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Abstract 

Owing to bio-compatibility, abundance, and low cost, magnetic iron oxides are well suited for the 

design of efficient and magnetically separable photocatalysts for water treatment. This review 

presents a detailed survey of magnetic iron oxides integrated photocatalysts, in which we have 

discussed essential conditions needed for designing of efficient Magnetic Iron Oxide Integrated 

Photocatalysts (MIOIPs) for water purification. The synthesis methods and detailed experimental 

set-ups for fabrication of MIOIPs were discussed, and the integration manners of iron oxides 

(Fe2O3, Fe3O4, FeO, and ferrites) with binary, ternary and quaternary non-magnetic photocatalysts 

have been categorized. The mechanistic view of enhanced photocatalytic activity caused by 

different MIOIPs under various light sources was also elaborately argued.  The role of various 

reactive species in photocatalytic oxidative degrading of organic pollutants was investigated. 

Altogether, this review paper has compressively considered and discussed various signs of 

advancements made towards MIOIPs synthesis and their stability, recyclability and catalytic 

efficacy for wastewater treatment.   

 

Keywords:  Magnetic iron oxides; Integrated photocatalysts;  Quick recovery of photocatalysts;    

Enhanced photocatalytic activity;  Wastewater remediation;  Reusability.  
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The chaotic growth of civilization and industrialization is mainly responsible for depletion of water 

resources which is indispensable for sustaining salubrious livelihoods. Influenced by the hastening 

anthropogenic activities and socio-economic development inadequate access to safe drinking 

water and sanitation are two utmost pervasive outcomes, even in regions currently deemed as 

water-rich [1-3]. According to United Nations World Water Development 2019 report, over 2 

billion people are surviving in countries facing acute water stress and 1.2 billion people in world 

lack equitable access to clean and affordable drinking water. Recent, World health organization 

(WHO) statistics stipulates paramount outbreaks of water-borne diseases instigating around 

485000 diarrheal deaths every year [4-6]. The arbitrary release of varied range of pollutants into 

water bodies by commercialized and human practices has posed serious threats to aquatic and 

public life. The most common emerging water pollutants are toxic organic aliphatic and aromatic 

molecules, surfactants, chlorinated organic dyes, detergents, pesticides, herbicides, insecticides, 

disinfection by-products, volatile organic compounds, plastics, heavy metals, oxides of nitrogen 

and sulphur and pathogens (viruses, bacteria, and fungi) [7-11]. Therefore, strategies to accentuate 

exclusion of aqueous phase pollutants are of great inevitability for researchers for overall water 

management.  

          Various water treatment processes have been developed over the years but have limited large 

scale application. The conventional methods include; adsorption on activated carbon and air 

stripping, incineration at high temperature, chlorination, filtration, sedimentation, biological 

treatment and coagulation etc. [12-13]. However, they are associated with potholes of heavy sludge 

and toxic by-products formation, time-consuming and cost-ineffective nature. Currently, the 

underlying drivers to eradicate the limitations of traditional methods are advanced oxidation 

processes (AOPs) for complete abatement of high levels of pollutants. Amongst the various AOPs, 

heterogeneous photocatalysis as a fundamental component of green chemistry has stimulated 

extensive research on designing environmentally benign and efficient photocatalysts [14]. 

Photocatalysis process utilizes UV-visible light or solar energy for oxidative or reductive 

degradation of organic pollutants into inorganic ions, CO2 and H2O with no further harmful by-

products [15-21]. The first report by Fujishima and Honda embarked the generation of 

photocatalysis by experimentation on photo-electrochemical water splitting via aid of titanium 

dioxide (TiO2) driven by ultraviolet light. Since then, a variety of metallic semiconductor 

photocatalytic materials like metal oxide (ZnO, CaO, ZnWO4, WO3, ZrO2, BiTiO3, SrTiO3, Fe2O3, 



6 

 

Ag2CO3, BiOBr, BiOCl, CaFe2O4, BiOCl, and ZnFe2O4 etc.), metal sulphide (ZnS, CdS, AgIn5S8, 

CuInS2 etc.) and noble metals have been ruggedly employed for water purification. The basic 

principle of heterogeneous photocatalysis has well been established in the literature which is 

primarily influenced by the electronic structure of semiconductor [20-24]. The photocatalyst 

absorbs light when the energy of incident radiations is equal or larger than band gap (Eg) of the 

semiconductor. After absorption of light energy, an electron is excited from filled valance band 

(VB) of photocatalyst into its empty conduction band (CB) to create electron-hole pairs (EHP) [25]. 

When the photogenerated charge carriers are not utilized in photocatalytic reactions, they 

recombine within a few nanoseconds via either luminescence or heat generation. In the presence of 

adequate scavenger or surface defect to capture photogenerated EHP, recombination is forbidden, 

and subsequent redox reactions may happen [26-30].  

The band gap positioning of various photocatalysts with respect to redox potential scale (vs. SHE; 

pH 7) is shown in Fig.1. The valence band holes are strong oxidants (+1.0 to +3.5 V vs. SHE), 

while the conduction band electrons are good reductants (+0.5 to -1.5 V vs. SHE) [22-28]. For 

example, redox potential of VB of TiO2 is more positive than ESHE (E •OH/H2O = +2.27 V), whereas 

redox potential of CB of TiO2 is less negative than ESHE (E O2/O2
•- = -0.28) [29]. Thus, •OH radicals 

are generated on reaction of VB holes with water molecule, whilst CB electrons react with O2 to 

create O2
•- radicals. In the next step, reactive species (•OH and O2

•-) react with pollutant molecules 

to form intermediates followed by final degraded products. The following features of photocatalytic 

process permits its applicability in water purification [30-33, 1]. 

 Applicability at ambient temperature and pressure.  

 Causing complete degradation of pollutants into innocuous products. 

 Acquiring the required oxygen directly from the aqueous medium. 

 

<Please insert Fig.1 here> 

 

The heterogeneous photocatalysts have several advantages over conventional homogenous catalytic 

system (Fig. 2). Chemical stability, low cost and non-selective catalytic activity are some of the 

main properties of heterogeneous photocatalysis over homogenous photocatalysis. However, pilot 

scale applications of heterogeneous semiconductor oxide photocatalysts are hindered by poor 
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absorption of visible light and high recombination rate of EHPs [34, 35].  For instance, the wide 

band gap of anatase TiO2 (3.2 eV) corresponds to absorption of 387.5 nm wavelength in the UV 

region [36-40].  

The poor selective adsorption and high concentration of organic pollutants in industrial waste 

deactivates photocatalyst and leads to catalytic poisoning which limits their applicability in water 

treatment process [41-43]. Moreover, isolation and recovery of non-magnetic photocatalysts from 

the reaction mixture is not very easy. This limitation hampers economics and sustainability of 

heterogeneous photocatalysts for water purification process [44-47]. Furthermore, immobilization 

of photocatalyst on different support systems reduces their effective surface area for photocatalytic 

reaction and, hence, the overall efficiency of photocatalytic system is lessened. Since, the solar 

spectrum comprises of only 5–7% of UV light, whilst 47% and 46% of the spectrum consists of 

infrared and visible radiation, respectively[48-51].Thereby, it is essential to design a photocatalyst 

which responds to the entire solar spectrum region in-order to promote its photodegradation 

efficiency. An ideal and green heterogeneous photocatalyst must possess some unambiguous 

features like stability in aqueous phase, high activity, chemical inertness, low-cost, photo-stability, 

non-toxicity, efficient recovery, and reasonable recyclability for efficient water purification process 

[49-53]. 

<Please insert Fig.2 here> 

           

To overcome these issues, coupling of iron oxides nanoparticles (IONPs) with non-magnetic 

semiconductor photocatalysts seems to be the most rational solution. The separation of non-

magnetic photocatalysts can be achieved using magnetically separable IONPs in the production of 

hybrid photocatalytic systems [53-58]. Among all magnetic nanoparticles, iron oxides, i.e. Fe3O4 

(magnetite), α-Fe2O3 (hematite), β-Fe2O3 (beta phase), γ -Fe2O3 (magnetite), FeO (wustite), and 

spinel ferrites (MFe2O4), have got much attention in the field of photocatalysis due to 

paramagnetism/ferrimagnetism, environmentally-friendly nature, and stability [54-56, 48, 32] 

(Fig.3 (a)).  The magnetic nature of IONP enables easy and effective separation of photocatalyst 

from reaction mixture using an external magnetic field [54-56, 59]. Iron oxides with saturation 

magnetization of more than 1 emu g-1 can be easily separated using an external magnetic field [48]. 

Utilization of IONPs eliminates the use of tedious filtration and centrifugation methods to recover 
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photocatalyst from the reaction solution. On the other hand, the used iron oxide should possess a 

relatively narrow band gap for higher visible light activity [46-48]. MIOIP nanocomposites must 

show enhanced photocatalytic activity in comparison to both bare iron oxide and pure 

semiconductor photocatalysts [43]. Photocatalytic applications of Magnetic iron oxide integrated 

photocatalyst (MIOIPs) are summarized in Table 1. 

A literature survey on the Scopus database (keywords; Magnetic photocatalyst + Water 

purification) shows nearly 3000 papers from 2008 to 2018. Most of the articles are published in 

Chemical Engineering Journal, Journal of Cleaner Production, Advances in Colloid and Interface 

Science, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Nano today, 

and Applied Catalysis A: General. In the past ten years, research in this field has been shifted 

towards the applications of iron oxides in the photocatalytic water purification [49-51, 48, 32, 60] 

(Fig.3 (a)). Though it is not feasible to include every article correctly, still an increasing trend in 

MIOIPs for water purification can be observed. Interestingly, ferrites and FeO share respective 49 

% and 33.6 % of total number of published papers involving designing and applicability of 

magnetic photocatalysts for advanced oxidation water purification process (Fig. 3(b)).        

