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Abstract

As a vital task in cancer therapy, accurately predicting the treatment outcome

is valuable for tailoring and adapting a treatment planning. To this end, multi-

sources of information (radiomics, clinical characteristics, genomic expressions,

etc) gathered before and during treatment are potentially profitable. In this

paper, we propose such a prediction system primarily using radiomic features

(e.g., texture features) extracted from FDG-PET images. The proposed system

includes a feature selection method based on Dempster-Shafer theory, a powerful

tool to deal with uncertain and imprecise information. It aims to improve the

prediction accuracy, and reduce the imprecision and overlaps between different

classes (treatment outcomes) in a selected feature subspace. Considering that

training samples are often small-sized and imbalanced in our applications, a

data balancing procedure and specified prior knowledge are taken into account

to improve the reliability of the selected feature subsets. Finally, the Evidential

K-NN (EK-NN) classifier is used with selected features to output prediction

results. Our prediction system has been evaluated by synthetic and clinical

datasets, consistently showing good performance.

Keywords: Dempster-Shafer theory, feature selection, imbalanced learning,

outcome prediction, cancer, PET images
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1. Introduction

Accurate outcome prediction prior to or even during cancer therapy is of

great clinical value. It benefits the adaptation of more effective treatment plan-

ning for individual patient. With the advances in medical imaging technology,

radiomics, referring to the extraction and analysis of a large amount of quanti-5

tative image features, provide an unprecedented opportunity to improve person-

alized treatment assessment (Aerts et al., 2014). Positron emission tomography

(PET), with the radio-tracer fluoro-2-deoxy-D-glucose (FDG), is one of the im-

portant and advanced imaging tools for diagnosis, staging , and restaging of

cancers. According to practice guidelines presented by the Society of Nuclear10

Medicine and Molecular Imaging (SNMMI) 1, FDG-PET or FDG-PET/CT is

now playing an essential role in clinical oncology, such as initial staging and

gross tumor volume delineation for lung cancer patients receiving radiotherapy ;

initial staging and restaging of esophageal cancer ; and routine pre-treatment

staging and restaging of patients with Hodgkin lymphoma and many subtypes15

of non-Hodgkin lymphoma, etc.

Apart from diagnosis and staging, the functional information provided by

FDG-PET has also emerged to be predictive of the pathologic response of a

treatment in some types of cancers, such as lung tumor, esophageal tumor (Tan

et al., 2013) and cervix tumor (Barwick et al., 2013). For this application, variety20

radiomic features are well-explored on FDG-PET (Cook et al., 2014), which in-

clude standardized uptake values (SUVs), e.g., SUVmax, SUVpeak and SUVmean,

to describe metabolic uptakes in a region of interest (ROI), and metabolic tu-

mor volume (MTV) and total lesion glycolysis (TLG) to describe metabolic

tumor burdens. Apart from SUV-based features, some complementary charac-25

terization of PET images, like texture analysis (Tixier et al., 2011) and shape

analysis (El Naqa et al., 2009), may also provide supplementary knowledge

associated with the treatment outcome. Although the quantification of these

1. http ://www.snmmi.org/ClinicalPractice/
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radiomic features, as well as the calculation of their temporal changes during

the treatment, have been claimed to have the discriminative power (Aerts et al.,30

2014), the solid application is still hampered by some practical difficulties :

First, abounding features (e.g., radiomics and clinical characteristics) can be

collected for outcome prediction, but without any consensus to determine the

most discriminative factors among them. Thus, finding information regarding

the most predictive features could be interesting from the point of clinicians.35

Second, comparing to a relatively large amount of input features, only a lim-

ited number of observations (small data size is often encountered in the medical

domain) are available for constructing a prediction system. A high dimensional

feature space may increase the complexity of the learning models, thus leading

to high risk of over-fitting on the small-sized learning set.40

Third, it often happens that some of the input features are irrelevant with the

outcome label. Moreover, badly defined features sometimes may even degrade

the performance of a prediction model.

Feature selection is a feasible solution for above challenges. It aims to se-

lect a subset of features that can facilitate data interpretation and improve45

prediction accuracy (Guyon and Elisseeff, 2003). Univariate selection and mul-

tivariate selection are two rough categories of feature selection algorithms. Ac-

cording to chosen statistical measures, univariate methods utilize variable rank-

ing as the principal selection mechanism. RELIEF (RELevance In Estimating

Features) (Kira and Rendell, 1992) is considered as one of the most success-50

ful univariate selection methods, in which a margin-based criterion is used to

rank the features. FAST (Feature Assessment by Sliding Thresholds) (Chen and

Wasikowski, 2008), another feature ranking method, has the ability to tackle

small sample size and imbalanced data problems. These univariate algorithms

are simple and scalable ; however, they may produce sub-optimal subsets as they55

ignore the interaction between features (Guyon and Elisseeff, 2003).

