular deregulation, but E-cadherin-bound p120 prevents the internalization
of E-cadherin (Fujita et al., 2002; Pece and Gutkind, 2002). This diversity of responses of
FAK to Src could be due to some cell- or context-dependent signaling from FAK to RAC1
and on other upstream signaling inputs, such as Src activity. These findings suggest that
FAK’s activation induced signaling positively regulates intercellular adhesion; however, the
Src-induced signaling pathway negatively regulates cell–cell adhesion.

Downstream of FAK, paxillin is also important for endothelial barrier regulation. Paxillin is
a multidomain adapter, FA protein that functions as a molecular scaffold for protein
recruitment to FAs and thereby facilitates protein networking and efficient signal
transmission (Turner, 2000; Turner and Brown, 2001). Evidence shows that in mouse lungs
and in HUVEC cells, loss of VE-cadherin junctional assembly in microvessels causes
permeability and the reversal of the loss of barrier function after VE-cadherin junctions were
reannealed in Ca2+ switch assay in the intact mouse lung (Gao et al., 2000). Reported
findings has shown that human pulmonary endothelial cells undergo S1P-induced
enhancement of VE-cadherin and association of β-catenin with paxillin (Fig. 3), which is
critically dependent on Rac and CDC42 activities (Birukova et al., 2007) and is abolished by
pharmacological or small interfering RNA (siRNA)-mediated inhibition of Rac and CDC42.
It is also showed that enhancement of the VE-cadherin interaction with α-catenin and β-
catenin was associated with the increased formation of FAK-β-catenin complexes. Depletion
of β-catenin by siRNA resulted in loss of S1P-mediated, VE-cadherin association with FAK
as well as paxillin rearrangement (Birukova et al., 2007) (Sun et al., 2009). Since β-catenin
does not contain FAK or paxillin binding sites, possibly FAK and paxillin indirectly
interacts with β-catenin and VE cadherin. Paxillin interacts with signaling proteins Crk,
p60Src-kinase, FAK, (Fig. 3), and structural FA-associated proteins such as vinculin,
actopaxin, and tubulin (Turner, 2000; Turner and Brown, 2001). Paxillin also binds to
paxillin kinase linker (PKL/GIT2). GIT2 is a member of ADP-ribosylation factor GTPase
activation factors (ARF GAP) family, and participate in Rac- and Rho-mediated signaling
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events at FAs (Mazaki et al., 2001; Turner, 2000; Turner and Brown, 2001). Enhancement
of cadherin and association of β-catenin with paxillin is critically dependent on Rac and
CDC42 activities (Fig. 3). These findings suggested that Rac and CDC42 GTPases have
been implicated in the assembly of these complexes.

In addition to the effects of cadherin-mediated adhesion on Rho GTPase activity,
cytoskeleton-associated signaling proteins also have an effect on the stability of the
cytoplasmic adhesion complex. GTPase-activating protein, IQGAP1, a downstream effector
of Rac1 and CDC42 (Fig. 5) is known to negatively regulate E-cadherin mediated cell-cell
adhesion by interacting with β-catenin and displacing α-catenin from the cytoplasmic
adhesion complex (Kuroda et al., 1998). Activated GTP-bound forms of Rac1 and CDC42
sequester IQGAP1 and prevent its binding to β-catenin, thereby stabilizing cadherin-
mediated cell adhesion (Fukata et al., 1999). Indeed, IQGAP1 expression or function has
been observed during tumor progression in gastric cancer cells, for example (Takemoto et
al., 2001). However, it remains to be determined whether IQGAP1-mediated disruption of
cadherin function is a general process in barrier disruption. The understanding that the
linkage between the cadherin-catenin complex and the actin cytoskeleton (Conacci-Sorrell et
al., 2002; Gumbiner, 1996) is important for barrier regulation comes from findings that
barrier-deteriorating stimuli deplete both the cadherin-catenin complex (Rabiet et al., 1996)
and actin (Ehringer et al., 1999) from the cell periphery, thereby raising the possibility that
FAK and cadherin-mediated, cell-cell contacts communicate with each other.

SUMMARY
As described above, FAK and VE/E-cadherin are able to associate with actin and signal
transduction pathways by interacting with molecules such as receptor tyrosine kinases, Rho-
family GTPases and components of the WNT signaling pathway. The expression of FAK
and cadherin affect not only the adhesive properties of a cell, but also the signal transduction
status. Conversely, signaling pathways can modulate the function of FAK and cadherin,
altering the interactions between cells and their environment. Although many different
examples of signaling mediated by FAK and cadherin have been reported, the functional
implications of signaling molecules between FAK and cadherin crosstalk will certainly be a
key focus of future research.