<Please insert Fig.3 here> 

           In the present review, our purpose is to present a broad overview on magnetic iron oxides 

supported photocatalysts for organic pollutants degradation from water. Most of the previously 

published reviews have been focused on the usage of iron oxide in water treatment through 

adsorption processes, reductive pathways, and catalytic degradations. Our review mainly involves 

recent developments in the photocatalytic activity of magnetically separable iron oxides integrated 

photocatalysts for wastewater treatment. We begin with an introductory discussion of 

heterogeneous photocatalysis, major drawbacks of non-magnetic photocatalyst, and the need for 

magnetically separable photocatalyst for water purification. In the first section, basic structure and 

magnetic properties of iron oxides were discussed. The second section contains various synthesis 

methods and different reaction conditions for MIOIPs preparation. The magnetic photocatalysts 

are classified and discussed in four subsections: (i) α- Fe2O3 integrated photocatalysts, (ii) Fe3O4 

supported catalysts, (iii) FeO supported photocatalysts and (iv) Ferrites based photocatalysts. Also, 

lastly, limitations and future perspectives of MIOIPs are also discussed.    
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2. Iron oxides: Potential material with great future   

       Iron oxides are the most abundant metal oxides and can be synthesized at large scale under 

ambient reaction conditions. Recently, magnetic iron oxides are of great interest to researchers and 

environmentalists owing to their wide-range application in various fields including catalysis, 

pigments, targeted drug delivery, biosensors, magnetic resonance image, data storage, 

photocatalysis, environmental applications, etc. In this view, for example, many magnetic iron 

oxides with different size and morphology have been fabricated due to their importance in 

environmental research [57-59]. Out of eight known phases of iron oxides, α-Fe2O3 (hematite), γ-

Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite) are the most popular and potential 

magnetic materials for water treatment. The hematite iron (III) oxide exists as α-Fe2O3, β-Fe2O3, 

γ-Fe2O3, and ɛ-Fe2O3 phase, among which α-Fe2O3 and γ-Fe2O3 are stable iron (III) oxides [62-

66]. Hematite exists as corundum structure with six Fe and O atoms per unit cell having space 

group R-3c and lattice parameters of a = 5.0356 nm, c = 13.7489 nm (Fig. 4(a)) [62, 64]. Hematite 

has strong absorption of yellow light in the UV region [63]. It transmits orange colour in the visible 

region and red colour in the infrared region [59, 60, 63]. The cationic arrangement has  FeO6 

octahedrons pairs involving  sharing of edges by three neighbouring octahedrons in the same plane 

and one face with an octahedron in an adjacent plane in (001) direction. The hematite shows C3v 

symmetry [60] with two different Fe-O bond lengths [61, 65]. The most primitive magnet, Fe3O4 

(magnetite) was discovered around 1500 B.C possessing cubic inverse spinel structure with Fe3m 

space group (Fig.4 (b)). The unit cell contains both Fe2+ and Fe3+ ions which bring about unique 

magnetic behavior, 32 O2- ions in regular cubic closed pack with vacancies in Fe sites leading to 

crystal symmetry loss [63-65]. Both Fe3O4 and γ-Fe2O3 have a similar crystalline structure and 

chemical composition.  

FeO (Wustite) has cubic a rock-like structure with the octahedral arrangement of iron and oxygen 

atoms in a unit cell (Fig.4(c)) [66]. The most important MNPs are transition metal oxides with 

spinel structural arrangements termed as ferrites. On the basis of their magnetic characteristics and 

crystal structures, ferrites are classified into three categories: (a) spinel (MFe2O4; M=Mn, Fe, Ni, 

Co, Zn, etc.), (b) garnet (M3Fe5O12; M= rare earth cations), (c) hexaferrite (SrFe12O19 and 

BaFe12O19), (d) orthoferrite (MFeO3, M= rare earth cations). Spinel ferrite nanoparticles, AB2O4 

(general chemical formula) are most explored amongst these groups. Their homogeneous structure 

is composed of metallic cations A and B positioned at two discrete crystallographic sites 



10 

 

tetrahedral and octahedral with Fe (III) as vital element. The spinel ferrites, with a general formula 

of MFe2O4 are thermally and chemically stable magnetic substances with potential photocatalytic 

applications for removal of toxic gases and heavy metal removal from aqueous phase [67-69]. 

Depending on the anchoring position of M (II) and Fe (III), there are three possible spinel 

arrangements, termed as normal, inverse, and mixed structures. In normal spinel ferrite, Fe (III) 

and M (II) are found at octahedral and tetrahedral sites, respectively whereas, in inverse spinel 

structure of ferrites, M (II) only occupies octahedral positions while Fe (III) is equally distributed 

on both sides [70, 71]. In a mixed type of ferrite, both ions Fe(III) and M (II) lies on octahedral 

sites as well as tetrahedral sites (Fig.4 (d)) [32]. The afore-mentioned description on structure 

stability and abundantly available nature of iron oxides contributes to significantly enhanced 

photodegradation activity.   

 

< Please insert Fig.4 here > 

2.1. Magnetic behaviour, magnetic separation and toxicity of iron oxide photocatalyst 

            The magnetic behavior of iron oxides can be categorized by their response to the applied 

external magnetic field. On the basis of orientations of magnetic moment, five basic types of 

magnetism can be leveled: diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and 

ferrimagnetic [72-74, 44]. The magnetization type can be determined from universal (M–H) 

hysteresis loops from which the values of MS (saturation magnetization), Mr (remanence 

magnetization), and HC (coercivity) can be obtained [75-78, 44]. Superparamagnetic INOPs 

involves complete overlap of forward and backward magnetization curves [75, 77]. Fe3O4 and γ-

Fe2O3 exhibit saturation magnetization up to 92 emu g-1 at room temperature [73]. However, α-

Fe2O3 exhibits weak ferromagnetism and saturation magnetization is usually less than one emu at 

room temperature [78]. Choi et al., prepared hollow nanospheres, solid nanospheres, hollow 

nanoellipsoids, and solid nanoellipsoids of Fe3O4 nanoparticles. Fe3O4 nanoparticles exhibit 

ferromagnetic behaviour, and their saturation magnetization (Ms) and coercivity (Hc) depends on 

shapes of nanoparticles. The Ms value decreases in the following order: Fe3O4 nanospheres (84.2 

emu g-1) > Fe3O4 nanoellipsoids (65.6 emu g-1) > hollow Fe3O4 nanoellipsoids (53.0 emu g-1) [75]. 

Wu et al., interpreted shape dependent structural and magnetic properties of single and tubular 

clustered magnetite nanoparticles prepared by low-temperature co-precipitation and high-
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temperature hydrothermal reactions. The saturation magnetization (MS) of single and clustered 

nano-Fe3O4 was found to be 64.5 and 63.8 emu g−1, respectively, [76]. The permanent 

magnetization (Mr) and coercivity (HC) were found to be, 15 emu g−1 and 205 Oe, respectively 

[78]. The shape and size of iron oxides greatly influence magnetic properties of nanoparticles due 

to the role of anisotropy in magnetism [77-81]. For example, Billas et al., reported magnetic 

moment of 2.7 mB per atoms for Fe cluster of 300 atoms whereas, the value of the bulk was of 2.2 

mB per atoms [78, 79].  

< Please insert Fig. 5 here > 

      Gautam et al., synthesized superparamagnetic photocatalysts by immobilizing MnFe2O4 onto 

the surface of graphene sand composite (GSC) and bentonite (BT) for photodegradation of 

ampicillin and oxytetracycline antibiotics. The hysteresis curve for MnFe2O4/BT and 

MnFe2O4/GSC is given in Fig. 6(a). The permanent magnetization of MnFe2O4/GSC and 

MnFe2O4/BT was determined to be 12.36 and 12.86 emu g-1, respectively. Both MnFe2O4/BT and 

MnFe2O4/GSC photocatalysts were separated in 10 s using an external magnet [81]. 

 <Please insert Fig.6 here> 

        Owing to superparamagnetic behaviour, IONPs are potential candidates for water 

purification. Accordingly, non-governmental agencies and many scientists have expressed their 

concern for toxic effect of IONPs on human and environment. They are being utilized in diverse 

biomedical applications like in cancer treatment by induced hyperthermia, in drug delivery, and in 

MRI (magnetic resonance imaging). The scientific reports on the potential toxicity of IONPs are 

very rare. Evaluation of toxicity of IONPs of size 30-40 nm in BRL 3A cell line derived from rat 

liver clearly showed no measurable effect on various parameters like morphology, redox 

imbalance and membrane integrity of cells [82]. Using in vitro methods in different cell lines, it 

was found that the treatment with PEI, citrate or polyacrylic acid coated iron oxide nanoparticles 

has less adverse effects on mammalian cells including astrocytes and human T lymphocytes and 

thus, it can be used for neural cell replacement therapies. These IONPs also showed a rapid labeling 

and transfection properties which is required for efficient bimodal MR-fluorescence imaging [83]. 

But in vivo studies by Valdiglesias et al., suggested that toxicity of iron-based nanoparticles 

depends on many factors like the size of nanoparticles and their dose without causing any acute 

toxic effect on mammalian cells [84].   
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2.2. Designing of iron oxide-semiconductor photocatalysts 

            Since the last three decades, semiconductor oxides, nitrides, and sulfides have shown 

noteworthy photocatalytic activity for water treatment. However, most oxides are UV active which 

restricts their applicability under solar light whereas; metal sulfides and nitrides have poor stability 

in the aqueous environment [11]. Recently, iron oxides are emerging as a strong candidate for 

visible light harvesting due to the band gap of 1.9–2.5 eV. Further, α-Fe2O3 absorbs light up to 600 

nm and collects up to 40 % of solar spectrum energy [84, 85, 59]. However, recombination of 

photo-generated EHP lessens applicability of bare iron oxides for water purification. Secondly, 

difficult separation of non-magnetic photocatalyst remains a bottleneck for recyclability of 

photocatalyst due to consuming recovery of photocatalyst [86, 87, 59, 41, 44]. Therefore, 

combination of iron oxides with a semiconductor photocatalyst is essential to design efficient and 

a stable photocatalytic system. An efficient iron oxide-semiconductor nanocomposite should 

possess the following features [88-91, 41, 44, 62]: 

(i) The method of preparation should be simple, facile and high yielding. 

(ii) The nanocomposite should be magnetically separable via an external magnetic field.  

(iii) The nanocomposite must exhibit enhanced photocatalytic activity than pure iron oxide and 

semiconductor photocatalyst. 

(iv)  The nanocomposite must be stable in the aqueous phase and have recyclability. 