Different from ranking features, multivariate methods evaluate a subset of

features ensemble. Sequential Forward Selection (SFS) and Sequential Forward

Floating Selection (SFFS) (Pudil et al., 1994) are two classical subset selec-
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tion methods. According to the prediction accuracy of a specific classifier, and60

starting from an empty set, SFS repeatedly selects the best feature among the

remaining features to yield a nested feature subset. Since former included fea-

tures can not be deleted anymore, it has the possibility to be trapped in local

minima. SFFS has been used with learning methods to automatically detect

lung nodules in thoracic CT (Murphy et al., 2009). It in some sense reduces the65

nesting problem of SFS, but still has the risk to be sub-optimal with limited

learning instances (Mi et al., 2015). To improve the performance of forward se-

lection methods (such as SFS and SFFS) on small-sized datasets, a Hierarchical

Forward Selection (HFS) method with an advanced searching strategy was pro-

posed by (Mi et al., 2015). Different with SFS, HFS retains all candidate feature70

subsets that improve the classification accuracy in each iteration. As the result,

it is more likely to obtain the most discriminative feature subset, while with the

cost of increased searching time. Based on a generalization of the Support Vector

Machine (SVM), Guyon et al. embedded a Recursive Feature Elimination pro-

cedure into the construction of the SVM classifier (namely SVMRFE) (Guyon75

et al., 2002). The variants of this method have been successfully applied for

prostate cancer volume estimation (Ou et al., 2009) and deformable registra-

tion in medical imaging (Ou et al., 2011). Starting with all input features, and

before reaching a predefined number of remaining features, SVMRFE progres-

sively eliminates the least relevant features. It yields nested feature subsets,80

and has the risk of removing useful features that are complementary to others.

Kernel Class Separability (KCS)-based feature selection method ranks feature

subsets according to the class separability (Wang, 2008). As a robust method,

KCS has found promising application for tumor delineation in multi-spectral

MRI images (Zhang et al., 2011). But just like univariate methods, a threshold85

should be manually specified for KCS to output a feature subset.

Apart from the prediction accuracy, the stability of feature selection is also

an important issue. As pointed by (Somol and Novovicova, 2010), the stability

of a feature selection algorithm, referring to its robustness against changing

conditions (e.g., perturbations of training data), can directly effect the reliability90
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of a learning system. A key issue of the conventional feature selection methods

discussed above is the difficulty to ensure robust selection performance with

severely imperfect knowledge, such as seriously imbalanced training set, and

high overlapping or noisy training set.

To learn efficiently from noisy and high overlapping training dataset, (Lian95

et al., 2015a) proposed a robust subset selection method, namely Evidential

Feature Selection (EFS), based on the Dempster-Shafer Theory (DST) (Shafer,

1976), a powerful tool for modeling and reasoning with uncertain and/or im-

precise information. This method allows to quantify the uncertainty and im-

precision resulted by different feature subsets. A specific loss function with a100

sparsity constraint is minimized to find a required subset that leads to both

high classification accuracy and small overlaps between different classes. Due to

system noise and low-resolution of PET imaging, as well as the effect of small

tumor volumes (Brooks and Grigsby, 2014), in our application, the training set

used for constructing the prediction system may contain imprecise or inaccu-105

rate observations. Under this condition, EFS can provide better performance

than other conventional methods (Lian et al., 2015b). However, the imbalanced

learning problem in feature selection (another important issue of medical data)

is still left unsolved for this method.

In this paper, we propose a new framework based on our previous work110

(EFS) for PET imaging based treatment outcome prediction. To this end, a data

balancing procedure is added to EFS, so as to control the influence of imbalanced

learning data on feature selection. In addition, to cope with small-sized datasets

and to improve the subset robustness, prior knowledge is included in EFS to

guide the feature selection procedure. The loss function used in the original EFS115

is also changed to reduce the complexity of the prediction system. Finally, the

Evidential K-NN (EK-NN) rule (Denœux, 1995), a stable classification method

based on DST, is used with selected feature subsets to output prediction results.

The rest of this paper is organized as follows. The background on DST

and the original EFS is recalled in Section 2. Then, an improved EFS with120

prior knowledge and data balancing is introduced in Section 3. The proposed
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method is evaluated by three clinical datasets described in Section 4, and the

experimental results are summarized in Section 5. Some discussions and the

conclusion are presented in Section 6 and Section 7, respectively.

2. Background125

The necessary background on DST and the original EFS is briefly reviewed

in Sections 2.1 and 2.2, respectively.