FUTURE PERSPECTIVE
In this review, I have discussed topics that appear to be crucial for understanding the
structure and function of adhesions, including the molecular complexity of these sites, their
heterogeneity, and their dynamics. The molecular complexity of FAs is probably
considerably greater since many of these components are still unknown and others can be
post-translationally modified or proteolytically processed, undergoing conformational
changes. To provide an insight into the local molecular architecture of adhesion sites,
advanced ‘multi-dimensional microscopy’ is needed; this will allow the simultaneous
localization of multiple components at a high spatial and temporal resolution. Imaging of
molecular interactions using fluorescence resonance energy transfer will be needed for
studies of these complex molecular interactions in situ. Such approaches may help uncover
not only the molecular architecture of adhesion sites but also the ways in which they
function in matrix rearrangement, adhesion-mediated signaling, and endothelial barrier
regulation.

Highlights

FAK and cadherin signaling coordinates appropriate changes at the cell-cell contact.
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Cadherin organization and endothelial barrier function.

Cadherin-catenins-actin interactions are in question.

The role of small GTpases in the FAK and cadherin mediated cross talk.

The signaling molecules between FAK and cadherin cross talk will be a key focus of
future.
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Fig. 1. Model of FAK and the cadherin complex function in actin polymerization
FAK signals to Arp2/3 in modulating cell adhesion and actin polymerization. The FAK N-
terminal domain binds directly to Arp3, which promotes nucleation by bringing an actin
monomer to Arp2/3 via the WASP-homology 2 domain, thereby enhancing actin
polymerization. The α-catenin isoform binds to actin preferentially as a dimer, and the α-
catenin monomer binds to β-catenin; therefore α-catenin does not bind to β-catenin and
actin simultaneously.
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Fig. 2. Structure of strand-swapping in wild-type E-cadherin fragments (trans-dimer)
Ribbon diagram shows the strand-swapped dimer formed between protomers of wild-type E-
cadherin EC1 in the crystal. Side chain atoms are shown for Trp2 residues (W2) and calcium
ions are displayed as green spheres (reproduced with permission of the Nature Structure
Molecular Biology Harrison, 2010).
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Fig. 3. Interactions between FAK and the cadherin complex
Signal from FAK to Rac1 plays a role in modulating cell adhesion and actin polymerization.
PI3K is recruited to the membrane by intact E-cadherin AJs, where it generates PIP3,
resulting in the activation of the Rho-GEF, TIAM1 and subsequently of Rac1 and CDC42.
Activated FAK enhances Rac1 activity via a Cas/CrkII/DOCK180 complex. Paxillin binds
to GIT2, participate in Rac- and Rho-mediated signaling events at FAs. Association of β-
catenin with paxillin is depends on Rac and Cdc42 activities. Src family Activates p190
Rho-GAP, activated p190 Rho-GAP suppresses Rho activity. p120 is a Src substrate and is
involved in the maintenance of cadherin at the plasma membrane.
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Fig. 4. Signaling pathways affected by loss of cadherin function
Upon disassembly of the cytoplasmic cell-adhesion complex, catenins are released and
accumulate in the cytoplasm. β-Catenin (β) is then sequestered by the adenomatous
polyposis coli (APC)–axin–glycogen synthase kinase 3β (GSK-3β) complex and
phosphorylated by GSK-3β. Phosphorylated β-catenin is specifically bound by βTrCP, a
subunit of the E3 ubiquitin-ligase complex, which ubiquitylates β-catenin and thereby marks
it for rapid proteosomal degradation. However, on activation of the WNT signalling
pathway, GSK-3β is repressed, and β-catenin is no longer phosphorylated. β-catenin
translocates to the nucleus where, together with the TCF/LEF1 transcription factors, it
modulates the expression of several target genes. Transcriton factor KLF4 interacts with β-
catenin and inhibits Wnt signaling pathway.
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Fig 5. Cross talk between FAK and cadherin
Since β-catenin does not contain FAK or paxillin binding sites, FAK signals to Rac,
activated Rac1 and CDC42 sequester the GTPase-activating protein IQGAP1, and prevent
its binding to β-catenin, thereby stabilizing cadherin-mediated cell adhesion. Otherwise in
free form IQGAP1 binds to β-catenin, thereby displacing α-catenin from the cytoplasmic
adhesion complex and disrupting the anchoring of the cytoplasmic complex to the
cytoskeleton. Cytoplasmic p120-catenin (p120) activates the Rho-family GTPases Rac1 and
CDC42 through the VAV2 (Rho-GEF), and represses Rho by an unknown mechanism.
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