      Till now several semiconductor photocatalysts have been employed for removing of organic 

contaminants from the aqueous phase. As per thermodynamic consideration, the redox potential 

of VB holes must be sufficiently positive to produce hydroxyl radical. On the other hand, CB 

electrons must be sufficiently negative to produce superoxide radical [92-94, 22, 23, 55]. The band 

edge positions and band gap energy of some semiconductors along with selected redox potentials 

are shown in Fig. 1. Clearly, the band edge position and band gap energy of TiO2, ZnO, Fe2O3, 

WO3, SnO2, and ZrO2 are reasonably good for photocatalytic water remediation. The 

semiconducting solids absorb photons when hv ≥ Eg, thereafter, an e- is excited from VB to CB 

leaving a hole in VB leading to generation of EHP. The construction of a heterostructure between 

more than one semiconductor via transference of holes and electron facilitates elimination of 

pollutants present in the aqueous phase [95-98].  On the basis of chemical composition, 
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semiconductor photocatalysts can be classified as binary, ternary, and quaternary metal 

oxide/sulphide photocatalyst [99, 100]. This review highlights recent developments on iron oxides 

supported semiconductor photocatalysts with enhanced photocatalytic activity, easy separation, 

and high recyclability.  

 

3. Synthesis of iron-oxide based photocatalysts 

           A plethora of techniques are used for synthesis of iron oxide-semiconductor photocatalysts. 

The practicability and cost-effectiveness are two factors governing the applicability of synthesis 

method [101-103]. The inherent colloidal property of magnetic iron oxide photocatalysts results 

in time-consuming synthesis process [104]. Advanced chemical based synthetic approaches has 

been followed for preparation of magnetic iron oxide photocatalysts including; flow injection 

synthesis [105], aerosol/vapour method, sonochemical reactions [106], coprecipitation, 

hydrothermal reactions [107], electrospray synthesis [108], sol-gel method [109], and 

microemulsion technique [110] as described in (Table 2).  

3.1 Hydrothermal method 

      Hydrothermal method is a common technique for production of magnetic nano iron oxides, 

which involves mixing of soluble salts of divalent (ferrous) and trivalent (ferric) of iron metal 

[111-114]. A synergistic role of hydrolysis and oxidation of mixed metal hydroxides leads to 

formation of magnetic ferric oxide [115-121].  The particles sizes of IONPs are equally governed 

by rate of nucleation and crystal growth effect [122].  At higher temperature, size of IONPs 

decreases because of the fast nucleation rate than the crystal growth rate. Kefeni et al., [123] 

reported a hydrothermal procedure in which dissolvable salts of divalent and trivalent magnetic 

ferric oxides were mixed with mole ratios of 1:2 (Fe2+/Fe3+) to obtain IONPs [124, 125-132]. It is 

observed that the influencing factors; reaction temperature and time depend on type of magnetic 

ferric oxide to be synthesized [133,134]. Taniguchi et al., prepared Fe3O4 nanoparticles by 

dissolving ferrous and ferric salts in sodium oleate [SO] using various molar ratios of [SO]/ [Fe] 

in the saline mixture at 230 ℃. The particles of different size and shape were formed by 0.05 of 

[SO]/ [Fe] at the lowest sodium oleate concentration. The resultant average size particles and Ms 

values were found to decrease with increase in molar ratio of oleate concentration from 0-0.5 [135].  
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3.2. Co-precipitation method 

     The co-precipitation technique is the most facile method for synthesizing uniform IONPs. In 

this process, trivalent and divalent d-block metal salts are intermixed in mole ratios of 1:2, 

respectively [136]. The quality of IONPs is controlled by regulating pH of reaction mixture. The 

co-precipitation is mostly carried out in an alkaline medium using NH4OH and NaOH [136]. The 

crystallinity of IONPs prepared using co-precipitation method is quite low. Thus, heat treatment 

is highly needed to increase the crystallinity degree. Moreover, scaling of products is another 

drawback of the co-precipitation method [137]. Xing et al., [138] prepared Fe3O4/Au 

nanocomposites by co-precipitation procedure.  Firstly, Fe2+ and Fe3+ were mixed in NH4OH to 

obtain Fe3O4. In the next step, sodium citrate and HAuCl4 were added to Fe3O4 to prepare 

Fe3O4/Au. The size of Fe3O4/Au was controlled (25 to 300 nm) by varying reactants concentration. 

Kefeni et al., [123] reported the synthesis of magnetic CoFe2O4 and Fe3O4 photocatalyst by co-

precipitation process. The pH of reaction solution was adjusted by using sodium hydroxide and 

ammonium solution. The obtained nano-sized magnetic photocatalyst possessed a spherical shape 

with an average particle size in 25 -15 nm range. Thakur et al., [139] prepared magnetic NiFexO4 

nanocomposites 10-15 nm (where x=1.8, 2.0, 2.2) using co-precipitation method. There was no 

modification in particle arrangement with variation in x value, while spinel cubic arrangement of 

NiFexO4 was observed at room temperature. The saturated magnetization of NiFe1.8O4 and 

NiFe2.2O4 was lower than NiFe2.0O4 (Ms=47.5 Am2 kg-1) as shown in Fig.7.  

Previously, Zabotto et al., found saturation magnetization of NiFe2O4 sample was 46.5 Am2 kg-1 

[140]. This result claimed attainment of a higher value of saturation magnetization in co-

precipitation procedure. 

<Please insert Fig.7 here> 

           Romimoghadam et al., [141] described the formation of IONPs using coprecipitation 

method.  Briefly, a liquefied solution of Fe (III) and Fe (II) salts were continuously stirred with a 

base with appropriate ageing time. The precipitation of Fe3O4 is shown in the following chemical 

reaction (Eq. 1): 𝐹𝑒2+ + 2𝐹𝑒3+ + 8𝑂𝐻−  →   𝐹𝑒3 𝑂4  + 4𝐻2 𝑂                                                                       (1)         
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Eq. (1) was generally controlled by regulating the solution pH. It is significant to indicate that 

magnetite can be obtained in the pH range 8 -14 with Fe3+ (2): Fe2+ (1) respective ratios in the 

presence of non-oxidizing conditions. 

3.3 Sol-gel Method 

        Sol-gel procedure is a suitable chemical technique which proceeds via hydroxylation and 

condensation of precursors in a typical solvent resulting in “sol” formation. The inorganic 

polymerization and condensation helps in the formation of a 3D ferric oxides wet gel network 

[141]. Since reactions are operational at room conditions therefore, mild heat treatment is essential 

to remove volatile impurities in order to achieve a crystalline state of IONPs. The characteristics 

of gel totally depend on the structure formed during sol preparation and factors like temperature, 

reactant concentration, pH, nature of salt, solvent, and stirring also influence chemical and physical 

properties of gel [141,142]. Among all methods, sol-gel synthesis is very advantageous due to its 

operational simplicity. It does not require any tedious reaction and sophisticated instruments also 

chemical reaction occurs at a low temperature. However, post-synthesis treatment for obtaining a 

high concentration of magnetically iron oxide photocatalyst is a major drawback of the sol-gel 

method. Ramesh et al., prepared Co/Mn substituted Ni-Zn ferrite nanocomposite by using the sol-

gel method. Ni-Zn-Co and Ni-Zn-Mn ferrites were examined for their structural and magnetic 

characteristics [143]. Maron et al., synthesized CoFe2O4 by sol-gel method with high coercivity 

than micro-sized photocatalyst [144]. In addition, these nano-sized photocatalysts were coated 

with hydrophobic surfactants to obtain magneto-optical properties. Fig. 8 (a) displays TEM images 

of synthesized CoFe2O4 nanoparticles exhibiting a monolayer of cobalt ferrite nanocomposites, as 

verified by Langmuir-Blodgett technique. Cobalt ferrite nanoparticles were spherical with a 

diameter of 9±1.5 nm. The inset of Fig.8 (b) shows the diffraction pattern obtained from a high 

resolution TEM image of cobalt ferrite nanoparticles resembled with FCC [121]. Fig.8(c) shows 

the reduced hysteresis loop at 10 K for isolated cobalt ferrite particles which exposed a coercive 

field about ~15 kOe. The estimated value of remanent to saturation magnetization ratio (Mr/Ms) 

for CoFe2O4 was found to be 0.88.  The obtained value was close to Mr/Ms of isolated particles 

with cubic anisotropy was 0.83 (Fig.8 (c)). Sun et al., reported coercivity of 20 kOe for nickel 

ferrite obtained by chemical reaction of acetylacetonate metal precursors with hexadecanediol 

using high-temperature decomposition method [145].  
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<Please insert Fig.8 here> 

 

3.4 Thermal decomposition method  

           Thermal decomposition technique is a very modest process for preparation of magnetic iron 

oxide nanoparticles involving decomposition of organometallic precursors like carbonyls and 

metallic acetylacetonates of organic surfactants (oleic acid and hexadecyl amine) [146]. The 

heating rate governs shape, uniform morphology, concentration of precursors and fine particle 

distribution of magnetic iron oxide nanoparticles [147]. Using this method, monodispersed IONPs 

with uniform morphology can be prepared [148]. Drezereshki et al., [149] prepared magnetic α-

Fe2O3 photocatalyst through thermal decomposition technique. Magnetic α-Fe2O3 nanosized 

photocatalyst was calcinated at 500 ˚C for 1h and 2h to obtain 18±2 and 24±2 nm α -Fe2O3 

particles, respectively. The magnetic measurements indicated weak ferromagnetic behaviour of 

magnetic α-Fe2O3 nanosized photocatalyst at room temperature. Fig. 9 displays TEM images of α-

Fe2O3 photocatalyst in which 200 and 180 nanoparticles were counted in α-Fe2O3 cluster after 

heating at 500 ˚C for 1 and 2 h, respectively. The average particle size of hematite photocatalyst 

was about 50 ± 3 nm and 24 ± 2 nm for 1 h and 2 h heating, respectively.  

<Please insert Fig.9 here> 

3.5. Solvothermal method  

         In solvothermal technique, either aqueous or non-aqueous solvents have been utilized to 

fabricate IONPs with controlled size distribution with accurate crystalline phases [150]. These 

physical and chemical properties of IONPs can be modified by making change in reaction time, 

reaction temperature, solvent, surfactant, and reactants [150-152]. Moreover, due to easiness, in 

term of its reaction conditions, the solvothermal technique is appropriate for scalable production 

of magnetic iron oxide photocatalyst. Wu et al., [152] prepared MWCNT@CoFe2O4 composites 

via the solvothermal technique using CoCl2.6H2O and FeCl3.6 H2O precursors in DEA and DEG 

as complexing agents. The reaction temperature was changed from 180 °C to 240 °C for 8 h. The 

obtained structure of MWCNT@CoFe2O4 nanocomposites was affected by reaction temperature. 

