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Summary 

With current trends toward embedded computer systems’ ubiquitous accessibility, connectivity, 
diversification, and proliferation, security becomes a critical issue in embedded computer systems 
design and operation.  Embedded computer systems are subjected to both software and physical 
attacks aimed at subverting system operation, extracting key secrets, or intellectual property theft.  
We propose several cost-effective architectural extensions suitable for mid-range to high-end 
embedded processors. These extensions ensure the integrity and confidentiality of both 
instructions and data, introducing low performance overhead (1.86% for instructions and 14.9% 
for data). 
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1 Introduction 
Modern society relies on embedded systems to perform an increasing multitude of tasks: they 

are indispensable to modern communication devices, medical equipment, consumer electronics, 
home appliances, transportation systems, and even weapons systems.  The number of embedded 
processors far surpasses the number of processors in personal computers and servers, and this gap 
continues to grow exponentially: 98% of all 32-bit processors sold are used in embedded systems 
[1].  As the number of embedded applications increases, so do the incentives for attackers to 
compromise the security of these systems.  Security breaches in these systems may have wide 
ranging impacts, from simple loss of revenue to loss of life.  Maintaining security in embedded 
systems is therefore vital for the consumer, industry, and government. 

Depending on the nature of the threat, computer security encompasses three components: 
confidentiality, integrity, and availability.  Confidentiality is violated whenever sensitive or 
proprietary information is disclosed to any unauthorized entity (human, program, or computer 
system).  Integrity is violated whenever any unauthorized code is executed or unauthorized data is 
used.  Availability is violated whenever an attacker succeeds in denying services to legitimate 
users.  This paper directly addresses the issues of confidentiality and integrity, and indirectly 
addresses the issue of availability.   

Computer systems are often subject to software attacks typically launched across the network 
by exploiting known software vulnerabilities.  According to the United States Computer 
Emergency Readiness Team [2], 8,064 software vulnerabilities were identified in the year 2006 
alone; the number of actual attacks was much greater.  These vulnerabilities affect not only 
personal computers, but also a growing number of portable and mobile computing platforms.  
Unauthorized copying of software is another major threat.  The Business Software Alliance [3] 
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estimates that, in the year 2006, 35% of all software installed on personal computers was pirated, 
leading to forty billion dollars in lost revenue. Moreover, embedded systems operating in hostile 
environments are often subjected to physical attacks.  Here adversaries tamper with the memory, 
buses, and I/O devices in order to extract critical secrets, reverse-engineer the design, or take 
control of the system.  Attackers may also employ side-channel attacks, using indirect analysis to 
reverse-engineer a system.  

Several recent research efforts propose hardware-assisted techniques to prevent execution of 
unauthorized code [4-8].  These techniques promise higher security, but often fail to counter all 
attacks, are not suitable for embedded systems or induce prohibitive overheads, or their evaluation 
does not explore the implications of various implementation choices.  

In this paper we propose a cost-effective, flexible architecture for midrange to high-end 
embedded processors that ensures code and data integrity and confidentiality.  An embedded 
system with a proposed secure processor configured to operate in a secure mode allows execution 
of trusted programs only (code integrity).  These programs accept and process only trusted data 
(data integrity).  Any unauthorized change of either programs or data will be detected.  We thus 
protect against software attacks and physical attacks, such as spoofing, splicing, and replay.  In 
addition, both programs and data can be encrypted, providing privacy (code and data 
confidentiality). 

Integrity is ensured using runtime verification of cryptographically sound signatures embedded 
in the code and data.  Data blocks are further protected from replay attacks by using sequence 
numbers.  The sequence numbers themselves are protected using a tree-like structure.  
Confidentiality is ensured by encrypting code and data using a variant one-time pad (OTP) 
scheme.  To counter performance overheads induced by signature fetching and verification 
latencies, the proposed architecture incorporates the following architectural enhancements: 
parallelizable signatures, conditional execution of unverified instructions, and caching of sequence 
numbers.  Memory overhead due to embedded signatures is reduced by protecting multiple 
instruction and/or data blocks with a single signature.   

The proposed security architecture and corresponding architectural enhancements are modeled 
with a cycle-accurate processor simulator based on SimpleScalar [9].  The experimental evaluation 
is conducted by running a set of representative benchmarks while varying relevant architectural 
parameters.  We find that using a combination of architectural enhancements, instruction integrity 
and confidentiality can be protected with very low performance and power overhead.  For 
example, for a secure embedded processor with 4 KB instruction cache the total performance 
overhead on a set of benchmarks is 1.86% (ranging from 0% to 3.09%) compared to 43.2% 
(ranging from 0.17% to 93.8%) for a naïve implementation without any architectural 
enhancements.  The performance overhead induced by protecting data integrity and confidentiality 
is somewhat higher.  For example, a secure embedded processor with 4 KB L1 data cache and 1 
KB sequence number cache incurs a total performance overhead of 14.9% (ranging from 0.19% to 
41.8%). 

Our major contributions are as follows: 
• A mechanism for supporting code and data confidentiality with little or no latency by 

performing the requisite cryptographic operations in parallel with memory accesses. 
• A mechanism for reducing code verification overhead by using parallelizable 

signatures.  To our knowledge, we are the first to apply the Parallelizable Message 
Authentication Code (PMAC) cipher, originally developed by Black and Rogaway [10], 
to a secure microprocessor architecture. 

• A secure and cost-effective mechanism for speculative execution of unverified 
instructions that protects code integrity and confidentiality with little or no performance 
overhead. 

• A mechanism for protecting data integrity and confidentiality with low overhead. 
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• A mechanism for reducing memory overhead by protecting multiple instruction and/or 
data blocks with a single signature. 

The remainder of this paper is organized as follows.  Section 2 gives a brief overview of threats 
that computer systems may face.  Section 3 describes our proposed architectures for ensuring 
integrity and confidentiality of both code and data.  Section 4 discusses how these architectures are 
evaluated, and Section 5 presents the results of these evaluations.  Section 6 examines related work 
in the field of hardware-supported security techniques, and Section 7 concludes the paper. 

2 Computer Security Threats 
This section discusses three classes of attacks to which computer systems may be subjected.  

We begin with software attacks, and then discuss physical attacks, and side-channel attacks. 
The goal of a software attack is to inject malicious code and overwrite a return address so that 

the injected code is executed.  The well-known buffer overflow attack is a classic example of a 
software attack.  The buffer overflow attack takes advantage of insecure code that stores inputs 
into a buffer without verifying whether or not the buffer’s size has been exceeded, allowing the 
attacker to overwrite data on the stack, including the return address.  Other software attacks may 
exploit integer operation errors [11], format string vulnerabilities, dangling pointers, or cause the 
program to jump into different sections of code (the so-called arc-injection attack) [12]. 

Physical attacks involve direct physical tampering.  The attacker has access to the address and 
data buses, and can observe and override bus transactions to perform spoofing, splicing, and replay 
attacks.  In a spoofing attack, the attacker intercepts a bus request and returns a block of his or her 
choice, which may be malicious.  A splicing attack involves the attacker intercepting a bus request 
and returning a valid but non-requested block.  In a replay attack, the attacker returns an old, 
potentially stale version of the requested block. 

Side-channel attacks attempt to gather information about a system via indirect analysis.  A side-
channel attack consists of two phases: collecting information about the system and analyzing that 
information to deduce the system’s secrets.  Some examples of side-channel attacks include timing 
analysis [13], differential power analysis [14], the exploitation of both intrinsic and induced 
hardware faults [15], and the exploitation of known architectural features [16]. 

 

3 Architectures for Runtime Verification  
The proposed runtime verification architectures encompass three stages: secure program 

installation, secure loading, and secure execution [17].  These stages are illustrated in Figure 1 for 
the instruction protection architecture.  Secure installation modifies an executable binary to work 
with the verification architecture, producing a secure executable.  Secure loading prepares the 
secure executable to run.  The secure execution phase involves the actual execution of the program 
with runtime verification to ensure integrity and possibly confidentiality.  Depending on the 
desired level of protection, a program may run in an unprotected mode, code integrity only mode 
(CIOM), code integrity and confidentiality mode (CICM), data integrity only mode (DIOM), data 
integrity and confidentiality mode (DICM), or some combination of the above. 

