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Abstract

Escherichia coli has long been used as a model organism due to the extensive experimental
characterization of its pathways and molecular components. Take chemotaxis as an example,
which allows bacteria to sense and swim in response to chemicals, such as nutrients and
toxins. Many of the pathway’s remarkable sensing and signaling properties are now concisely
summarized in terms of design (or engineering) principles. More recently, new approaches
from information theory and stochastic thermodynamics have begun to address how pathways
process environmental stimuli and what the limiting factors are. However, to fully capitalize
on these theoretical advances, a closer connection with single-cell experiments will be required.

Introduction

All living organisms from animals to unicellular bacteria live under constant evolutionary pres-
sure. To stay ahead in the game of evolution, organisms need to process noisy information,
allowing them to make survival decisions quickly. However, to process information and move or-
ganisms also require energy. Thus the final behavior of any organism has to be an outcome which
produces strong advantages under likely occurring environments. Chemotaxis of Escherichia coli

is particularly well understood in terms of its molecular components, allowing this bacterium to
migrate towards food and away from toxins [1–5]. Indeed, an ever increasing amount of studies
has highlighted several design principles, i.e. engineering blue prints, ensuring exquisite sensitiv-
ity, efficiency, robustness, and wide dynamic range at all levels of the pathway.

This review focuses on recent findings in E. coli chemotaxis, in particular on how molecular
mechanisms give rise to information processing, its associated thermodynamic cost, and the
resulting swimming behavior. What new design principles will be discovered next?

Classical view of Escherichia coli chemotaxis

Escherichia coli is a Gram-negative bacterium inhabiting soil, as well as the animal and human
gastrointestinal tracts. Inside the host, it contributes to the digestion of food and enhances re-
sistance against pathogens [6]. This bacterium has a relatively simple chemotactic pathway (Fig.
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1A). External stimuli are processed at the receptor level, where receptors sense and memorize
chemical concentrations from the past by their adapted methylation level (Fig. 1A, see red box
for ‘sensing module’). The receptor-signaling activity can be monitored experimentally by tag-
ging the CheY and CheZ proteins with a fluorescence-resonance-energy-transfer (FRET) reporter
pair to follow their phosphorylation-dependent interaction. To swim cells are equipped with 5-8
flagellar rotary motors (Fig. 1A, blue box for ‘motility module’), each of which rotates either
clockwise (CW) or counterclockwise (CCW). Taking together these flagella determine cell move-
ment, given either by a ‘run’ or a random reorientation in a ‘tumble’ [7–9]. The phosphorylated
protein CheY-p links sensing and motility (Fig. 1A). In absence of any chemical gradient E.

coli performs random walk, and in a gradient, it biases its movement by having longer runs in
favorable directions (Fig. 1B).

Despite its simplicity, the chemotaxis pathway has astonishing properties. First, it is highly
sensitive to detect small changes in chemical concentration. Indeed it works close to the physical
limits of sensing [10, 11], with a sensitivity equivalent to detecting as few as three molecules in
the volume of the cell [12]. Second, E. coli ’s sensory system adapts to persistent stimulation [13]
and hence measures relative changes in ligand concentration rather than absolute concentrations
(Weber’s law) [14]. Precise adaptation and signal amplifications by cooperative receptors allow
E. coli to perform chemotaxis over a wide range of concentrations [15–18]. Furthermore, precise
adaptation has been explained by a robust mechanism called integral feedback control [19], but
recent experiments on swimming bacteria also demonstrate the limits of precise adaptation [20–
22]. The adaptation mechanism provides bacteria with many additional advantages, some of
which are known from neuroscience. When adaptation is precise the temporal profile of the
response is largely independent of the strength of the stimulus (fold-change detection) [23,24], and
in the sensitive regime receptors perform logarithmic sensing (Weber-Fechner law) [25]. Finally,
the chemotaxis pathway is not only used to sense chemicals but also changes in temperature and
pH [26,27].

Despite these numerous findings, new directions of research have recently opened up in bacte-
rial chemotaxis. Considering that the whole pathway is under evolutionary pressure, this renewed
interest focuses on questions of optimality and trade offs in sensing and signaling. In the next
sections we highlight recent findings about how the pathway processes information from the
environment and the thermodynamic cost of performing chemotaxis.