The superparamagnetic MWCNT@CoFe2O4-180 composites contained CoFe2O4 nanoparticles 

consistently coated on carbon nanotubes surface. MWCNT@CoFe2O4-180 had low cytotoxicity, 
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good MRI enhancement effect, and negligible hemolytic activity. Ameer et al., [153] synthesized 

nano-sized CoFe2O4 and it’s composite with rGO using 1-hexagonal assisted in situ reduction 

using the solvothermal method. The average size of synthesized particles was between 15-27 nm. 

CoFe2O4/rGO had consistent dispersion and spherical shape as confirmed by TEM analysis.  

 

3.6 Sonochemical method 

             The sonochemical technique is suitable for the preparation of nano-sized magnetic ferric 

oxide photocatalyst [154]. In this process, bubbles are produced in the solvent medium during 

ultrasonic radiation which can successfully collect diffused energy from ultrasound wave. After 

this, a short-lived localized hot spot is produced with a temperature of 5000 K and pressure of 

1000 bars. The heating rate inside the bubble should be greater than 1010 Ks-1[155]. The particles 

prepared by sonochemical technique have similar composition as of bubble, which can act as the 

main factor in controlling the purity of nano-sized magnetic ferric oxide photocatalyst [156]. 

Several inorganic compounds like IONPs, alloys, carbides, Fe3O4@SiO2[157], CuFe2O4 [158] and 

Fe3O4 [159] have been prepared using this method. This method leads to reduction in crystal 

growth and controlled particle size distribution of IONPs [160]. The size of IONPs varies with 

change in temperature and the intensity of ultrasonic wave. Roshan et al., prepared α-Fe2O3 

nanoparticles via mixing precursors FeCl3.6H2O and NaOH solutions followed by ultrasonication 

for 1 h. The morphology and size of photocatalysts were influenced by ultrasonication power, 

temperature condition and sonication time. Fig. 10 presents the variation in size of α-Fe2O3 with 

respect to sonication temperature. It is observed that with increment in sonication temperature from 

30 to 80 °C, particle size proliferated from 12 nm to 19 nm. However, an antagonistic effect is 

significantly observed on increasing ultrasonication intensity at 80 °C, which causes reduction in 

α-Fe2O3 particle size from 24 nm to 19 nm [161].  

<Please insert Fig.10 here> 

 

3.7 Microemulsion method 

        A microemulsion is composed of three phases of water, oil, and surfactants i.e. a transparent 

solution of small drops of unmixable phase (polar/non-polar) in a continuous phase (oil). The 

surfactant causes a decrease in surface tension between immiscible and continuous phases. The 

surfactants can disperse the resultant IONPs due to micellisation process [145]. Microemulsion 
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technique involves normal oil-in-water as well as reverses water-in–oil phases. The major 

advantage of this technique is size control of synthesized particles. Moreover, this technique can 

be applied for production of IONPs at the industrial level. The dispersed phase comprises of 

monodroplets, with a size range from 2-100 nm in both cases, and provides a restricted 

environment for the synthesis of IONPs. Production of stable IONPs is the most attractive feature 

of the microemulsion method. By this method, recovery and reuse of surfactants and oil also permit 

numerous IONPs synthesis cycles. So, the microemulsion technique is considered as a cost-

effective technique [127]. However, due to slow nucleation rate, IONPs are less crystalline and 

more poly-dispersed. Patel et al., prepared magnetic iron oxide photocatalyst through 

microemulsion technique by changing factors like [water]/[surfactant] mole ratio, reactant 

concentration, oil length, and surfactant. The size of resultant magnetic iron oxide particles was 

between 20 and 50 nm. The fabricated magnetic iron oxide was used as an adsorbent for fluoride 

removal from a synthetic solution containing fluoride. At pH 7, the maximum removal of fluoride 

was observed with an adsorbent dose of 0.4 g/L in 40 min. The removal process fitted well with 

pseudo second-order kinetics [162]. 

 

4. Iron oxides modified binary photocatalysts 

4.1. Iron oxide modified binary metal oxide photocatalysts 

        During the last four decades, numerous metal oxide catalysts such as TiO2, ZnO, CuO, CdS, 

and V2O5 have been used as photocatalyst to mitigate organic/inorganic pollutant present in water. 

Among these photocatalysts, TiO2 and ZnO have been extensively used due to their non-toxicity, 

abundance, and photocatalytic activity. The major drawbacks associated with these metal oxides 

are low visible light activity, poor adsorption activity for aqueous phase pollutants, and difficult 

separation from the reaction solution. Recently, iron oxides have been used to improve the 

photocatalytic efficiency of metal oxide catalysts by modification through the formation of 

heterojunction between iron oxide and any of the above-mentioned metal oxides. In many cases, 

the improvements in the band gap, effective separation of the EHP and, fast separation 

photocatalyst from solution were observed [163]. 

      For an instant, Shi et al., synthesized Fe3O4@TiO2 photocatalyst for superior photocatalytic 

activity and photo-thermal conversion. Under solar radiation, Rhodamine B (RhB) dye from 
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aqueous solution was efficiently removed by Fe3O4@TiO2 photocatalyst. Degradation of RhB dye 

also increased from 85% to 94% with an increase in solar light from 1 to 10 suns (1 sun= 1000 

W/m2). The saturation magnetization of Fe3O4@TiO2 photocatalyst was 32.9 emu g-1. The 

photocatalyst recovery and degradation rate increased with increment in magnetic field strength 

from 25 to 100 mT. The effective separation of photogenerated EHP and magnetic recovery from 

reaction solution was the main features of Fe3O4@TiO2 photocatalyst in effective degradation of 

RhB dye after successive 6 cycles [164].  

       Li. et al., prepared Fe3O4@TiO2 composite via hydrothermal method involving tetrabutyl 

titanate as a precursor for removal of sulphur dioxide and NOx from industrial coal-fired fuel gas. 

Desulfurization and denitrification were examined using 10% Fe3O4@TiO2 composite at different 

temperatures of 100, 150, and 200 ˚C. The highest reaction performance, i.e. the highest decrease 

in sulfate and nitrate concentration, was observed by 10 % Fe3O4@TiO2 at 100 ˚C after 60 min. 

The studies showed that SO2 and NOX were adsorbed on the surface of Fe3O4@TiO2 composite by 

means of physical and chemical adsorption processes [165].  

      Sun et al., used a one-step convenient calcining technique to fabricate Fe3O4 loaded TiO2 

photocatalyst. The photocatalytic activity of Fe3O4@TiO2 was studied for decomposition of acetate 

red organic dye (X3B) in water. The negligible degradation of organic dye in the absence of 

Fe3O4@TiO2 photocatalyst indicated the stability of X3B dye under xenon lamp radiation. 

Photocatalytic activity of Fe3O4@TiO2 photocatalyst was quite stable for consecutive five cycles 

[166]. Fig.11 (a-d) demonstrates the magnetic characteristics of Fe3O4@TiO2 photocatalyst. It was 

reused and suitably attracted to a magnet so that the magnetic force became faster due to presence 

of higher iron contents in sample. The highest efficacy in the photocatalytic treatment of 

manufacturing wastewater was attained by utilization of Fe-TiO2 photocatalyst having the ratio of 

1:200 (Fe: TiO2) Fig.11 (a).  Fig 11 (e) shows the most plausible mechanism for photocatalytic 

reaction and degradation of organic dye X3B. The degradation of X3B dye was significantly 

enhanced by the synergetic effect of Fenton’s reaction and photocatalytic oxidative reaction  

<Please insert Fig.11 here> 

       Guanghong et al., prepared a nanotube photocatalyst, using a co-deposition method and 

exploited for photocatalytic degradation of Methylene blue (MB) dye in aqueous solutions. 

Loading of small-sized λ-Fe2O3 particles onto TiO2 resulted in a modified binary photocatalyst (λ-
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Fe2O3@TiO2) with superparamagnetic behaviour. The saturation magnetization of λ-Fe3O4@TiO2 

was 1.32 A m2 kg-1 possessing higher photocatalytic activity as compared to pure TiO2. The 

improvement in photogenerated EHP separation and enhanced visible light activity was due to 

heterojunction formation interaction between TiO2 and λ- Fe2O3 [167].  

     Cheng et al., synthesized Fe3O4@TiO2 photocatalyst by sol-gel method to study membrane 

disintegration of marine fish pathogens. Under blue LEDs light, Fe3+ and FeTiO3 together 

contributed in photocatalytic activity of Fe3O4@TiO2 photocatalyst. Under seawater, the electrons 

and active sites were covered by inorganic ions present in seawater, and the consequence was a 

reduced photocatalytic activity for Fe3O4@TiO2 photocatalyst in saline sea water. It was concluded 

that, underneath sea-water, the marine fish pathogens could be killed by Fe3O4@TiO2 through 

activation by blue LEDs [168].  

Zazouli et al., fabricated Fe3O4@TiO2 photocatalyst by simple precipitation technique using 

ammonia. The catalytic activity of nano-sized ferric oxide photocatalyst was assessed by 

degradation of food dye in the vicinity of an electron acceptor; PMS (Peroxymonosulfate). Under 

UVA radiations, brilliant blue FCF (BBF) was totally decolorized in 60 min, using reaction 

conditions of 0.8g-L FTNs, PMS-2.0 Mm, and pH -6.0. In the absence of UV light, PMS was 

activated by the catalytic activity of nanosized Fe3O4@TiO2 photocatalyst. Fe3O4@TiO2 

photocatalyst was stable and reusable for four times during recycling test experiments. The 

saturation magnetization (Ms) of 52.6 emu/g demonstrated successful coating of Fe3O4 onto TiO2 

surface. [169]. 

      Jing et al., successfully developed Fe3O4@TiO2 photocatalyst by the sol-gel method having 

superior quinoline degradation efficiency of 88.47% which was higher than 79.58% efficiency 

obtained by commercial TiO2 powder. Under UV-radiations, after three cycles of repetitive use, it 

displayed 84.60% of photodegradation efficacy which was still higher than the efficiency 

conferred by TiO2 powder (79.58%). The saturation magnetization (Ms) of Fe3O4@TiO2 (in molar 

Fe3O4:TiO2 ratio of 1:30) was 37.6 emu g-1 that was suitable for magnetic separation of 

photocatalyst. The recycling experiments revealed that by using a permanent magnetic bar, 

Fe3O4@TiO2 might be easily recovered from reaction solutions. Both magnetic property and 

photocatalytic activity of the fabricated photocatalyst were affected by the molar ratio of Fe3O4 to 

TiO2. The photodegradation of quinoline was improved by decreasing the molar ratio of Fe3O4 to 
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TiO2 photocatalyst. However, magnetic separation was reduced with decrease in Fe3O4 content. 