3.1 Code Integrity and Confidentiality 
The secure installation phase of the code protection architecture encompasses key generation, 

signature generation, and code encryption (if desired).  Secure installation must be performed in a 
special operating mode such as that described by Kirovski et al. [5].  The processor must perform 
secure installations in an atomic manner, and must not reveal any secret information during or 
after the installation. 
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Figure 1.  Overview of CIOM/CICM Architecture 

Key Generation.  Depending on the desired security mode, a program requires zero, two, or 
three keys (Key1, Key2, Key3).  These keys may be generated using thermal noise within the 
processor chip [18] and/or using a physical unclonable function [19].  These keys are encrypted 
using a secret key unique to the processor (Key.CPU) and stored in the secure program header.  
These keys must never leave the processor as plaintext, so key generation and encryption must be 
performed using only on-chip resources. 

Code integrity is ensured by signing each instruction block (I-block).  These signatures are 
calculated during secure installation and embedded in the code of the secure executable, each 
signature directly after the I-block it protects.  An I-block signature is a cryptographic function of 
the following: (a) the starting virtual address of the I-block or its offset from the beginning of the 
code section, (b) two of the aforementioned unique program keys, and (c) actual instruction words 
in the I-block.  Using the I-block’s address prevents splicing attacks, since I-blocks residing at 
different addresses will have different signatures, even if the I-blocks themselves are identical.  
The unique program keys should prevent any execution of unauthorized code, regardless of 
source.  They also prevent the splicing of an instruction block residing at the same virtual address 
but in another program.  Using instruction words is necessary to prevent spoofing and splicing 
attacks. 

The basic implementation of the code protection architecture uses the cipher block chaining 
message authentication code (CBC-MAC) method [20] to generate signatures.  To illustrate the 
process of signature generation, we assume a 32-bit architecture, 32-byte I-blocks, and 128-bit 
signatures appended to I-blocks.  Each I-block is partitioned into two sub-blocks (I0:3) and (I4:7).  
The I-block signature S is described in Eq. 1, where SP is a secure padding function that pads the 
32-bit starting virtual address of the I-block, A0, to a 128-bit value, and Key1 and Key2 are secure 
program keys.  Signatures prevent tampering with the code, but the code can still be inspected by 
an adversary. To provide code confidentiality, we can expand this scheme with code encryption. 

 
Eq. 1 )))](()(()[( 013:027:42 ASPAESxorIAESxorIAESS KEYKEYKEY=  

Code encryption.  Code encryption should provide a high level of security, yet it should not 
cause significant delays in the critical path during signature verification and code decryption 
processes.  In order to satisfy these requirements, we adopt an OTP-like encryption scheme.  
Depending on the order in which we encrypt an instruction block and calculate its signature, there 
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are three possible approaches known in cryptography as encrypt&sign, encrypt, then sign, and 
sign, then encrypt [21]. These three schemes differ in security strength which is still a matter of 
debate [21, 22].  However, for our implementation, all three schemes have similar hardware 
complexity and we decided to use the sign, then encrypt (StE) scheme. 

Our implementation of the StE process is illustrated in Figure 2. In StE, a temporary signature S 
is calculated on plaintext, and then the temporary signature is encrypted, producing the final 
signature eS.  The temporary signature is calculated according to Eq. 1. Both instructions and the 
signature are then encrypted, as described in Eq. 2 and Eq. 3, in which Ai and AeS are the starting 
virtual addresses of the instruction sub-blocks and signature, respectively.  We use Key3 for code 
encryption because it is recommended that authentication and encryption should not use the same 
keys [23]. 

 
Eq. 2 1..0)),(()()( 334:434:4 == ++ iASPAESxorIC iKEYiiii  

Eq. 3 ))((3 eSKEY ASPAESxorSeS =  
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Figure 2.  Illustration of Encryption and Signature Calculation using an StE Method 

Security considerations.  Even with a mechanism that protects code integrity, a skilled attacker 
can exploit software vulnerabilities to change the target of an indirect jump or return instruction to 
different existing code sections (so-called arc injection attacks).  The CICM mode makes creation 
of meaningful arc injection attacks much more difficult, but it does not prevent them.  Complete 
protection from such attacks may be provided by using a dedicated resource to store allowed 
targets of indirect jumps and a secure stack [24], or by using data encryption. 

Another consideration is dynamically generated code, such as the code generated by the Java 
Just-In-Time compiler, which may never be saved in an executable file. Such code can be marked 
as nonsigned and executed in the unprotected mode, or the code generator can generate the 
signatures together with the code.  If the generator is trusted, its output should be trusted too. The 
same argument applies to interpreted code. 
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Program loading.  Unique program keys are loaded from the program header into dedicated 
processor registers.  The program keys are decrypted using the hidden processor key (Key.CPU) 
and can only be accessed using dedicated processor resources: the program key generation unit 
and an instruction block signature verification unit (IBSVU).  On a context switch, these keys are 
encrypted before they leave the processor, and are stored in the process control block. 

Secure program execution.  When an instruction is fetched from memory, the integrity of the 
corresponding I-block needs to be verified.  Consequently, the most suitable instruction block size 
is the cache line size of the lowest level of the instruction cache (the cache that is the closest to the 
memory) or some multiple thereof, or the size of the fetch buffer in systems without a cache.  
Without loss of generality, in the rest of this paper we focus on a system with separate data and 
instruction first level caches and no second level cache.  The instruction cache (I-cache) is a read-
only resource, so integrity is guaranteed for instructions already in the I-cache.  Hence, signatures 
only need to be verified on I-cache misses.  Signatures are not stored in the I-cache and they are 
not visible to the processor core at the time of execution.  To achieve this, an additional step is 
needed for address translation that maps the original code to the code with embedded signatures 
and potential page padding. 

Signatures are verified using the IBSVU.  Fetched instructions pass through a logic block that 
calculates a signature in the same way it was generated during secure installation.  This calculated 
signature cS is then compared to the one fetched from memory (S).  If the two values match, the 
instruction block can be trusted; if the values differ, a trap to the operating system is asserted.  The 
operating system then neutralizes the process whose code integrity cannot be verified and possibly 
audits the event.  Spoofing and splicing attacks would be detected at this point because they would 
cause the calculated signature to differ from the fetched signature.  Spoofing is detected because 
the actual code block is included in signature calculation.  A successfully spoofed signature would 
be highly difficult to achieve without knowing the three cryptographic keys.  Splicing attacks are 
detected due to the inclusion of the block address in signature calculation.  Cross-executable 
splicing, where a valid block from one executable is spliced into another executable’s address 
space, would also be detected due to the use of unique program keys for each executable. 

Code integrity only mode.  Figure 3 shows a timing diagram of operations performed on an I-
cache miss.  The signature cS is calculated using the CBC-MAC cipher [20] as described in Eq. 1.  
Encryption of the securely padded I-block address (blue boxes in the figure) can be initiated at the 
beginning of the memory cycle that fetches the required I-block (blocks marked with I) and its 
signature (blocks marked with S).  In this way the AES block outputs will be ready to be XOR-ed 
with incoming instructions, assuming that the cryptographic latency is less than the memory 
access time.  Assuming 32-byte I-blocks, 128-bit signatures, 12 clock cycle pipelined AES cipher 
implementation, 64-bit data bus, and 12/2 memory latency (12 clock for the first chunk, 2 clock 
cycles for each chunk thereafter), the verification process will be completed in 21 clock cycles, 
including a cycle for signature comparison.  This basic implementation in which the processor 
stalls until verification is complete is called the Wait-‘til-Verified (WtV) scheme.   
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Figure 3.  Memory and cryptographic pipeline for runtime verification with the CBC-MAC 

cipher in CIOM mode. 