Information processing

During their lives, cells experience many different inputs from the environment, to which they have
to respond reliably with an output that enhances their chances of survival (Fig. 2). Hence, cell-
internal input-output relationships are shaped by evolution to transmit external information from
the receptors to downstream proteins, which finally determine cell behavior. This information
is inevitably corrupted by cell-external (extrinsic) and internal (intrinsic) sources of noise, and
thus the best quantity for measuring information processing is Shannon’s mutual information.
Indeed, mutual information is a measure of statistical dependence between two random variables
and describes the reduction of uncertainty of one after a noisy measurement of the other (see Box
1). But, have chemotactic cells evolved to maximize information transmission?
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Figure 1: (A) Overview of chemotaxis. The sensing module (red box) includes different types of
chemoreceptors grouped into clusters, kinase CheA (A), and adapter protein CheW (W). CheR
(R) and CheB (B) regulate the methylation level of the receptors and hence memory, providing
adaptation to persistent stimulation. The underlying mechanism of precise adaptation is integral
feedback control as only inactive receptors are methylated by CheR and only active receptors are
demethylated by CheB-p [19]. The motility module (blue box) contains flagellar motors, which
either rotate clockwise (CW) or counterclockwise (CCW). The two modules are linked by CheY
(Y), which is phosphorylated by receptor-activated CheA (i.e. CheA-p) and dephosphorylated
by phosphatase CheZ (Z). Once phosphorylated by ChaA-p, CheY-p diffuses in the cytoplasm to
bind the FliM molecules of the motors, promoting CW rotation. (B) Simulations of swimming
bacteria in a linear gradient of nutrient using RapidCell [28], showing biased random walk.
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Figure 2: Bacterial chemotaxis under evolutionary pressure. Complex microenvironments (top)
shape the ligand input distribution E. coli experiences (left). Different bacterial species are indi-
cated by different shapes and colors (top left), inhomogeneous chemical environments by colored
patches (top centre), and bacterial motility by flagellated rods (top right). This information is
first processed by the receptors and finally by the motors (bottom). The final outcome (right) de-
terminates the swimming behavior of the cell, and feeds back into the chemical environment and
hence the inputs. Evolution has selected input-output relationships, which enhance the chance
of the species’ survival.
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The debate has just started. The assumption of maximal information transmission allows
the reconstruction of distributions of optimal input and output distributions when dose-response
curves and noise are measured at the receptor (or motor) level [29]. However, the complexity of
the bacteria’s microenvironments makes these predictions hard to test as bacteria are normally
investigated under laboratory condition, not in their natural environment. More importantly,
maximal mutual information at the sensing module maximizes the drift velocity of chemotac-
tic cells in a linear gradient, linking mutual information to the final output of chemotaxis [29].
However, the ultra-steep dose-response curve of an individual motor [30,31] might limit the trans-
mitted information down to one bit of information (either CW or CCW rotation). To make things
worse, the CheY-p concentration, which maximizes the drift, is in the saturated non sensitive tail
of the motor dose-response curve [32]. This implies non-optimal information transmission. How-
ever, E. coli uses multiple flagellar rotary motors, which may increase information transmission
at the very end of the pathway, e.g. by averaging out single-motor switching noise. Further-
more, the swimming trajectory should be regarded as the final output, constituting the spatial
manifestation of all the information processed by the cell over some time.

Despite these advances in understanding, the dependence of signaling on memory and hence
the cell’s individual history make the calculation of the mutual information between trajectories
of inputs and outputs difficult [33]. Another trajectory-relevant technique is the k-space spatial
information, shown to increase with gradient steepness [34]. However, this spatial information is
an image-analysis tool and not a quantification of information processing. Information processing
also has its thermodynamic cost, which is conceptually difficult to understand as it relates to non-
equilibrium physics.
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Box 1. Mutual information as a universal language of sensing and signaling.
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Information theory was first developed by
Shannon in 1948 to quantify communication
through a noisy channel [35]. Shannon defined
a channel as a transmitting device: a message
from a transmitter (input) is first encoded,
then sent, and finally decoded by the receiver
(output). In such a channel all steps may suf-
fer from noise. The key quantity of Shannon?s
theory is entropy (S), which measures the un-
certainty of the outcomes of a random vari-
able. Mutual information (I) is defined as the
reduction of uncertainty of the input knowing
the output, and it is measured in bits. For
continuous variables in a single processing step
(X → Y ), I is given by

I[X,Y ] = S(X)− S(X|Y )

=

∫
X,Y

dx dy p(x, y) log2
p(x, y)

p(x)p(y)
,

where S(X) is the Shannon entropy, i.e. the
total uncertainty, of the input X; S(X|Y )
is the conditional entropy measuring the re-
duction of uncertainty after measuring Y ;
p(x), p(y) and p(x, y) = p(y|x)p(x) are the
probability distributions of input, output and
joint probability, respectively. The condi-
tional probability p(y|x) is also called an input-
output relationship.