Therefore, for improving both magnetic feature and the photocatalytic activity, it was essential to 

optimize the molar ratio of Fe3O4 to TiO2 [170].  

        Dehghan et al., prepared ZnO@Fe3O4 photocatalyst by supporting ZnO onto Fe3O4 surface 

for photodegradation of amoxicillin dye (AMX) under ultrasound (US) irradiation involving the 

formation of hydroxyl radical (•OH) as reactive species. The results exhibited that 90% of AMX 

dye was degraded in 120 min. The photodegradation rate was significantly increased in the 

presence of IO4
- due to greater oxidation power. As prepared photocatalyst, exhibited significant 

recyclability for five catalytic cycles and even after fifth run the photocatalyst brought about an 

efficiency of more than 85%. Under ultrasound irradiation, Fe3O4@ZnO was cost–effective and 

acted as a promising sonocatalyst due to easier separation, reusability, high durability (even in 

acidic medium), and suitable photocatalytic performance for AMX dye removal from aqueous 

solution [171]. Fig.12 demonstrates the possible catalytic mechanism of ZnO@Fe3O4, in which 

both oxidation and desorption processes take place instantaneously. The reactive oxidizing species 

were found in the solution which indicated the degradation process took place in a homogenous 

solution, whereas heterogeneous catalysis occurred on ZnO@Fe3O4 surface.  The ultrasound 

radiations caused the production of wide wavelength visible light due to the cavitation effect.  In 

the next step, photogenerated EHP were produced (Eq. (2)) The generated hvb
+ oxidized water 

molecules to produce hydroxyl free radical (Eq. (3) and (4)) and, at the same time, conduction 

band electrons (eCB
-1) were reacting with dissolved oxygen and taking place of some series of 

reduction reactions led to production of the intermediates such as H2O2, HO2•, •OH and O-
2• in the 

conduction band.  𝑍𝑛𝑂/ 𝐹𝑒3𝑂4 )))  →  ℎ𝑉𝐵+  +  𝑒𝐶𝐵−                                                                                             (2)  𝑍𝑛𝑂/𝐹𝑒3𝑂4(ℎ 𝑉𝐵+) + 𝐻2𝑂 → • 𝑂𝐻𝑎𝑑𝑠  +  𝐻+                                                                       (3)  𝑍𝑛𝑂/𝐹𝑒3𝑂4(𝑒𝐶𝐵−)  + 𝑂2  → 𝑂2−•                                                                                               (4)  𝑍𝑛𝑂/𝐹𝑒3𝑂4 (𝑒𝐶𝐵−)  +  𝑂2•−  +  2𝐻+  → 𝐻2𝑂2                                                                          (5)  𝑂2•−  + 2𝐻+  →  𝐻𝑂2 •                                                                                                                      (6)  • 𝑂𝐻 +  𝑂2−•  + 𝐻2𝑂2  +  𝐻𝑂2•   +  𝐴𝑀𝑋 → 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 →  𝐶𝑂2  +   𝐻2𝑂                          (7)  
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In the presence of US radiations, nanosized Fe3O4 particles were transformed into Fe2+ and Fe3+ 

ions, causing generation of more ∙OH through Fenton reaction on catalyst surface between H2O2 

molecules and Fe2+ and Fe3+ ions. Under parallel mechanisms, a number of reactive free radicals 

like •OH(adsorbed), HO2
•, and •OH(free) were produced through: (a) thermal decomposition of water 

vapour under US radiations and (b) formation of ∙OH free radicals on the surface of catalyst due 

to Fenton reaction between dissolved Fe2+ ions and H2O2 molecules. As a result, AMX dye was 

degraded by attack of •OH (ads) and •OH (free) radicals formed in liquid and solid phase to yield CO2 

and H2O as the products (Eq. (7)) [171]. 

<Please Insert Fig. 12 here> 

      Goyal et al., synthesized Fe3O4@ZnO photocatalyst by decorating Fe3O4 nanoparticles onto 

the surface of ZnO using the hydrothermal method to fabricate a catalyst with multifunctional 

photocatalytic activity for degradation of MB dye. The results claimed 50 ppm of Fe3O4@ZnO 

was used to remove 82.9 % MB dye in 3 h reaction time. The saturation magnetization of Fe3O4 

was 95 emu g-1 at 300 K. Under UV radiations, removal efficiency of 12.9% was recorded for 

Fe3O4 particles after 3 h. Fe3O4@ZnO photocatalyst showed excellent photodegradation efficiency 

(90%) after three successive photocatalytic cycles. After the treatment process, these 

nanocomposite particles were easily separated by an external magnetic field. The large surface 

area of Fe3O4@ZnO showed large adsorption efficiency for Cu2+ and Pb2+ metal ions at pH 5.5. 

Antibacterial activity of Fe3O4@ZnO was also studied against S. aureus and Escherichia coli 

(E.coli). It was established that the multifunctional Fe3O4@ZnO photocatalyst was an adequate 

choice for potential application in degradation of organic dyes, exclusion of heavy metal ions, and 

bacteria removal [172]. 

    Xu et al., developed Fe3O4@ZnO microrods by an economic one-step synthesis route for 

photocatalytic tremendous degradation of 100% RhB dye in a reaction time of 40 min. The 

constructed photocatalyst showed excellent efficiency for the elimination of toxic metal ions (Ni2+, 

Hg2+, Co2+, Cd2+, Fe3+ and Pb2+) than alone Fe3O4 and ZnO structures. Therefore, the researcher 

expected that this photocatalyst would find an industrial use for elimination of the unwanted 

pollutants from wastewater [173]. Fig.13 exhibits SEM images of ZF1, ZF2, ZF3, ZF4, ZF5 

samples which, respectively, contain 0, 0.125, 0.167, 0.25, 0.5 mmol of FeCl3.6H2O. ZnO had a 

rod-like morphology with one hexagonal trunk and two hexagonal tips (Fig.13 (a)). On addition 
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of FeCl3.6H2O to above sample, a flat end and regular hexagonal micro-sized ZnO rods were 

covered with Fe3O4 was detected (Fig.13 (b-d)).  The diameter and length of ZnO micro-rods were 

in the range of 100-200 nm and 1-2 µm, respectively. The nano-sized Fe3O4@ZnO rods were 

obtained by addition of 0.25 mmol FeCl3.6H2O to the sample as shown in Fig.13 (d). Fig.13 (e) 

depicts distortion in regular morphology of ZnO micro-rods with addition of 0.5 mmol FeCl3.6H2O 

[173].  

<Please insert Fig.13 here> 

        Xia et al., fabricated Fe3O4@ZnO photocatalyst successfully via a superficial two-step 

scheme using different molar ratios of parent metal oxides. The outstanding photodegradation of 

methyl orange (MO) followed by first-order reaction kinetics model was explained on the basis of 

photocatalytic activity of Fe3O4@ZnO photocatalyst. 0.51 gL-1 catalyst was used to degrade MO 

dye with an initial concentration of 6.0 ×10-5 mol L-1. Under UV light, 93.6% of MO was degraded 

at pH 7 in 1h. The value of saturation magnetization (Ms) of Fe3O4@ZnO was 67.72 emu g-1, 

whereas Ms value was 82.01 emu g-1 for Fe3O4. Studies conducted on five successive 

photocatalytic cycles revealed that as-prepared Fe3O4@ZnO photocatalyst shows a tremendous 

photocatalytic activity in photodegradation of MO dye (above 70% degradation) in aqueous 

solution. It has been regarded as recyclable photocatalyst due to its catalytic activity that decreased 

slightly after five cycles of usage [174]. 

      Sin et al., developed Fe3O4@ZnO using a surfactant-free technique. Fe3O4@ZnO had good 

optical properties, high purity, well crystallinity, and unique morphologies. Under visible light, 

Fe3O4@ZnO photocatalyst displayed excellent photocatalytic ability for elimination of phenol and 

inactivation of E. coli. Efficient separation of the EHP resulted in enhanced photocatalytic activity 

of Fe3O4@ZnO photocatalyst. The saturation magnetization value of photocatalyst was 2.81 emu 

g-1 that facilitated the separation of Fe3O4@ZnO from aqueous solution by applying an external 

magnetic field. Thus, magnetic separation of Fe3O4@ZnO photocatalyst was helpful in wastewater 

treatment. Fe3O4@ZnO maintained high photocatalytic activity after four catalytic cycles of usage 

[175]. 

        Li et al., constructed Fe3O4@ZnO photocatalyst with aid of hydrothermal atomic layer 

deposition method for photocatalytic removal of phosphate from wastewater. The improvement in 

electrostatic interaction and surface area of Fe3O4@ZnO photocatalyst caused 94.8% removal of 
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phosphate in 5 min under a weak magnetic field. In addition, multilayer adsorption due to inner-

sphere complexation was responsible for removal of phosphorous by photocatalyst. The saturation 

magnetization value of Fe3O4 was 69.6 emu g-1, which slightly decreased after heterojunction 

formed between Fe3O4 and ZnO, and consequently Ms value for Fe3O4@ZnO was 60.7 emu g-1. 

Reusability of magnetic Fe3O4@ZnO adsorbent examined by adsorption-desorption processes for 

successive catalytic cycles under weak magnetic field, and only 7.1% decrease was observed after 

five cycles.  The magnetic separation of photocatalyst resulted in real time application of 

photocatalyst for pollutants remediation from water [176]. 

     Karunakaran et al., prepared Fe3O4@SnO2 photocatalyst using both sonochemical and 

hydrothermal method for photodegradation of an industrial pollutant (phenol) under visible light. 

It was concluded that the hydrothermally prepared Fe3O4@SnO2 photocatalyst displayed better 

photocatalytic activity than the photocatalyst prepared by the sonochemical method. The decreased 

catalytic activity of sonochemically prepared photocatalyst was due to the low concentration of 

SnO2. The saturation magnetization of Fe3O4@SnO2 prepared photocatalyst was 1.5 and 3.6 emu 

g-1 for sonochemical and hydrothermal methods, respectively.  Furthermore, the bactericidal 

activity of Fe3O4@SnO2 was reported for E.coli inactivation, and the bactericidal activity of 

hydrothermally prepared photocatalyst was higher than the sonochemically prepared one [177]. 