 
Code integrity and confidentiality mode.  The fetched ciphertext is decrypted according to Eq. 

4, producing the original I-block with minimal delay - one XOR operation, since the AES 
encryption of virtual addresses is overlapped with memory latency.  The signature cS is calculated 
from decrypted instructions.  The signature fetched from memory is also decrypted as described in 
Eq. 5.  Three additional cryptographic operations are required on an I-cache miss.  As shown in 
Figure 4, they can be completely overlapped with the memory fetch, thus introducing no 
additional performance overhead. 

 
Eq. 4 1..0)),(()()( 334:434:4 == ++ iASPAESxorCI iKEYiiii  

Eq. 5 ))((3 eSKEY ASPAESxoreSS =  
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Figure 4.  Memory and cryptographic pipeline for runtime verification  

with the CBC-MAC cipher in CICM mode. 

Reducing Performance Overhead.  The significant overhead of the basic implementation can 
be reduced by switching to a Parallelizable Message Authentication Code (PMAC) cipher [10].  
Using the PMAC, signatures are calculated on sub-blocks in parallel (Eq. 6), then XOR-ed to 
create the overall I-block signature (Eq. 7).  Encryption and decryption are handled in the same 
manner as in the basic case. 
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Eq. 6 1..0))],(()[()( 134:42 == + iASPAESxorIAESSBSig iKEYiiKEYi  

Eq. 7 )()( 10 SBSigxorSBSigS =  

The runtime verification process using the PMAC cipher in CICM mode is illustrated in Figure 
5.  As the figure shows, using the PMAC cipher reduces our overhead from 21 to 13 clock cycles 
per I-cache miss.  As with the CBC-MAC implementation, the cryptographic operations required 
to support decryption do not introduce any additional performance overhead. 
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Figure 5.  Memory and cryptographic pipeline for runtime verification  

with the PMAC cipher in CICM mode. 

The WtV implementation of the proposed mechanism will not allow execution of instructions 
before they are verified.  Consequently, each I-cache miss event will extend the processor wait 
time for the duration of I-block verification (13 clock cycles in the example).  However, this 
verification latency can be mostly hidden if we keep track of instructions under verification (Run-
before-Verification scheme – RbV).  Instructions can start execution immediately after they are 
fetched, but they cannot commit before the whole block is verified.  For in-order processors, an 
additional Instruction Verification Buffer resource is needed (Figure 6).  This buffer is similar to 
the Sequential Authentication Buffer proposed by Shi et al. [25].  All instructions that belong to a 
block under verification as well as possibly verified instructions that follow the unverified 
instructions get an entry in this buffer.  The instructions can commit when the IBSVU confirms 
that the I-block is secure (verified flag is set).  It should be noted that this buffer is used only when 
I-cache misses occur, so a relatively small buffer will suffice. In out-of-order processors, this 
functionality can be implemented by adding a verified bit to the reorder buffer and not allowing 
instructions to retire until that bit is set.  
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Figure 6.  Instruction Verification Buffer 
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Shi and Lee [26] assert that schemes allowing unverified instructions to execute but not commit 
until verification is complete may expose sensitive data on the address bus by a malicious memory 
access instruction inserted in the block.  However, this action would not violate the confidentiality 
of instructions, and the tampering would be evident after verification.  If data confidentiality is 
desired, then memory access instructions may be stalled until they have been verified. 

Reducing Memory Overhead. The proposed architecture could introduce a 50% memory 
overhead for instructions.  In the examples discussed above, for every 32 bytes of instructions, a 
16-byte signature is required.  This overhead could be prohibitive on embedded systems with tight 
memory constraints.  The solution is to make the protected I-block size a multiple of the I-cache 
line size.  We consider the case where a single signature protects two I-cache blocks, which 
reduces the instruction memory overhead to 25%. 

On an I-cache miss, both I-blocks are required to recalculate the signature.  Therefore, the I-
cache is probed for the other block.  If the other block is not found, then both blocks must be 
fetched from memory.  The layout of these two blocks, which we call Blocks A and B, and their 
signature is shown on the left side of Figure 7.  The right side of the figure enumerates the four 
possible cases that can be encountered based on which block was missed and whether or not the 
other block was already available in the cache.  After the I-cache miss has been handled, both 
blocks will then be available in the I-cache. 
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Figure 7.  Double-block Cases 

The first two cases involve a miss on Block A.  If Block B is in the I-cache, then the cached 
version of Block B may be used.  Depending on memory latency, however, a continuous fetch of 
Block A, Block B, and the signature may be faster than starting a new fetch for the signature.  The 
last two cases involve a miss on Block B; if Block A is already in the I-cache then it need not be 
fetched.  Since we use the StE scheme where signatures are calculated on plaintext, we can 
immediately start signature calculation for blocks already in the I-cache.  

3.2 Data Integrity and Confidentiality 
The integrity of instructions is protected using signatures crafted to protect against spoofing and 

splicing attacks.  This scheme works well for protecting static data that never change, such as 
constant data values.  Therefore, static data blocks can be protected using the same procedures that 
protect instructions.  Dynamic data that can be programmatically changed are further subject to 
replay attacks.  Therefore, a versioning scheme is required to ensure that all fetched dynamic data 
is up-to-date. 

A tree-like structure is used to defend against replay attacks.  This structure is shown in Figure 
8.  Versioning is implemented on the level of a protected data block.  As before, the line size of the 
lowest level data cache (D-cache) is the most convenient protected block size.  Each protected data 
block will have an associated sequence number.  Sequence numbers are stored in a table elsewhere 
in memory.  The sequence number must be included in the formula for the data block signature to 
protect against replay attacks.  Unlike data blocks, sequence numbers need not be encrypted to 
ensure data confidentiality [6]. 
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Figure 8.  Memory Structures for Protecting Dynamic Data 

A sophisticated replay attack could replay sequence numbers as well as data blocks.  Therefore, 
the sequence numbers themselves must be protected against replay attacks.  To that end, the 
sequence number table for a given page is treated as a collection of data blocks, and signatures are 
calculated for each block.  These signatures are then XORed together to form the page root 
signature.  Page root signatures are stored in a separate table in memory.  

A final signature is needed to protect the integrity of the page root signatures.  This program 
root signature is calculated by XORing all the page root signatures together.  This signature should 
never leave the processor as plaintext. 

We build on the PMAC-WtV scheme to add protection for data.  This requires modifications to 
all three stages of the architectural framework.  The bulk of the modifications exist in the secure 
execution stage, where special handling is required on page allocation, translation lookaside buffer 
(TLB) misses, D-cache misses, and D-cache evictions.  We also propose the use of a special cache 
for sequence numbers, which requires special handling on a miss. 
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Secure installation and loading modifications.  The secure installation procedure must be 
modified to sign static data in the same manner as instructions are signed.  This is done according 
to Eq. 6 and Eq. 7.  If data confidentiality is desired, static data and their signatures may also be 
encrypted according to Eq. 3 and Eq. 4.  The secure loading procedure must be modified to reset 
the program root signature in a special register.  Since this signature is calculated from the page 
root signatures of dynamic data pages, it is undefined at load time.  On a context switch, the 
program signature must be re-encrypted using the CPU’s private key and stored in the process 
control block.   

Dynamic page allocation.  The secure structures required for the data protection architecture 
must be prepared for each dynamic data page that is allocated.  First, its sequence number blocks 
must be initialized and used to calculate the initial page root signature.  The sequence number 
blocks and the page root signature must be written to memory in their appropriate reserved areas.  
The starting address or offset from a known starting address for the page’s sequence number 
blocks must be added to the page’s entry in the page table (bottom of Figure 8).  Secondly, the 
signatures for the page’s data blocks must be calculated and stored in memory. 