Mutual information is indeed a measure
of statistical dependence between two random
variables. It accounts not only for linear de-
pendencies (which for instance can be measured by Pearson correlation) but also for nonlinear
dependencies [36,37]. Mutual information is independent of the units of measurement and details
of the channel. It is symmetric and non-negative, i.e. is zero if and only if x and y are indepen-
dent. Furthermore, information can only be lost by adding a processing step (X → Y → Z),
never gained. However, measuring multiple inputs or outputs can in principle increase the mutual
information.

Due to the above mentioned properties mutual information seems ‘a’ candidate to describe
information processing between noisy environmental stimuli (input) and internal noisy protein
levels (output) in biology. However, the most meaningful property of mutual information, which
makes it ‘the’ candidate, is its relation to decision theory and statistical inference: For a given
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input distribution, one input-output relationship allows better inference than another if and only
if it has higher mutual information. (See [38] for a review of information theory in biology).

For this reason, mutual information has recently been applied to experimentally measured
dose-response curves of the receptor-signaling activity [39]. When maximized given experimental
dose-response curves and noise, it predicts optimal input, p(x), and output, p(y), distributions.
Input noise can produce a bimodal output distribution, e.g. in motor bias (left column in figure).
A strongly bimodal distribution indicates that only one bit is transmitted in the pathway. A
steep dose-response curve leads to high sensitivity and amplification of signals, but inputs may
saturate the response, reducing the mutual information. Low gain might reduce the output range
and thus also reduce the mutual information (right column in figure). Assuming that evolution
favors high information transmission, selected dose-response curves might result from a trade off
between high and low gain.

Thermodynamics of chemotaxis

Enhancing information gain about the environment is generally evolutionarily favorable for cells
(if not why having a sensory system?). However, nature needs to account for the thermodynamic
cost of operating the biochemical signaling pathway. As found in neural coding [40–42], evolution
might search for an energy efficient way of transmitting information. Indeed, from the theoretical
point of view, mutual information and energy dissipation of a system are fundamentally linked
(see Box 2). Recent experiments at the nanometre scale demonstrate that computational devices
must dissipate energy when performing the logically irreversible step of erasing information [43].
Hence, the thermodynamic cost of chemotaxis needs to be understood. Does energy dissipation
set a limit on the information that a cell can gain about its environment?

The debate touches on two main aspects of chemotaxis: the fundamental limit of sensing
and the precision of adaptation. The fundamental limit of sensing, e.g. for inferring ligand
concentration from inherently noisy measurements, is a theoretical upper bound on the accuracy a
cell can reach [10,11]. For instance, in seminal work Berg and Purcell used an equilibrium receptor
but time averaging by an unknown ad-hoc mechanism [10]. Hence, whether a cell can reach this
limit is a different question since cells need to store the information in downstream proteins
and implement time averaging to reduce noise, processes which generally require consumption
of fuel molecules such as ATP and SAM. Indeed, theory shows that energetic cost limits the
accuracy of sensing [44,45]. More specifically, there are three independent constraints to sensing,
which cannot be traded off among each other: receptors and their averaging time, the number
of downstream proteins, and fuel consumption [45]. The strategy of avoiding unfavorable bottle
necks in the pathway, named optimal resource allocation, seems to be adopted by E. coli [45].
However, these studies do not account for fluctuating environments, where the environment itself
may provide work, enhancing information gain without internal fuel consumption [46]. In E. coli

the cost of responding to a simple step-change in external ligand concentration is only about 10%
of the energy consumed for maintaining the dissipative steady state [47].

Why does nature adopt pathway architectures which lead to energy dissipation when there
are potential pathways which do not consume fuel [47, 48]? Indeed, there is a trade-off between
energy consumption and fast, accurate adaptation [48,49]. Energy consumption can also reduce
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the correlations between extrinsic and intrinsic noise, ultimately resulting in a higher accuracy
of sensing by time averaging [50]. Finally, negative feedback during adaptation does not only
reduce the adaptation error but also variability in adaptation [51].