100 % of E.coli inactivation was achieved in 20 min using hydrothermally prepared Fe3O4@SnO2, 

while using sonochemically prepared Fe3O4@SnO2 resulted in 80 % of E.coli inactivation in 20 

min.       

      Dong et al., used a two-step hydrothermal technique to prepare efficient Fe3O4@α-MnO2 

photocatalyst nanoflower. The photocatalytic activity of Fe3O4@α-MnO2 was examined by 

activation of persulfate (PS) for degradation of 92 % bisphenol A (BPA) in aqueous solution. Due 

to the synergetic effect of manganese, iron, and hydroxyl groups on Fe3O4@α-MnO2 surface, 

Fe3O4@α-MnO2 photocatalyst showed high TOC removal and degradation rates [178]. Fig.14 (a) 

demonstrates the photocatalytic mechanism of Fe3O4 @α-MnO2@PS system. MnO2 activated 

persulfate ions produced more free radicals as compared to Fe3O4. Briefly,  S2O8
2- reacted with  α-

MnO2 through –OH for reduction of Mn4+ to Mn3+ and generation  S2O8
•-. In the next step, Fe2+ 

ions from Fe3O4 promoted the decomposition of   S2O8
•- to form SO4

•- ions. SO4
•- ions reacted with 

water to generate hydroxyl radicals. The degradation of organic pollutant BPA was accomplished 
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by hydroxyl radical due to synergistic contact among Mn, Fe, and surface-OH groups. Fig.14 (b) 

shows the magnetic hysteresis loop of photocatalyst indicating a remarkable super-paramagnetism 

and saturation magnetization value of 39.9 emu g-1. Due to its excellent stability and reusability 

characteristics, Fe3O4 @α-MnO2@PS system maintained a catalytic efficiency of 80% after five 

successively catalytic cycles [178].  

<Please insert Fig. 14 here> 

        Zhang et al., prepared hollow spheres of Fe3O4@MnO2 photocatalyst via the hydrothermal 

method for the extraction of uranium (VI) from aqueous solution. The saturation magnetization 

value of Fe3O4@MnO2 was ~22.7emu g-1. At pH >7, absorption and desorption processes were 

independent on ionic strength, whereas at pHs below 7 both processes of adsorption and desorption 

were ionic strength dependent. The reaction temperature controlled both adsorption and desorption 

processes of uranium (VI) onto Fe3O4@MnO2 hollow spheres. These adsorption and desorption 

reactions were endothermic, irreversible, and spontaneous. The hollow spheres of Fe3O4@MnO2 

photocatalyst were used in nuclear waste management for sorption of uranium (VI). By virtue of 

easy separation, high removal efficiency, and eco-friendly performance, Fe3O4@MnO2 hollow 

spheres had a valuable potential for uranium (VI) removal in nuclear waste [179].  

         Zhao et al., reported Fe3O4@MnO2 photocatalyst using mild hydrothermal process for 

removing heavy metals, like Cu2+, Pb2+, Cd2+, Ni2+ and Zn2+, from the water media. The saturation 

magnetization value of 17.28 emu g-1 confirmed easier separation of Fe3O4@MnO2 from the 

reaction solution. The negatively charged surface at pHs > 2.6 and high surface area of 

Fe3O4@MnO2 was confirmed by some physical analyses. The adsorption behaviour of 

Fe3O4@MnO2 was examined by Langmuir and Temkin and Redlich-Peterson adsorption models. 

The metal ions Zn2+, Cd2+, Cu2+, Pb2+, and Ni2+ showed, respectively, 100.24, 169.90, 111.90, 

208.17, and 55.63 mg/g adsorption capacities. The removal process fitted well with the pseudo-

second-order model (R2>0.99). Reusability experiments were performed to examine the stability 

of Fe3O4@MnO2 and 10 % decrease was observed in removal efficiency after four catalytic cycles. 

Therefore, results revealed that Fe3O4@MnO2 had high efficiency for adsorption of heavy metals 

from water owing to its good recyclability and environment-friendly behaviour [180]. 

      Yang et al., synthesized flower-like core-shell MnO2-coated Fe3O4 magnetic composite 

(Fe3O4@MnO2) by simple hydrothermal method. Fe3O4@MnO2 composite particles had a size in 
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the range of 300-400 nm with an amorphous MnO2 shell having flower-like appearance. The 

composite had a specific surface area of 149.0 m2g-1 and saturation magnetization of 32 emu g-1 at 

300 K. Fe3O4@MnO2 composite selectively removed Congo red (CR) from aqueous media from 

a solution containing several dyes CR, crystal violet (CV), RhB, MB, and MO dyes. CR had the 

highest elimination rate of 95% compared with the other undertaken dyes which had removal rates 

lower than 15%. The electrostatic interaction between dye molecules and photocatalyst was in 

charge for the higher absorption capacity of Fe3O4@MnO2 for CR dye [181].  

       Fang et al., developed a heterogeneous Fenton system similar to Fe3O4@MnO2 core-shell 

catalyst for removal of 96.8% azo dye acid orange 7 (AO7) in 120 min from wastewater.  The 

catalytic activity of Fe3O4@MnO2 core- shell catalyst was superior to that of bare Fe3O4 or MnO2. 

The removal of AO7 dye was affected by various reaction parameters like initial pH, catalyst 

dosage, H2O2 dosage, and temperature. The saturation magnetization value of Fe3O4@MnO2 was 

45.32 emu g-1. After seven catalytic cycles, the efficiency of removal process of AO7 was reduced 

from 96.8 to 83.1% thus, displaying high degree of stability and reusability [182]. Fig. 15 displays 

the proposed mechanism for the degradation of AO7 in Fe3O4@MnO2/H2O2 system. The radical 

quenching tests were performed for identification of free radical species in catalytic mechanism. 

The chloroform and TBA were exploited as a scavenger for O2•- and hydroxyl radical, respectively.  

In the first step, H2O2 was adsorbed on top of the surface of catalyst (Eq. (8)) and HO2• was formed, 

whereas Mn4+ was reduced to Mn2+ (Eq. (9)).  On reacting with H2O2, Fe3+ in Fe3O4 was also 

reduced to Fe2+ (Eq. (10)). The generated Fe2+ got into reaction with Mn4+ to produce Fe3+ and 

Mn2+ (Eq. (11)). Moreover, Mn2+ species might react back with H2O2 to release the HO• in the 

solution as shown in Eq. (12).  HO2• radical decomposed into H+ and O2•- as presented by Eq. (13).  

Finally, HO• oxidized AO7 dye to the final degraded product as shown in Eq. (14) [182]. 𝑀𝑛4+  + 𝐻2𝑂2  → 𝑀𝑛4+ • 𝐻2𝑂2                                                                            (8)  

𝑀𝑛4+ • 𝐻2𝑂2 →  𝑀𝑛2+ +  𝐻𝑂2•                                                                              (9)        
 𝐹𝑒3+ + 𝐻2𝑂2 →  𝐹𝑒2+ +  𝐻𝑂2•                                                                             (10) 

 𝐹𝑒2+ +  𝑀𝑛4+  →  𝑀𝑛2+ +  𝐹𝑒3+                                                                       (11)    𝑀𝑛2+ +  𝐻2𝑂2  →   𝑀𝑛4+ +  𝐻𝑂 •                                                                     (12)          
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 𝐻𝑂2•  →   𝐻+ + 𝑂2•−                                                                                                (13)  

𝐻𝑂 •  +𝐴𝑂7 →  𝑑𝑒𝑔𝑟𝑑𝑎𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠                                                               (14)   
                                        <Please insert Fig.15 here> 

5. Iron Oxide modified ternary photocatalyst 

5.1 Iron oxide modified ternary metal oxide photocatalyst 

    Yingzhe et al., proposed a new aqueous solution ball milling technique for the synthesis of 

ternary nano–magnetic Cu@Fe@Fe3O4 photocatalyst at room temperature using electromagnetic 

field of high frequency with no residue or waste gas production. The non-thermal effect of 

microwave triggered the catalytic activity of Cu@Fe@Fe3O4 for MB dye with saturation 

magnetization to be 38.56 emu g-1. Further, some marvelous soft-magnetic characteristics were 

exhibited by nano-size photocatalysts and its particles were easily attracted by external magnetic 

field. The magnetic photocatalysts could be effortlessly re-dispersed in the solution after the 

removal of the external magnetic field.  The aqueous solution ball milling technique aided by high 

frequency was found to be a potential method for preparation of nano-sized Cu@Fe@Fe3O4 

photocatalyst [183]. 

        Hou et al., described the preparation of Fe3O4@SiO2@Bi2MoO6 microspheres by using the 

hydrothermal technique for RhB dye degradation under visible light irradiation. Fe3O4@SiO2 

magnetic nanoparticles were fixed up with three-dimensional flower-like structure of Bi2MoO6 as 

observed in a scanning electron microscope (SEM). More absorption of light in the visible region 

was observed for photocatalyst as compared to pure Bi2MoO6 with saturation magnetization value 

to be 5 emu g-1 of obtained nanocomposite. Under an external magnetic field, the nanocomposite 

was easily separated with reproducibility of five cycles from the reaction mixture [184].  

      Gohari et al., fabricated magnetic and visible light active ZnO@AgI@Fe3O4 ternary 

nanocomposites by ultrasonic wave assisted method for various dyes under the visible-light 

irradiation. The as-prepared nanocomposite possessed 5, 6 and 32 folds more powerful 

photocatalytic activity than ZnO@Fe3O4 for MO, MB, and RhB dye degradation, respectively. 

The photocatalyst was separated in the presence of an external magnetic field and was efficient for 

four catalytic cycles, with no loss in photocatalytic activity. More harvesting of visible light, 
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magnetic separation and the effective separation of photo generated EHP resulted in an enhanced 

activity of this ternary photocatalyst [185]. 

5.2. Iron oxides modified ternary carbon based photocatalyst  

          Vartooni et al., used carbonization of waste red water of 2, 4, 6-trinitrotoluene to prepare 

porous carbon via co-precipitation procedure for synthesis of porous carbon and Ag@Fe3O4@C 

nanocomposite. Using Caesalpinia gilliesii flower aqueous extract, the Ag+ was reduced to Ag 

nanoparticles (Ag NPs) and stabilized on the surface of carbon support. A few minutes were 

sufficient for generation of Ag NPs at ambient temperature. Several characterizing techniques such 

as FTIR, Raman, BET, FESEM, TEM, EDS, XRD, elemental mapping, and VSM techniques were 

used the nanocomposites as well as the synthesized porous carbon. FESEM and TEM micrographs 

depicted that the average size of silver nanoparticles on C@Fe3O4 was lower than 35 nm. 