One way of implementing these procedures is to assume that the operating system is trusted and 
allow it to perform the necessary operations on memory allocation.  This approach could 
potentially introduce high overhead.  The other option is to perform the operations in hardware 
and allow the OS to trigger them using a special instruction.  We choose the latter option for both 
procedures. 

We assume a page size of 4 KB for our example architecture.  Each page contains 85 data 
blocks with their 16-byte signatures, with 16 bytes of padding required at the end of the page.  A 
2-byte sequence number is assigned to each data block. Thus, a total of six 32-byte blocks are 
required for sequence numbers protecting a dynamic page.  These blocks are stored in a reserved 
location in memory called the sequence number table (Figure 8). 

The page root signature for a new dynamic page must be calculated from the page’s sequence 
number blocks.  Each sequence number block is divided into two sub-blocks, SQ0:3 and SQ4:7, and 
their signatures are calculated according to Eq. 8.  Only one sub-block of the sixth sequence 
number block is used; the other sub-block may be neglected in signature calculations.  The 
signatures of each sequence number sub-block are XORed together to form the page root 
signature.  Once calculated, the page root signature is stored in the page root signature table.  The 
index of the page root signature in the table is stored in the page table (see the bottom of Figure 8). 

 
Eq. 8 1..0))],(()[()( 134:42 == + iASPAESxorSQAESSBSig iKEYiiKEYi  

The program root signature is calculated by XORing the page root signatures of all dynamic 
data pages.  Thus, when a new dynamic data page is allocated, the program root signature must be 
updated by XORing it with the newly calculated page root signature.  All calculations on the 
program root signature must be performed on-chip. 

The other task required for new dynamic data pages is data block signature initialization.  This 
could be done on page allocation at the cost of significant overhead.  Instead, we create the 
signatures on the block’s first write-back.  A block initialization bit vector must be established 
with a bit for each data block in the new page, specifying which data blocks in the page have been 
used.  Each block is initially marked as unused.  The block initialization bit vector is stored in the 
page table. 

TLB miss and write-back.  On a TLB miss, information about a data page is brought into the 
TLB.  If the page in question is a dynamic data page, the extra security data required by this 
architecture must be loaded from the page table and stored in the TLB at this point: a bit 
specifying whether this page is static or dynamic, the starting address (or offset from a known 
starting address) of the page’s sequence number blocks, the index of the page root signature 
associated with this page, and the page’s block initialization bit vector.  The integrity of the page 
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root signatures is also verified at this point.  The page root signatures from every active dynamic 
data page are retrieved from the TLB or from memory.  These signatures are XORed together to 
recalculate the current program root signature.  If the calculated program root signature does not 
match the one stored on-chip, then the page root signatures have been subjected to tampering and a 
trap to the operating system is asserted.  The upper bound of the performance overhead introduced 
on a TLB miss is the time required to fetch all page root signatures from memory. 

A page root signature will be updated when the sequence number for a data block within that 
page is incremented.  The program root signature will also be updated at that time.  TLB write-
backs add negligible overhead.  If the page root signature contained in the entry to be evicted is 
not dirty, then no operations are required.  If it is dirty, the only required operation is to place the 
appropriate page root signature and bit initialization vector into the write buffer. 

Data Cache Miss.  Data block verification is performed on data cache read misses and write 
misses on blocks that have already been used.  Therefore, on a write miss the first task is to check 
the block’s entry in the block initialization bit vector in the TLB.  If the block has not yet been 
used then no memory access is required.  The cache block is simply loaded with all zeros, 
preventing malicious data from being injected at this point. 

If the miss is a read miss or a write miss on a previously used block, then the data block must be 
fetched and verified.  The signatures of the sub-blocks D0:3 and D4:7 fetched from memory are 
calculated in the same manner as static data sub-blocks and instruction sub-blocks.  If the block is 
in a dynamic page, the sequence number SN j must be fetched and encrypted before the signature 
cS of the entire block may be calculated (Eq. 9 and Eq. 10).  Therefore, fetching the sequence 
number is in the critical path of data verification.  The inclusion of sequence numbers in signature 
calculation ensures that stale signatures will not match the current signature, causing replay attacks 
to be detected at this point.  The handling of sequence numbers is discussed below.  The simplest 
implementation stalls the processor until data block verification is complete.  We assume this 
simple implementation throughout the rest of the paper, as speculatively using the data would 
require more complex hardware than the one used for speculative execution of unverified 
instructions.  

 
Eq. 9 )]([1

* j
KEY

j SNSPAESSN =  

Eq. 10 *
10 )()( jSNxorSBSigxorSBSigcS =  

If the architecture is running in DICM mode, then the fetched data block and signature must be 
decrypted.  Decryption is performed according to Eq. 4 and Eq. 5.  However, in the case of 
dynamic data, the secure padding function SP must include the sequence number.  The resulting 
pad must be unique to prevent pad reuse. 

The first task that must be performed on a data cache miss is to request the appropriate 
sequence number from memory.  Once the sequence number is available, the verification latency 
is the same as the PMAC-WtV case discussed above.  The verification timing is shown in Figure 
9.  This figure shows DIOM mode for brevity; DICM would not introduce any additional latency 
as it only requires two additional cryptographic operations prior to starting signature generation.  
This would shift the start of signature generation for the first block by one clock cycle, but would 
not affect the overall latency.  As the figure shows, signature verification is complete after 31 
clock cycles (measured from the time at which the sequence number is available), at which time 
the processor may continue and use the fetched data. 
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Figure 9.  Memory and cryptographic pipeline for runtime verification of dynamic data 

block with the PMAC cipher in DIOM mode. 

Data cache write-back.  When a dirty data block from a dynamic data page is chosen for 
eviction, the signatures of its sub-blocks are calculated according to Eq. 6.  The sequence number 
must also be updated.  The current sequence number SN j must be fetched and incremented 
according to Eq. 11.  The new sequence number SN (j+1) is then encrypted as described in Eq. 12, 
and used to calculate the new signature for the total data block as in Eq. 13.  Again, the sequence 
number is on the critical path for signature generation, and must be handled appropriately.  At this 
point, the page root signature must also be updated.  The signature of the appropriate sequence 
number sub-block must be calculated prior to the sequence number increment.  This signature is 
then XORed with the page root signature contained in the TLB, effectively subtracting it out of the 
signature.  The signature of the sequence number sub-block after the increment is also calculated 
and XORed with the page root signature, which is stored back in the TLB.  A similar procedure is 
followed to update the program root signature using the old and new page root signatures. 

 
Eq. 11 1)1( +=+ jj SNSN  

Eq. 12 )]([ )1(
1

*)1( ++ = j
KEY

j SNSPAESSN  

Eq. 13 *)1(
10 )()( += jSNxorSBSigxorSBSigS  

When running in DIOM mode, D-cache write-back requires eight cryptographic operations, for 
a performance overhead of 19 clock cycles.  DICM mode requires three additional operations to 
encrypt the data block and its signature (see Eq. 3 and Eq. 4), raising the overhead to 22 clock 
cycles.  As mentioned above, the secure padding function must include the block’s sequence 
number to prevent pad reuse. 

Pad reuse is also a concern in the case of a sequence number overflow.  The preceding 
discussion assumed an application where write-back frequencies are low enough so that no 
sequence number will overflow.  If this is not the case, then the sequence number size must be 
increased to make overflows highly improbable.  A split sequence number scheme such as that 
proposed by Yan et al. [27] may be implemented.  In this scheme, one large major sequence 
number is associated with several smaller minor sequence numbers.  Each block’s individual 
sequence number consists of a concatenation of one minor sequence number and its associated 
major number.  When a minor sequence number overflows, its major number must be incremented 
and all data blocks protected by that major number’s other minor numbers must be re-signed and 
re-encrypted. 
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Sequence number cache miss and write-back.  Since sequence numbers are on the critical path 
for both data cache misses and write-backs, efficient handling of sequence numbers is imperative 
to keep performance overhead low.  Thus we cache sequence numbers on-chip as in [6], 
preventing extra memory accesses on each data cache miss or write-back. 