Box 2. Thermodynamics and information.

The link between thermodynamics and information has a long history, which goes back to the
famous thought experiment of Maxwell’s demon. This fictitious demon can potentially produce
order without doing any work, suggesting a violation of the second law of thermodynamics. How-
ever, to do so the demon has to measure and hence to acquire information about the environment.
Performing a measurement moves the system out of equilibrium, and one needs to account for
both the change in internal energy of the demon (∆FH) and the change due to the measurement
(∆Fmeas, a change in information related to Shannon entropy and mutual information). It is
then possible to fulfill the second law of thermodynamics and link energy dissipation (W diss)
with mutual information (I):

W diss = T∆Stot = W −∆FH −∆Fmeas = W −∆FH + kBTI ≥ 0. (1)

Moreover, information needs to be stored in ‘memories’. While it is possible to acquire information
without energetic cost, the erasure of information (the demon is a finite being) must dissipate
energy (Landauer’s principle). (See [52] for a review on thermodynamics of information.)

The generality of these arguments suggests that a measurement, and hence acquisition of
information, is linked to energy dissipation independent of the underlying mechanism. In E.

coli, for instance, information about the extracellular concentration of chemicals is ‘stored’ in the
adapted methylation level of receptors. Once the external concentration changes, the receptor
activity responds rapidly, enhancing its correlations with the environment. At the same time, the
methylation level still contains the old information, i.e. reflects the previous ligand concentration.
Subsequently, during adaptation, the methylation level adjust and thus acquires new information
while the activity returns to the adapted value, which is independent of the environment. While
E. coli even consumes energy at the adapted steady state, the response to an environmental
change is also an out of equilibrium process [47].

Cell-to-cell variability and cell behavior

The search for general design principles is critical for simplifying molecular complexity and hence
for understanding biological systems. All previously discussed design principles describe single
cells, e.g. about how they deal with signaling noise. However, noise also leads to cell-to-cell
variability, affecting populations of cells. For instance, there is large variation in adaptation times
probably due to low copy numbers of CheR and CheB [28, 53]. In addition, different adapted
CheY-p levels have been observed in cells of the same population [54]. Hence, the tumble bias,
which is determined by the CheY-p level, also differs from cell to cell. Furthermore, cells vary in
total number and spatial distribution of receptors [55] and motors [56]. All this variability might
be helpful under unpredictable changes of the environment, where having different phenotypes
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increases the chances of a species’ survival [57]. By focusing on cell-to-cell variability previously
hidden principles might emerge.

How do E. coli cells tune the ultra-steep dose-response curves of the motor to their individual
adapted CheY-p level? This question is of particular importance because these curves are even
steeper than previously thought (Hill coefficient up to 20) [31]. Recent, experiments show that
even mutants with non-adapting receptors can partially adapt by exchanging FliM molecules
between the cytoplasm and the motor (Fig. 1A) [58]. By changing the number of FliM in
the motor cells adjust the sensitive regime of their motors to the cell-specific adapted CheY-p
level [58]. However, this adaptation mechanism is not regulated by CheY-p directly. A change
in binding affinity between FliM and the motor substrate due to changes in the rotational motor
bias seems to guide motor adaptation [59].

Finally, optical traps allow long-time measurements of individual cells in response to exter-
nal changes in ligand concentration [60]. This technique helped to better understand the large
variation in number of motors in E. coli [61]. In fact, coupling between motors rotating in the
CW direction, e.g. through their flagella, results in a tumble bias, which is robust against the
number of motors, a design principle previously missed [7, 61–63].

Conclusions

The results reported here have been possible due to new theoretical approaches, in particular
in information theory and stochastic thermodynamics. Despite their long history, only recently
have they been used in biology. However, most of the results obtained lead to predictions that
necessarily need to be tested experimentally in the future. The focus will inevitably be on
shifting from physics-type experiments to investigations of living cells. Another goal will be
the characterization of trajectories of swimming bacteria, and hence of individual cell behavior.
Commercially available high-resolution imaging is already a valuable tool to study variability
among different cells. Moreover, optical tweezers allow for measurements on single cells, suitable
for studying temporal variability in single cells over an extended period of time. Combining
internal measurements of signaling in individual cells, e.g. by single-cell FRET, with history-
dependent cell trajectories of behavior will open new doors even in the best-known system of cell
biology.
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[37] Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev
E 69: 066138-066138.