Ag@Fe3O4@C had Ms value of 17 emu g-1 and exhibited catalytic activity for the reduction of 4-

nitrophenol (4-NP) and MO dye. Moreover, the catalyst was re-used for 3 times without substantial 

loss in its activity [186].  

        Tian et al., synthesized Fe3O4@C@ZnO ternary photocatalyst by a facile one-pot technique 

using lignin amide (LA) as a source of carbon and bridging ligand. This composite consisted of 

hexagonal wurtzite ZnO, amorphous carbon, and cubic spinal Fe3O4. The particle size of 

Fe3O4@C@ZnO (20 nm) was larger than those of Fe3O4@ZnO and Fe3O4, approximately. Under 

visible light and ultraviolet radiations, Fe3O4@C@ZnO photocatalyst showed greater efficacy of 

degradation for organic pollutants. 94 % of catalytic activity was maintained after 5 times of 

recycling for antibody norfloxacin (NF) [187]. After calcination of Fe3O4@LA, Fe3O4 was covered 

with a thin layer of carbon to form Fe3O4@C (Fig.16 (a)). As exhibited in Fig. 16 (b) and (c), the 

size of Fe3O4@C@ZnO was found to be the in range of 20-40 nm. The HR-TEM image of 

Fe3O4@C@ZnO photocatalyst is displayed in Fig.16 (d) shows lattice d-spacing of approximately 

0.16 nm and 0.25 nm which confirmed phase of ZnO (110) plane and the phase of Fe3O4 (311) 

plane respectively. Fig. 16(e) demonstrates pore size distribution plots and adsorption-desorption 

isothermal curves of Fe3O4@C@ZnO photocatalyst and Fe3O4 @ZnO.  The average pore size and 

specific surface area of 0.5-Fe3O4@C@ZnO was, respectively, 60 nm and 14.91 m2 g-1. On the 

other hand, Fe3O4@C@ZnO-0.5 mesoporous photocatalyst was prepared without LA with pore 

size of 15 nm and surface area of 97.01 m2 g-1, which was 6.5 times greater than the synthesized 
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Fe3O4 @ZnO. These results led to a conclusion that a large surface area of the ternary photocatalyst 

raised photocatalytic for NF antibody removal [187]. 

                                                    <Please insert Fig.16 here> 

5.3. Iron oxides modified ternary grapheme-based photocatalyst 

                  Recently, graphene has emerged as a star candidate for production of supported 

photocatalysts.  Cheng et al., fabricated P25@graphene@Fe3O4 ternary hybrid nanocomposite by 

immobilizing Fe3O4 and TiO2 (P25) nanoparticles on reduced graphene oxide using superficial 

technique. P25@graphene@Fe3O4 nanocomposite showed a great activity for degradation of RhB 

dye in water, so that 100 % of the dye was degraded in 25 min under UV light. In the presence of 

an external magnetic field, saturation magnetization value of P25@graphene@Fe3O4 was 5.276 

emu g-1 which ensured magnetic separation of photocatalyst particles from solution. The 

magnetically separated photocatalyst was used for five consecutive cycles with no activity loss 

[188]. Banerjee et al., also synthesized ternary nanocomposites via a facile sol-gel technique for 

degradation of MB dye using ferric oxide, TiO2 and reduced graphene oxide (GO) integrated 

rGO@Fe3O4@TiO2 photocatalyst. The rapid elimination of MB dye caused 99% removal 

attainment in 6 min, under UV light, while under visible light 94% of dye was removed in 9 min. 

The high photocatalytic dye removal ability of synthesized nanocomposite was ascribed to 

synergistic effect of three components present in photocatalysts. The highest removal of MB dye 

in water was attained by rGO@Fe3O4@TiO2 with respective ratios of 1:1: 2 [189].  

        Mousavi et al., synthesized g-C3N4@Fe3O4@MnWO4 ternary photocatalyst using the 

refluxing-calcination technique for photocatalytic degradation of MB, RhB, MO, and Fuchsin dyes 

under visible light. The photocatalytic elimination of RhB dye was influenced by different 

conditions involving the calcination temperature, MnWO4 content, and reflux time. The maximum 

photocatalytic activity was shown by g-C3N4@Fe3O4@MnWO4 (10%) at the ideal MnWO4 

content. The photocatalytic activity of g-C3N4@Fe3O4@MnWO4 was 7 times higher for RhB dye 

degradation, 10 times higher for MB dye degradation, 25 times higher for MO degradation, and 

31 times higher for Fuchsin dye degradation than pure C3N4. The outstanding photocatalytic 

activity of ternary photocatalyst was due to large BET specific surface area and better separation 

of charge carriers [190]. The M-H magnetization curves of g-C3N4@Fe3O4@MnWO4 (10%) and 

Fe3O4 were obtained to investigate magnetic properties. The obtained curves revealed the 
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superparamagnetic nature of photocatalyst which is due to zero value of magnetic remanence. The 

saturation magnetization of 19.5 and 55.8 emu g-1 were recorded for g-C3N4@Fe3O4@MnWO4 

(10%) and Fe3O4, respectively. The lower magnetization value of g-C3N4@Fe3O4@MnWO4 

(10%) revealed the easy separation of photocatalyst by a magnet. Fig.17 (b) demonstrates 

photocatalytic degradation of RhB dye using g-C3N4@Fe3O4@MnWO4 photocatalysts. The 

enhanced photoactivity of photocatalyst was due to transfer of photo-exciton at the exposed surface 

of photocatalyst components in g-C3N4@Fe3O4@MnWO4. Both g-C3N4 and MnWO4 produced 

EHP in their respective conduction band and valence band. The photoexcited electrons were 

transferred from CB of g-C3N4 to CB of Fe3O4 and MnWO4 due to more negative potential of CB 

of g-C3N4 than those Fe3O4 and MnWO4. Alternatively, photogenerated holes of MnWO4 were 

transferred to less positive valence band potential of g-C3N4. Due to the appropriate band potential 

of MnWO4, reduction of O2 to H2O2 was completed. On the other hand, reduction of O2 to •O2
- 

was not possible by electrons present in the CB of Fe3O4 and MnWO4. The holes occupying VB 

of g-C3N4 would directly oxidize targeted dye pollutants into CO2, H2O, and inorganic ions (Fig.17 

(b)) [190]. 

                                                          <Please Insert Fig.17 here> 

 

        Yangieh et al., fabricated visible light-active magnetically separable g-

C3N4@Fe3O4@Ag2CrO4 photocatalysts for effective removal of RhB dye.  The highest 

photocatalytic activity obtained was 3 times greater than that of pure g-C3N4 and 5 times more 

than that of the g-C3N4@Fe3O4 , with 20 % concentration of ternary nanocomposite, under same 

reaction conditions. The increased separation of charge carriers and appropriate positioning of 

bands in nanocomposite promoted performance of g-C3N4@Fe3O4@Ag2CrO4 nanocomposites 

[191]. The saturation magnetization of 12.9 emu g-1 facilitated quick separation of photocatalysts 

from the reaction solution. The RhB dye was degraded in 360 min using C3N4@Fe3O4@Ag2CrO4 

(20 %) photocatalyst.    

      Mousavi et al., synthesized magnetically separable ternary g-C3N4@Fe3O4@BiOI 

photocatalyst under ultrasonication radiations. The synthesized photocatalyst possessed 

photocatalytic degradation ability which was 10, 22 and 21 times higher than that of bare g-C3N4 

for RhB, MB and MO dyes, respectively. The more effective separation of EHP and more utility 
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of visible light irradiation resulted in an outstanding activity of the magnetic photocatalyst [192]. 

Fig. 18(a) describes the plausible mechanism for the photocatalytic ability of as-prepared 

photocatalyst.  Compared to g-C3N4, BiOI had lower energy values for valence band as well as for 

conduction band. The potential of the conduction band of g-C3N4 was more negative than O2/•O2
-

, thus the produced electrons in the conduction band of g-C3N4 were transferred effortlessly to the 

conduction band of BiOI and a few of them reacted with O2 to produce •O2
-. On the other hand, 

electrons in the CB of BiOI could not reduce O2 to O2
- because of the more positive potential of 

BiOI than O2/•O2
-. The electrons in CB of BiOI reacted O2 and H+ ion to produce H2O2. After this, 

∙OH were produced by the decomposition of H2O2. Although the valence band potential of 

•OH/H2O and •OH/-OH were more positive than the VB potential of g-C3N4 and BiOI, no reaction 

was taken place between the photo generated holes and adsorbed H2O an -OH, to produce •OH 

radical. The main reactive species involved in degradation of RhB dye were •OH radicals and 

holes.  

        Fig. 18(b) illustrates the magnetization curve for Fe3O4 and g-C3N4@Fe3O4@BiOI 

photocatalyst. After heterojunction formation between g-C3N4@BiOI and Fe3O4, the saturation 

magnetization of Fe3O4 decreased from 55.5 to 8.7 emu g-1. After water treatment, the 

photocatalyst was separated from the reaction solution by the aid of the external magnetic field 

and re-used for five catalytic cycles (Fig.18(b)) [192].  

                                                  <Please insert Fig.18 here> 

 

 

6. Iron oxide modified quaternary photocatalyst 

6.1 Iron oxide modified quaternary metal oxide photocatalyst 

         Yangieh et al., synthesized visible-light active and magnetically separable photocatalyst 

Fe3O4@ZnO@Ag3VO4@AgI using superficial ultrasonication method for degradation of RhB dye 

under visible-light radiation. The n-n heterojunction formation between two semiconductors with 

thin band gap and effective separation of charge carriers resulted in high photocatalytic activity.  

The studies revealed that ammonium oxalate and benzoquinone influenced degradation reaction 
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significantly. The main active site for photocatalytic degradation of RhB dye were holes and •O2
-

. Additionally, it was shown that the photocatalytic activity of photocatalyst was affected by 

calcination temperature and ultrasonic-radiations. The photocatalyst exhibited significant 

recyclability for five catalytic cycles [193]. Fig. 19(a) displays M-H magnetization curve of as 

prepared quaternary photocatalyst at room temperature. At 8500 Oe, the saturation magnetization 

of quaternary photocatalyst and Fe3O4 nanoparticle was 6.26 and 55.5 emu g-1, respectively. No 

remanence in M-H curves confirmed superparamagnetic behaviour of as-prepared photocatalyst 

with complete elimination from the suspension by applying the external magnetic field as 

demonstrated in inset of Fig. 19(a).  