On a sequence number cache miss, the six sequence number blocks associated with the page 
that caused the miss must be retrieved.  Some of these may be already cached; the rest must be 
fetched from memory.  The implementation must balance overhead versus complexity.  For our 
sample implementation, we choose a scheme of moderate complexity.  On a sequence number 
cache miss, the sequence number cache is probed for the page’s first sequence number block.  If it 
is found in the cache, the cache is probed for the next block and so forth until a block is not found 
in the cache.  A memory fetch is initiated for that block, and further probing for the rest of the 
blocks occurs in parallel with the memory operation.  All blocks between and including the first 
not found in the cache to the last not found in the cache are fetched from memory.  Any fetched 
blocks that were found in the sequence number cache are ignored, and the blocks that were not 
previously cached are inserted in the cache.  The overhead incurred on a sequence number cache 
miss is thus the time required to fetch the necessary sequence number blocks plus the time 
required for one cryptographic operation (12 clock cycles in our example system) to calculate the 
signature on the final sequence number sub-block that is fetched.  

The signatures for each sub-block of the sequence number blocks are calculated according to 
Eq. 8, and then XORed together to calculate the page root signature.  This recalculated page root 
signature is checked against that stored in the TLB.  If they do not match, then a trap to the 
operating system is asserted. 

When sequence number blocks are evicted from the sequence number cache, no cryptographic 
activity is required.  Furthermore, the page root signature is updated during data cache write-back, 
and will be written to memory during a TLB write-back.  Sequence number cache write-backs 
introduce negligible overhead.  As with TLB write-backs, no cryptographic operations are 
required.  The sequence number block being evicted only needs to be placed in the write buffer to 
be written to memory when the bus is available. 

Reducing memory overhead.  In our example architecture, we use 32-byte protected blocks 
with 16-byte signatures.  This leads to a memory overhead of 50% due to signatures.  As with the 
instruction protection architecture, we reduce this overhead by protecting two D-cache blocks with 
a single signature.  This increases the number of D-cache blocks in each 4 KB data page from 85 
to 102 (52 protected blocks).  Since sequence numbers are associated with protected blocks rather 
than with cache lines, the number of 32-byte sequence number blocks required per page is reduced 
to four.  This also reduces the upper bound on the overhead incurred on sequence number cache 
misses. 

D-cache read misses with double-sized protected blocks are subject to the same four cases 
described in Figure 7.  They are thus handled similarly to I-cache misses with double-sized 
protected blocks, with the additional requirement of the protected block’s sequence number for 
signature calculation.  D-cache write-backs also require both blocks to calculate the new signature.  
If the other block is not in the cache, it may be fetched in parallel with the required cryptographic 
operations described above.  In our sample architecture, four additional cryptographic operations 
are required to calculate the signature of the other block, the last of which may not begin until the 
other block is fully available. 

4 Experimental Environment 
Simulator.  The simulator used to evaluate the performance and energy of the proposed 

architectures is a derivative of the Sim-Panalyzer ARM simulator [28].  Sim-Panalyzer is itself an 
extension of sim-outorder, the most detailed simulator from the SimpleScalar suite [9].  The 
simulator performs a full functional simulation providing a cycle-accurate timing analysis for both 
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the instruction and data protection architectures and an estimate of the energy overhead for the 
instruction protection architecture.   

As a measure of performance we use a normalized execution time calculated as the number of 
clock cycles a benchmark takes to execute on a processor with security extensions divided by the 
number of clock cycles the benchmark takes to execute on the baseline configuration.  The energy 
overhead is determined by dividing the total energy spent by the processor with security 
extensions by the total energy spend by the baseline configuration.  

Workload.  As a workload for performance and energy analysis we use a set of benchmarks for 
embedded systems taken from the MiBench [29], MediaBench [30], and Basicrypt [31] 
benchmark suites.  Since signature verification is done only at cache misses, the benchmarks 
selected from these suites have a relatively high number of cache misses for at least one of the 
simulated cache sizes.  Thus, these benchmarks often represent a worst-case scenario with the 
greatest possible overhead.  Table 1 lists the selected benchmarks, the total number of executed 
instructions, and the number of I- and D-cache misses per 1000 executed instructions when 
executed on the baseline architecture.   

 
Table 1.  Cache Miss Rates for Embedded Benchmarks 

Benchmark IC [106] Instruction Cache Misses 
per 1000 Executed Instructions  

Data Cache Misses  
per 1000 Executed Instructions  

  1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB 

blowfish_enc 544.0 33.8 5.1 0 0 63.5 43.4 8.4 0.3 

cjpeg 104.6 7.6 1.3 0.3 0.1 92.5 69.8 56.9 8.9 

djpeg 23.4 11.9 5.5 1.3 0.3 88 54.3 34.8 13.4 

ecdhb 122.5 28.5 8.5 2.9 0.1 5.7 1.2 0.3 0.2 

ecelgencb 180.2 25.4 4.5 1.4 0.1 3 0.7 0.2 0.1 

ispell 817.7 72.4 53 18.8 2.9 60.4 33.4 4.3 1.5 

mpeg2_enc 127.5 2.2 1.1 0.4 0.2 54.6 30.2 6.7 1.7 

rijndael_enc 307.9 110.2 108.3 69.5 10.3 227.5 190.9 111.5 15.2 

stringsearch 3.7 57.7 35 6.2 2.4 87.6 43 7.3 4.3 

 
Simulator parameters.  The simulator is configured to simulate an ARM architecture running at 

200 MHz.  The I/O supply voltage is 3.3 V, with an internal logic power supply of 1 V.  All other 
power-related parameters correspond with a 0.18 μm process, and are obtained from a template 
file provided with Sim-Panalyzer.  All simulated systems are assumed to have separate Level 1 
instruction and data caches of the same size.  This size varies between 1 KB, 2 KB, 4 KB and 8 
KB.  All cache line sizes are taken to be 32 bytes, as every benchmark exhibited better 
performance on a baseline system with 32-byte cache lines than with 64-byte lines.  All caches use 
the least recently used (LRU) replacement policy.  For RbV implementations, instruction 
verification buffer depth is 16 unless otherwise noted.  Other architectural parameters used in the 
simulations are described in Table 2.  The energy consumed by the pipelined cryptographic 
hardware is modeled as that caused by 57,000 gates of combinational logic [32].   
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Table 2.  Simulation Parameters 

Simulator Parameter Value 
Branch predictor type Bimodal 
Branch predictor table size 128 entries, direct-mapped 
Return address stack size 8 entries 
Instruction decode bandwidth  1 instruction/cycle 
Instruction issue bandwidth  1 instruction/cycle 
Instruction commit bandwidth  1 instruction/cycle 
Pipeline with in-order issue True 
I-cache/D-cache 4-way, first level only 
I-TLB/D-TLB 32 entries, fully associative 
Execution units 1 floating point, 1 integer 
Memory fetch latency (first/other chunks) 12/2 cycles  and 24/2 cycles 
Branch misprediction latency 2 cycles  
TLB latency 30 cycles  
AES latency 12 clock cycles 
Address translation (due to signatures) 1 clock cycle 
Signature comparison 1 clock cycle 

  

5 Results 
This section presents analysis results for the proposed architectures.  We start with a discussion 

of the on-chip complexity of the architectures and memory overhead, and then analyze the 
simulation results for performance and energy overhead.   

5.1 Complexity 
The proposed security extensions require state machines for performing various tasks, logic for 

address translation, the instruction verification buffer, various other buffers and registers, hardware 
for key generation, and a pipelined cryptographic unit.  All but the last two require relatively little 
additional on-chip area.  A physical unclonable function (PUF) unit for key generation requires 
nearly 3,000 gates [19].  The pipelined cryptographic unit, following the commercially available 
Cadence high performance 128-bit AES core [32], requires approximately 57,000 logic gates.  An 
additional source of complexity is the sequence number cache; its complexity is determined by its 
size and organization, which are design parameters. 