[38] Bowsher CG, Swain PS (2014) Environmental sensing, information transfer, and cellular
decision-making. Current Opinion in Biotechnology 28: 149 - 155.

[39] Tkacik G, Callan Jr CG, Bialek W (2008) Information flow and optimization in transcrip-
tional regulation. Proc Natl Acad Sci U S A 105: 12265-12270.

[40] Laughlin SB, van Steveninck RRdR, Anderson JC (1998) The metabolic cost of neural
information. Nature neuroscience 1: 36–41.

[41] Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z
Naturforsch C 36: 910-912.

[42] Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory infor-
mation. Current opinion in neurobiology 11: 475–480.

[43] Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, et al. (2012) Experi-
mental verification of landauer’s principle linking information and thermodynamics. Nature
483: 187–189.

[44] Mehta P, Schwab DJ (2012) Energetic costs of cellular computation. Proceedings of the
National Academy of Sciences 109: 17978–17982.

[45] Govern CC, ten Wolde PR (2014) Optimal resource allocation in cellular sensing systems.
Proceedings of the National Academy of Sciences 111: 17486–17491.

[46] Barato AC, Hartich D, Seifert U (2014) Efficiency of cellular information processing. New
Journal of Physics 16: 103024.

[47] Sartori P, Granger L, Lee CF, Horowitz JM (2014) Thermodynamic costs of information
processing in sensory adaptation. PLoS computational biology 10: e1003974.

[48] De Palo G, Endres RG (2013) Unraveling adaptation in eukaryotic pathways: Lessons from
protocells. PLoS Computational Biology 9: 3300.

[49] Lan G, Sartori P, Neumann S, Sourjik V, Tu Y (2012) The energy-speed-accuracy trade-off
in sensory adaptation. Nature physics 8: 422–428.

12



[50] Govern CC, ten Wolde PR (2014) Energy dissipation and noise correlations in biochemical
sensing. Physical review letters 113: 258102.

[51] Sartori P, Tu Y (2015) Free energy cost of reducing noise while maintaining a high sensitivity.
Phys Rev Lett 115: 118102.

[52] Parrondo JM, Horowitz JM, Sagawa T (2015) Thermodynamics of information. Nature
Physics 11: 131–139.

[53] Li M, Hazelbauer GL (2004) Cellular stoichiometry of the components of the chemotaxis
signaling complex. J Bacteriol 186: 3687-3694.

[54] Alon U, Surette MG, Barkai B, Leibler S (1999) Robustness in bacterial chemotaxis. Nature
397: 168-171.

[55] Thiem S, Sourjik V (2008) Stochastic assembly of chemoreceptor clusters in escherichia coli.
Molecular microbiology 68: 1228–1236.

[56] Cohen-Ben-Lulu GN, Francis NR, Shimoni E, Noy D, Davidov Y, et al. (2008) The bacterial
flagellar switch complex is getting more complex. The EMBO journal 27: 1134–1144.

[57] Frankel NW, Pontius W, Dufour YS, Long J, Hernandez-Nunez L, et al. (2014) Adaptability
of non-genetic diversity in bacterial chemotaxis. eLife 3: e03526.

[58] Yuan J, Branch RW, Hosu BG, Berg HC (2012) Adaptation at the output of the chemotaxis
signalling pathway. Nature 484: 233–236.

[59] Lele PP, Branch RW, Nathan VS, Berg HC (2012) Mechanism for adaptive remodeling of
the bacterial flagellar switch. Proceedings of the National Academy of Sciences 109: 20018–
20022.

[60] Min TL, Mears PJ, Chubiz LM, Rao CV, Golding I, et al. (2009) High-resolution, long-term
characterization of bacterial motility using optical tweezers. Nature methods 6: 831–835.

[61] Mears PJ, Koirala S, Rao CV, Golding I, Chemla YR (2014) Escherichia coli swimming is
robust against variations in flagellar number. Elife 3: e01916.

[62] Sneddon MW, Pontius W, Emonet T (2012) Stochastic coordination of multiple actuators
reduces latency and improves chemotactic response in bacteria. Proceedings of the National
Academy of Sciences 109: 805–810.

[63] Hu B, Tu Y (2013) Precision sensing by two opposing gradient sensors: how does Escherichia
coli find its preferred pH level? Biophys J 105: 276-285.

13