             Fig.19 (b) demonstrates the plausible mechanism for the improved photocatalytic activity 

of Fe3O4@ZnO@Ag3VO4@AgI photocatalyst involving effective separation of photogenerated 

EHP. The CB edge and Fermi level of ZnO and AgI were higher than Ag3VO4 (Fig. 19(b)) thus, 

AgI and Ag3VO4 produced photo-excitons due to appropriate level of band potentials. The photo-

excited electrons were transferred from CB of Ag3VO4 to CB of ZnO and AgI. At the same time, 

photo-excited holes were transferred from VB of AgI to VB of Ag3VO4. So, photo-excited 

electrons were accumulated in the CB of ZnO  and AgI, while photogenerated holes were 

accumulated on VB of Ag3VO4, due to n-n heterojunction between Ag3VO4, AgI, and ZnO. The 

photocatalytic activity of quaternary Fe3O4@ZnO@Ag3VO4@AgI photocatalyst was improved 

due to separation of photo-excited EHP [193]. 

                                                       <Please insert Fig. 19 here>  

            Kumar et al., fabricated magnetic quaternary nano-photocatalyst BiOCl@g-

C3N4@Cu2O@Fe3O4 (BGC-F) using facile co-precipitation method for 99.5% of 

sulfamethoxazole (SME) dye was degraded in 60 min. The outstanding optical activity of BGC-F 

was due to p-n-p junction formation, appropriate band gap, and improved UV-visible spectral 

response. The magnetic saturation value of BGC-F was 26 emu g-1 which facilitated magnetic 

separation of photocatalyst from reaction solution. The quenching studies demonstrated that the 

main reactive species are •O2
- and •OH radicals. LC-MS analysis explored various pathways of 

SME dye degradation process. The mineralization and degradation of SME dye were confirmed 

by bactericidal activity and TOC@COD. Moreover, little or negligible toxicity was shown by 

treated water on PBL cells of human [194]. 
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7. Conclusion and Future Prospective 

       In conclusion, this review recapitulates recent developments in magnetic iron oxide integrated 

photocatalysts (MIOIPs) and their promising attention seeking ability for water remediation. The 

in-depth research delved into modifications with binary, ternary, and complex nanocomposites 

help us to circumvent problems associated with bare IONPs. Evidently, the key advantage 

strengthening the utility of MIOIPs is its facetious magnetic separability and facile synthesis 

methods. Within the scope of knowledge, it is clearly known that the fate of photoinduced electrons 

and holes are vital for photodegradation process and could be influenced by various factors, such 

as electronic structure and morphology of magnetic iron oxide nanosized photocatalyst. In view of 

many advantages of magnetic IONPs integrated photocatalysts, the following mentioned points 

should be taken into consideration for pilot-scale applications of MIOIPs: 

i.  While designing and synthesizing of MIOIPs, the researchers must try to keep a balance 

between two contradictory factors: (i) magnetic recovery of photocatalysts from the 

reaction solution and (ii) Agglomeration of MIOIPs in reaction solution due to magnetic 

interaction.   

ii. The researchers should focus on green methods for synthesis of magnetic iron oxide 

photocatalysts.  

iii. As corrosion in aqueous environment remains a major obstacle for long-term and large-

scale applicability of MIOIPs based photocatalytic systems, more attention should be paid 

to development of core-shell nanoparticles with MIOIPs as a core.  

iv.  The photocatalytic activity of MIOIPs based photocatalytic systems must be explored for 

degradation of gaseous pollutants and soil pollution.   

v. Due to its eco-friendly and bio-compatible behaviour, the magnetic iron oxide nanosized 

photocatalysts have many applications in several areas, such as in health for the treatment 

of cancer, in electronics for communication by magnetism and in purification of water at 

bulk level, which is the most imperative applications. 

          The use of fabricated MIOIPs has numerous benefits for removal of heavy metals and dyes 

from contaminated water. IONPs, possessing low toxicity can be readily used in free or integrated 

forms to reach a standpoint of wide solar spectrum response. Later, real time effects of the presence 

of IONPs in water sources are still unidentified, thus the idea to introduce IONPs into water sources 
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for the better adsorption of CO2 and productions of H2 and O2 were further rejected. In spite of 

these shortcomings, MIOIPs for photocatalytic water splitting is very promising. Generation of H2 

(or O2) from MIOIPs for photocatalytic water splitting remains a pioneering and potential route 

under solar light. H2 evolution and/or O2 evolution co-catalysts (i.e. IONPs) separate the 

photogenerated charge carriers; create active sites for H2 or O2 evolution that enhances the 

production of photocatalytic H2 or O2 and stability of MIOIPs. MIOIPs improve photocatalytic H2 

and O2 productions because of their some roles that are (i) MIOIPs may decrease the activation 

energy or over potential required for H2 or O2 evolution reactions,. (ii) They are capable to 

contribute in separation processes of photogenerated charge carriers (EHP) at the IONPs interface. 

They are also obstructing photo corrosion and improve the photocatalytic stability. 
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Fig. 1.  Potential for various redox couples in water (pH 7) and the band-edge positions of 

semiconductor photoctalysts [22].  
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Fig. 2. Advantages and disadvantages of heterogeneous photocatalyst. 

 

 



 

 

Fig. 3. (a)  Survey of Publications of last ten years from 2008 to 2018. (b)  Percentage of 

publications of different Iron oxide of previous ten years from 2008-2018. 

 

 

 

 

 

 

 

 



 

Fig. 4. (a) Crystal structure of α-Fe2O3. (b) Crystal Structure of Fe3O4. (c) Structure of FeO & (d) 

structure of Spinel ferrite showing tetrahedral and octahedral sites [58, 59]. 

 



 

Fig. 5. Schematic presentation of the typical hysteresis loops of IONPs [73]. 



        

 

 Fig. 6. (a–d) The magnetization hysteresis loop and magnetic separation of MnFe2O4/BT and 

MnFe2O4/GSC. (a) Hysteresis loop of MnFe2O4/BT, (b) magnetic separation of MnFe2O4/BT. (c) 

Hysteresis loop of MnFe2O4/GSC and (d) magnetic separation of MnFe2O4/GSC (1) in the absence 

of magnetic field (2) under external magnetic field.(Permission taken from Elesvier, License 

Number:4482471388715) [81]. 

 

 



 

 

Fig. 7. M-H loops of NiFexO4 where x=1.8, 2.0, 2.2) ceramics at (a) 5K and (b) 300K. (Permission 

taken from Elesvier, License Number: 4473480461906) [139]. 

 

 

 



 

 

Fig. 8. (a)  TEM images of a Langmuir-Blodgett film of the cobalt ferrite nanocrystals (b) High 

resolution of TEM image of several nanocrystals showing their single crystal structure (c) Reduced 

hysteresis curve of the isolated particles sample measured at 10K with a maximal field of 

30KOe.(Permission taken from Elesvier, License Number: 4473480877037) [144]. 

 

 



 

   

Fig. 9.  TEM images of the α-Fe2O3 nanoparticles synthesized by direct thermal decomposition of 

y-Fe2O3 at 500 ˚C for 2h (a) 120,000x, (b) 160,000x and (c) 200,000x magnification. (Permission 

taken from Elesvier, License Number: 4473481196967) [149]. 

 

 

 



 

 

 

Fig. 10. TEM images of Iron oxide nanoparticles prepared via sonochemical method. (Permission 

taken from Elesvier, License Number: 4473481407697) [161]. 



 

 

Fig. 11. The Fe-TiO2 1:200 (a, b) and 1:5 (c, d) suspensions before (a, c) and after (b, d) the 

magnetic attraction & (e) The plausible mechanism of synergistic operation with Fe-TiO2. 

(Permission taken from Elesvier, License Number: 4473490205987) [166]. 

 

 



 

 

 

Fig. 12. Possible catalytic mechanism of ZnO@Fe3O4/US system in AMX degradation.  

(Permission taken from Elesvier, License Number: 4473490484542) [171]. 

 



 

 

Fig. 13.  (a-e) Shows the images of ZF1, ZF2, ZF3, ZF4, and ZF5. The insets are the higher 

magnification of SEM images. (Permission taken from Elesvier, License Number: 

4473490773949) [173]. 



 

  

Fig. 14. (a) Proposed mechanism of BPA degradation under Fe3O4 –α-MnO2. (b) The magnetic 

hysteresis loop of Fe3O4 – α-MnO2 catalyst. (Permission taken from Elesvier, License Number: 

4473491364906) [178]. 



 

 

 

Fig. 15. Proposed mechanism for generation of HO• and degradation of AO7 in 

Fe3O4@MnO2/H2O2 system [182]. 

 



 

 

Fig. 16. TEM images of Fe3O4/C (a), and Fe3O4/C/ZnO-0.5 (b, c and d). (e) The 

adsorption/desorption isothermal curves of Fe3O4/ZnO and Fe3O4/C/ZnO (0.5) and pore side 

distribution plots (display in inserted figures). (Permission taken from Elesvier, License Number: 

4473530103260) [187]. 

 



 

 

Fig. 17. (a) VSM curves for the Fe3O4 and g-C3N4/Fe3O4/MnWO4 (10%) samples. (b) A plausible 

mechanism for the separation of electron-hole pairs in g-C3N4/Fe3O4/MnWO4 nanocomposites. 

(Permission taken from Elesvier, License Number: 4473530375943) [190]. 

 

 



 



 

Fig. 18. (a) The possible degradation mechanism of RhB over the g-C3N4/Fe3O4/BiOI 

nanocomposites. (b) Magnetization curves for the Fe3O4 nanoparticles and g-C3N4/Fe3O4/BiOI 

(20%) nanocomposite. Inset of the figure display the separation of nanocomposite from the treated 

solution using an external magnetic field. (Permission taken from Elesvier, License Number: 

4473530902459) [192]. 

 



 

 

Fig. 19. (a) Magnetisation curve for the Fe3O4 nanoparticles and Fe3O4/ZnO/Ag3VO4/AgI 

nanocomposite. Inset of the figure shows the separation processes by using a magnet. (b) Proposed 



mechanism of enhanced photocatalyst activity of the Fe3O4/ZnO/Ag3VO4/AgI nanocomposites in 

degradation of RhB. (Permission taken from Elesvier, License Number: 4473540062295) [193]. 
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