5.2 Memory 
The memory overhead incurred by the instruction protection architecture is a simple function of 

the protected block size and the number of instruction blocks in the program.  Each signature is 16 
bytes long.  If 32-byte protected blocks are chosen, then the size of the executable segment of the 
program increases by 50%.  This overhead is reduced to 25% for 64-byte protected blocks, and to 
12.5% for 128-byte protected blocks.  Depending on page size, page padding may also be 
required.  For instance, with a 4 KB page size, 32-byte protected blocks, and 16-byte signatures, 
16 bytes of padding are required for each page. 
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The data protection architecture incurs overhead at different rates for pages containing static 
data and pages containing dynamic data.  The memory overhead for protecting static data blocks 
follows the figures given for instruction blocks.  For dynamic data the overhead is slightly larger 
due to additional space needed in the page table and the sequence number table. The size of the 
sequence number blocks is a design parameter; our sample architecture requires 6 sequence 
number blocks of 32 bytes each, for a total sequence number overhead of 192 bytes per protected 
dynamic page. 

5.3 Performance 
CICM.  The normalized execution times of the embedded benchmarks running in CICM mode 

are plotted in Figure 10, and expressed numerically in Table 3.  We analyze the following 
implementations: CBC-MAC WtV, PMAC WtV, and PMAC RbV with each signature protecting 
a single I-block.  We also show results for PMAC RbV with each signature protecting two I-
blocks (“Double” case in the figure and tables) and caching all fetched I-blocks.  These plots 
clearly show that the PMAC RbV implementation incurs the lowest performance overhead 
(negligible in most cases).  For example, the total performance overhead across all benchmarks for 
PMAC-RbV is only 1.86%, ranging from 0% to 3.09%, compared to 43.2%, ranging from 0.17% 
to 93.8%, with CBC-MAC.  PMAC-RbV performs very well even with very small instruction 
caches; for example with 1 KB instruction cache, the total overhead is 3.70%, compared to 91.2% 
observed for CBC-MAC. The results also indicate that two I-cache blocks can be protected by a 
single signature without incurring further overhead.  In fact, some benchmarks exhibit a speedup 
relative to baseline performance due to the prefetching behaviour of caching all fetched I-blocks.  
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Figure 10.  CICM Performance Overhead 
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Table 3.  CICM Performance Overhead 

 Performance Overhead [%] 

 CBC WtV PMAC WtV PMAC RBV PMAC RBV Double 

Size [KB] 1  2  4  8  1 2 4 8 1 2 4 8 1  2  4 8 
blowfish_enc 72.6 13.7 0.17 0.00 50.2 9.46 0.14 0.00 3.14 0.60 0.09 0.00 -12.3 -1.70 0.06 -0.01
cjpeg 25.3 5.23 1.13 0.29 17.5 3.60 0.77 0.19 1.14 0.23 0.00 0.00 -1.52 0.35 0.06 -0.00
djpeg 31.9 18.0 4.89 0.88 21.9 12.3 3.31 0.53 1.23 0.64 0.07 0.00 -2.51 -1.41 -0.21 -0.09
ecdhb 77.5 35.7 14.2 0.78 53.6 24.7 9.85 0.54 3.49 1.46 0.64 0.03 -12.0 -5.94 -1.96 -0.06
ecelgencb 68.8 18.8 6.58 0.34 47.6 13.0 4.55 0.24 3.14 0.77 0.30 0.01 -4.12 -3.10 -0.91 -0.04
ispell 99.8 88.5 49.7 10.4 68.8 60.9 34.3 7.22 4.31 4.03 2.60 0.50 -7.68 0.48 4.29 1.33
mpeg2enc 8.70 5.05 2.16 1.09 6.00 3.50 1.50 0.76 0.39 0.24 0.13 0.09 -0.58 -0.39 -0.05 -0.02
rijndael_enc 117.4 117.7 93.8 24.1 80.6 80.9 64.5 16.2 3.62 3.77 3.09 0.00 -14.2 -16.1 -8.34 7.53
stringsearch 96.6 79.3 23.7 10.4 66.7 54.9 16.4 7.16 4.33 3.80 1.36 0.30 1.79 -2.03 5.75 1.75

Total 91.2 72.7 43.2 7.65 62.8 50.1 29.8 5.23 3.70 2.97 1.86 0.16 -9.37 -3.72 -0.18 1.52
 

 
The CICM architectures with single-sized protected I-blocks introduce a fixed amount of 

verification latency on each I-cache miss.  Assuming that this latency dominates other 
contributions to performance overhead, a linear relationship between the performance overhead 
and the I-cache miss rate is expected.  Figure 11 plots the normalized execution time versus 
baseline I-cache miss rate for the CBC WtV, PMAC WtV, and PMAC RbV single-sized protected 
block CICM implementations.  The plot includes data points for all cache sizes.  As expected, 
CBC-WtV and PMAC-WtV plots exhibit some linearity and the overhead is directly proportional 
to the number of I-cache misses.  However, PMAC-RbV implementation shows excellent results 
even with a significant number of cache misses.  This plot also helps us quantitatively evaluate the 
contribution of each enhancement individually (a) replacing CBC-MAC with PMAC and (b) 
allowing speculative execution of unverified instructions, across the design space.   
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Figure 11.  CICM Performance Overhead vs. Baseline Instruction Cache Miss Rate 
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We choose two benchmarks with relatively high I-cache miss rates, rijndael_enc and ispell, for 

exploring the optimum IVB depth.  They are simulated in the CICM mode using the PMAC cipher 
with each signature protecting a single I-block.  IVB depth is varied from two to 32 entries in 
powers of two.  The normalized performance overheads from these experiments are plotted in 
Figure 12.  For both benchmarks, the greatest performance improvement is observed when the 
IVB depth is increased from 8 to 16.  Further increasing the IVB depth yields minimal 
improvement.  Thus, a 16-entry IVB, capable of holding 2 cache lines, appears to be optimal.  This 
result can be explained as follows.  A potential worst-case scenario for the IVB would be an I-
cache miss, followed by the linear execution of the new cache line’s instructions, and then 
followed by the linear execution of another line already in the cache.  This worst case scenario 
results in 16 instructions being placed in the IVB.  Even with an ideal processor efficiency of 1 
cycle per instruction, the first 8 instructions would be verified before execution of the second 8 
instructions is completed.   
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Figure 12.  Optimal Instruction Verification Buffer Sizing 

 
DICM.  Performance overhead is also evaluated for the data protection architecture.  We use 

the most efficient CICM implementation, PMAC RbV, which has been shown to introduce 
negligible performance overhead.  The normalized execution times for embedded benchmarks 
running in CICM/DICM mode (protecting both integrity and confidentiality of code and data) are 
shown in Figure 13 and presented numerically in Table 4.  Results are shown for the various cache 
sizes of interest, and for both single protected D-cache block and double protected D-cache block 
cases.  For each cache size, the sequence number cache size is varied between 25% and 50% of the 
data cache size.  All sequence number caches are 4-way set associative.   

The results show that the DICM architecture incurs significant overhead for small D-cache 
sizes.  This overhead greatly decreases as D-cache size increases; all benchmarks exhibit less than 
25% performance overhead with an 8 KB D-cache.  They also indicate that larger sequence 
number caches significantly reduce the performance overhead of most benchmarks on systems 
with small D-caches, but offer little improvement for systems with larger D-caches.  Thus the 
choice of sequence number cache size should be driven by the expected workload of the system 
and the overall cache budget.  Systems with larger D-caches and smaller sequence number caches 
tend to outperform systems with smaller D-caches and larger sequence number caches.  For 
instance, a simulated hypothetical system with a 5 KB D-cache and 1 KB sequence number cache 
exhibits total performance overhead of 8.86% compared to a base system with a 4 KB D-cache, 
whereas a system with 4 KB D-cache and 2 KB sequence number cache exhibits 11.0% overhead. 

Given the potentially significant performance overhead from protecting data, the DICM 
architecture is obviously not suitable for embedded systems that are under severe performance 
constraints.  Additionally, not all applications require full protection of dynamic data, and may 
tolerate only code protection.  A partial DICM implementation may be achieved by not using 
sequence numbers and generating cryptographic pads and signatures for dynamic data in the same 
manner as for code.  This would not protect against replay attacks, and a dedicated attacker could 
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compromise integrity by taking advantage of the resulting pad reuse.  However, the performance 
overhead of such a scheme would be on par with that resulting from only protecting code. 
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Figure 13.  CICM/DICM Performance Overhead 

Table 4.  CICM/DICM Performance Overhead  

 Performance Overhead [%] 

 Sequence Number Cache Size 
25% of L1 Data Cache Size 

Sequence Number Cache Size 
50% of L1 Data Cache Size 

 Single Protected  
Block 

Double Protected 
Block 

Single Protected  
Block 

Double Protected 
Block 

Size [KB] 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 

blowfish_enc 69.5 33.5 10.4 0.02 89.8 49.6 21.7 0.03 13.3 20.0 9.14 0.02 20.4 35.8 16.9 0.02

cjpeg 162.9 81.0 18.0 5.09 223.3 91.2 27.0 5.71 100.4 24.4 15.3 4.52 133.7 38.8 24.1 4.94

djpeg 204.3 75.7 40.2 18.0 269.3 115.1 55.1 20.4 85.3 45.8 28.7 13.0 158.6 66.1 39.0 13.0

ecdhb 15.0 2.60 0.41 0.26 7.07 -1.50 -1.22 0.27 7.92 1.15 0.26 0.24 -0.74 -3.75 -1.43 0.24

ecelgencb 7.11 1.30 0.19 0.05 9.26 -0.52 -0.59 0.03 3.47 0.66 0.15 0.03 2.7 -1.89 -0.67 0.01

ispell 73.6 43.9 5.28 2.58 126.3 81.1 20.1 7.33 52.4 34.9 3.61 1.60 93.0 69.9 12.0 5.04

mpeg2enc 115.9 34.9 7.88 2.55 163.3 54.6 12.6 2.84 53.3 19.0 6.27 2.02 84.8 31.8 9.94 2.21

rijndael_enc 153.2 59.7 41.8 15.3 225.4 82.1 63.9 36.8 63.9 34.9 29.9 13.8 108.8 46.9 48.9 34.0

stringsearch 121.9 43.2 10.7 3.22 139.5 62.9 24.1 4.33 60.2 26.4 4.85 2.92 84.0 46.0 13.9 3.91

Total 85.2 43.3 14.9 3.49 130.3 70.0 28.9 8.31 44.0 29.4 11.0 2.80 74.9 52.6 22.1 6.86

 

5.4 Energy 
CICM.  The normalized values of energy consumed by the microarchitecture running in CICM 

mode are plotted in Figure 14 and shown numerically in Table 5.  Results are presented for cache 
sizes of 1 KB, 2 KB, 4 KB, and 8 KB, and for the following implementations: CBC-MAC WtV, 
PMAC WtV, PMAC RbV, and PMAC RbV with double-sized protected blocks and caching all 
fetched I-blocks.  The plots follow the normalized execution time plots very closely, showing a 
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strong correlation between execution time and energy consumed.  Once again, PMAC RbV is the 
most efficient of the single-sized protected block implementations, and the double-sized protected 
block implementation introduces little or no additional overhead.  As before, some benchmarks 
benefit from the prefetching behavior in the double-sized protected block implementation, 
consuming less energy due to shorter runtimes. 
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Figure 14.  CICM Energy Overhead 

Table 5.  CICM Energy Overhead 

 Energy Overhead [%] 

 CBC WtV PMAC WtV PMAC RBV PMAC RBV Double 

Size [KB] 1  2  4  8  1 2 4 8 1 2 4 8 1  2  4 8 
blowfish_enc 72.3 13.7 0.17 0.00 49.9 9.44 0.14 0.00 3.17 0.60 0.09 0.00 -12.2 -1.69 0.06 -0.01
cjpeg 25.3 5.22 1.13 0.29 17.5 3.59 0.77 0.19 1.17 0.24 0.00 0.00 -1.45 0.36 0.06 -0.00
djpeg 31.9 18.0 4.88 0.87 21.8 12.3 3.30 0.53 1.26 0.65 0.07 0.00 -2.43 -1.39 -0.21 -0.08
ecdhb 77.4 35.6 14.2 0.78 53.5 24.7 9.84 0.54 3.60 1.49 0.65 0.03 -11.8 -5.90 -1.94 -0.06
ecelgencb 68.7 18.8 6.57 0.34 47.5 13.0 4.55 0.24 3.24 0.78 0.30 0.01 -3.91 -3.07 -0.90 -0.04
ispell 99.6 88.4 49.6 10.4 68.6 60.8 34.3 7.21 4.43 4.09 2.64 0.51 -7.45 0.61 4.37 1.35
mpeg2enc 8.68 5.05 2.16 1.09 5.98 3.50 1.50 0.76 0.40 0.24 0.13 0.09 -0.56 -0.38 -0.05 -0.02
rijndael_enc 116.8 117.5 93.6 24.1 80.1 80.7 64.3 16.2 3.72 3.83 3.13 0.00 -14.0 -16.0 -8.23 7.61
stringsearch 96.3 79.2 23.6 10.4 66.5 54.9 16.3 7.14 4.44 3.85 1.38 0.31 2.02 -1.93 5.80 1.77
Total 90.9 72.6 43.1 7.65 62.8 50.0 29.7 5.23 3.79 3.01 1.88 0.16 -9.17 -3.63 -0.12 1.54

 
DICM. We also evaluate the energy overhead introduced by the data protection architecture.  

We use the most efficient CICM implementation, PMAC RbV, and evaluate the normalized values 
of energy consumed for the same architectures used for evaluating the CICM/DICM performance 
overhead.  The normalized values of energy consumed are shown in Figure 15 and presented 
numerically in Table 6.  These results show that protecting data integrity and confidentiality 
introduces much greater energy overhead than only protecting code.  The bulk of this overhead 
comes from the sequence number cache.  Due to this overhead, implementing the DICM 
architecture may not be appropriate for embedded systems with strict power constraints. 
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Figure 15.  CICM/DICM Energy Overhead 

Table 6.  CICM/DICM Energy Overhead 

 Energy Overhead [%] 

 Sequence Number Cache Size 
25% of L1 Data Cache Size 

Sequence Number Cache Size 
50% of L1 Data Cache Size 

 Single Protected  
Block 

Double Protected 
Block 

Single Protected  
Block 

Double Protected 
Block 

Size [KB] 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 

blowfish_enc 72.5 33.9 10.4 0.03 89.41 49.4 21.7 0.03 16.2 20.5 9.2 0.03 20.2 35.7 16.9 0.02

cjpeg 163.6 81.1 17.8 5.05 222.5 91.0 26.9 5.69 101.3 24.6 15.2 4.48 133.2 38.6 23.9 4.92

djpeg 204.9 76.1 40.1 17.7 268.4 114.9 54.9 20.3 86.2 46.3 28.7 12.8 158.0 66.0 38.8 13.0

ecdhb 18.67 4.10 1.06 0.30 7.30 -1.44 -1.19 0.27 11.6 2.65 0.92 0.28 -0.53 -3.70 -1.41 0.24

ecelgencb 10.40 2.09 0.50 0.07 9.49 -0.49 -0.58 0.03 6.74 1.45 0.46 0.06 2.92 -1.87 -0.66 0.01

ispell 78.2 48.1 7.93 3.09 126.4 81.3 20.2 7.35 56.9 39.1 6.27 2.12 93.2 70.1 15.1 5.06

mpeg2enc 115.8 35.0 7.99 2.63 162.6 54.4 12.6 2.84 53.4 19.2 6.38 2.11 84.3 31.7 9.91 2.20

rijndael_enc 156.6 63.4 44.8 14.8 224.7 82.0 63.8 36.8 67.3 38.6 32.9 13.3 108.4 46.8 48.9 34.0

stringsearch 126.4 47.1 12.0 3.52 139.7 63.0 24.2 4.33 64.7 30.3 6.21 3.22 84.2 46.1 13.9 3.91

Total 88.93 46.33 16.76 3.65 130.2 70.0 28.9 8.31 47.7 32.4 12.9 2.97 74.8 52.6 22.1 6.87

6 Related Work 
Proposals for computer security solutions fall into a broad spectrum ranging from 

predominantly software-centric to predominantly hardware-centric.  Many approaches fall in 
between, requiring various levels of hardware and software support. 

Software techniques may be classified as static or dynamic.  Static software techniques rely on 
analysis of source code to detect security vulnerabilities.  Dynamic software techniques require the 
augmentation of code or the operating system to detect attacks at runtime.  Software techniques 
may not counter all attacks by themselves, as they lack generality, suffer from false positives and 
negatives, and often introduce prohibitive performance and power consumption overheads. 
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The trend of increasing transistor availability on microprocessor chips enables hardware 
approaches to the security problem.  A number of hardware techniques have been proposed, 
varying in scope and complexity.  Several proposals address specific vulnerabilities, such as the 
stack-smashing attack, by utilizing a secure hardware stack [33, 34] or encrypting address pointers 
[35], or randomizing the processor’s instruction set [36].  The use of untrustworthy data for jump 
target addresses can be prevented by tagging all data coming from untrustworthy channels [37-39]; 
however, this approach requires relatively complex tracking of spurious data propagation and may 
produce false alarms. 

The execute-only memory (XOM) architecture proposed by Lie et al. [40] provides an 
architecture meeting the requirements of integrity and confidentiality.  Main memory is assumed 
to be insecure, so all data entering and leaving the processor while it is running in secure mode is 
encrypted.  This architecture was vulnerable to replay attacks in its original form, but that 
vulnerability was corrected in the later work [4].  The drawbacks of this architecture are its 
complexity and performance overhead.  XOM requires modifications to the processor core itself 
and to all caches, along with additional security hardware.  This architecture also incurs a 
significant performance overhead of up to 50% by its designers’ estimation. 

The high overhead of XOM is reduced by the architectural improvements proposed by Yang et 
al. [41].  The authors only address confidentiality, as their improvements are designed to work 
with XOM, which already addresses integrity concerns.  They propose to use a one-time pad 
(OTP) scheme for encryption and decryption, in which only the pad is encrypted and then XOR-ed 
with plaintext to produce ciphertext, or with ciphertext to produce plaintext.  They augment data 
security by including a sequence number in the pad for data blocks, and require an additional on-
chip cache for the sequence numbers.  While their scheme greatly improves XOM’s performance, 
it inherits its other weaknesses. 

Suh and his colleagues [19] propose the AEGIS secure processor.  They introduce physical 
unclonable functions (PUFs) to generate the secrets needed by their architecture.  Memory is 
divided into four regions based on whether it is static or dynamic (read-only or read-write) and 
whether it is only verified or is both verified and confidential.  They allow programs to change 
security modes at runtime, starting with a standard unsecured mode, then going back and forth 
between a mode supporting only integrity verification and a mode supporting both integrity and 
confidentiality.  They also allow the secure modes to be temporarily suspended for library calls.  
This flexibility comes at a price; their architecture assumes extensive operating system and 
compiler support. 

Milenković et al. introduced architectures for runtime verification of instruction block 
signatures [17].  Their architecture involves signing instruction blocks during a secure installation 
procedure.  These signatures are calculated using instruction words, block starting addresses, and a 
secret processor key, and are stored together in a table in memory.  At runtime, these signatures 
are recomputed and checked against signatures fetched from memory.  The cryptographic function 
used in the architecture is a simple polynomial function implemented with multiple input shift 
registers.  The architecture is updated in [7], adding AES encryption to increase cryptographic 
strength and embedding signatures with instruction blocks rather than storing them in a table.  This 
architecture remains vulnerable to splicing attacks, since signatures in all programs use the same 
key.  The vulnerability to splicing attacks and code confidentiality have been addressed in [42].  
However, the proposed architecture only addresses instruction integrity and confidentiality and 
does not support any form of data protection.   

Drinić and Kirovski [20] propose a similar architecture, but with greater cryptographic strength.  
They use a cipher block chaining message authentication code (CBC-MAC) cipher, and include 
the signatures in the cache line.  They propose to reduce performance overhead by reordering basic 
blocks, so that instructions that may not be safely executed in a speculative manner are not issued 
until signature verification is complete.  The drawback to this approach is that it requires 
significant compiler support, and may not consistently hide the verification overhead.  
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Furthermore, signatures are visible in the address space and stored in the cache, leading to cache 
pollution.  Their architecture does not address confidentiality, and is vulnerable to replay and 
splicing attacks. 

A joint research team from the Georgia Institute of Technology and North Carolina State 
University has proposed several secure processor designs.  Yan et al. [27] describe a sign-and-
verify architecture using Galois/Counter Mode cryptography.  They protect dynamic data using 
split sequence numbers to reduce memory overhead and reduce the probability of a sequence 
number rollover.  A tree-like structure is used to protect dynamic data against replay attacks.  
Rogers et al. [43] lower the overhead of the design by restricting the tree structure to only protect 
sequence numbers.  They claim an average performance overhead of 11.9%.  This overhead may 
be artificially low as they use “non-precise integrity verification,” which allows potentially 
harmful instructions to execute and retire before they are verified.  Their research has also been 
extended into the multiprocessor domain [44]. 

Several solutions have been developed by industry.  Both Intel [45] and AMD [46] have 
implemented mechanisms that prohibit the execution of instructions from flagged areas of 
memory.  IBM [47] and ARM [48] have developed security architectures to augment existing 
processor designs.  Maxim proposes their DS5250 secure microprocessor [49] to be used as a 
secure coprocessor, handling sensitive operations while the primary processor remains untrusted. 

This paper presents architectures offering improvements over the existing proposals.  We offer 
lower complexity and performance overhead than XOM [40] and its derivatives [4, 41].  Unlike 
AEGIS [19] and the work presented in [20], our approach is almost completely hardware-centric, 
requiring no compiler support and only minimal operating system support.  The proposed 
architectures are thus applicable to unmodified legacy code.  Furthermore, we detect tampered 
instructions and data before they can cause harm to the system, unlike the architectures proposed 
in [27, 43-44].  Our approach offers high cryptographic strength with low performance and energy 
overhead. 

7 Conclusions 
This paper presents hardware security extensions suitable for implementation in embedded 

processors.  With these extensions a program may run in an unprotected mode, code integrity only 
mode, code integrity and confidentiality mode, data integrity only mode, data integrity and 
confidentiality mode, or some combination of the above, depending on the desired level of 
security.  To ensure code and data integrity, code and data blocks are protected by 
cryptographically sound signatures that are embedded in the code and data segments; these 
signatures are verified in runtime during program execution.  Confidentiality is ensured by 
encrypting code and data blocks and signatures using a variant one-time-pad encryption scheme 
that induces minimal latency.  To mitigate negative impacts of security extensions on performance 
and energy and memory requirements, we introduce and evaluate several architectural 
enhancements such as parallelizable signatures, speculative instruction execution, protecting 
multiple instruction and data blocks with a single signature, and sequence number caches.  The 
experimental analysis shows that code protection introduces a very low complexity and negligible 
performance overhead.  Data protection requires somewhat more complex hardware and increased 
performance overhead, but the total overhead for both code and data protection is less than 15%.   
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