2.1. Dempster-Shafer Theory

DST is also known as the theory of belief functions or Evidence theory. As

an extension of probability theory and the set-membership approach, DST has130

shown remarkable applications in divers fields, such as medical image process-

ing (Bloch, 1996; Lelandais et al., 2014; Makni et al., 2014), statistical machine

learning (Zhu and Basir, 2005; Denœux and Smets, 2006; Masson and Denœux,

2008; Liu et al., 2015), and computer vision (Xu et al., 2014; Wang et al., 2014)

etc. DST consists of two main components, i.e., the quantification of a piece of135

evidence and the combination of different items of evidence.

2.1.1. Evidence Quantification

DST is a formal framework for reasoning under uncertainty based on the

modeling of evidence (Shafer, 1976). Let ω be a variable taking values in a finite

domain Ω = {ω1, · · · , ωc}, called the frame of discernment. An item of evidence

regarding the actual value of ω can be represented by a mass function m on Ω,

defined from the powerset 2Ω to the interval [0, 1], such that∑
A⊆Ω

m(A) = 1. (1)

Each number m(A) denotes a degree of belief attached to the hypothesis that

ω ∈ A. Any subset A with m(A) > 0 is called a focal element of mass function m.

Function m is said to be normalized if m(∅) = 0. Corresponding to a normalized
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mass function m, we can associate belief and plausibility functions from 2Ω to

[0, 1], which are defined as :

Bel(A) =
∑
B⊆A

m(B); Pl(A) =
∑

B∩A6=∅

m(B). (2)

Quantity Bel(A) can be interpreted as the degree to which the evidence supports

the hypothesis ω ∈ A, while Pl(A) can be interpreted as the degree to which the

evidence is not contradictory to that hypothesis. Functions Bel and Pl are linked140

by the relation Pl(A) = 1−Bel(A). They are in one-to-one correspondence with

mass function m.

2.1.2. Evidence Combination

In DST, beliefs are refined by aggregating different items of evidence. Demp-

ster’s rule of combination (Shafer, 1976), as well as its unnormalized version,145

i.e., the conjunctive combination rule defined in the Transferable Belief Model

(TBM) (Smets and Kennes, 1994), are basic mechanisms for evidence fusion.

Let m1 and m2 be two mass functions derived from two independent items

of evidence. They can be fused via the TBM conjunctive rule to induce a new

mass function m1 ∩©2 defined as

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C). (3)

This new mass function reduces uncertainty and imprecision via transferring

masses of belief to conjunctions of the focal elements. Quantity m1 ∩©2(∅) mea-

sures the degree of conflict between evidence m1 and m2. If m1 ∩©2(∅) < 1, the

new mass function obtained by Dempster’s rule can be represented as

m1
⊕

2(A) =


0 if A = ∅,
m1 ∩©2(A)

1−m1 ∩©2(∅) otherwise.
(4)

As can be seen, Dempster’s rule normalizes the conflict obtained by the TBM

conjunctive rule. Both the TBM conjunctive rule and Dempster’s rule are com-

mutative and associative. They can be easily generalized to combine N (≥ 2)150

independent sources of information.
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2.2. Evidential Feature Selection

Let {(Xi, Yi)|i = 1, · · · , N} be a collection of N training pairs, in which

Xi = [xi,1, · · · , xi,V ]T is the ith training instance with V features, and Yi ∈

{ω1, · · · , ωc} is the corresponding class label.155

EFS (Lian et al., 2015a) searches for a qualified feature subset according to

three requirements : first, high classification accuracy ; second, low imprecision

and uncertainty, namely small overlaps between different classes in the output

feature space ; third, sparsity to reduce the risk of over-fitting. To learn such

a feature subset, EFS uses a weighted Euclidian distance measure to represent

the dissimilarity between any two training instances. Hence, the dissimilarity

between Xi and Xj is

di,j =

√√√√ V∑
p=1

λpdij,p
2, (5)

where dij,p = |xi,p − xj,p| represents the difference between the pth dimension

of Xi and Xj . Features are selected via changing the value of the binary vector

Λ = [λ1, . . . , λV ]T . As the result, the pth dimension of the input feature space

is selected when λp = 1, while eliminated when λp = 0.

We orderly regard each training instance Xi as a query object. Then, other

samples in the training pool can be considered as independent items of evidence

that support different hypotheses regarding the class membership of Xi. The

evidence offered by the training sample (Xj , Yj = ωq) is partially reliable, and

can be modeled by a mass functionmi,j({ωq}) = e−γqd
2
i,j ,

mi,j(Ω) = 1− e−γqd
2
i,j ,

(6)

where di,j is the distance between Xi and Xj that measured by (5). Positive160

parameters γ = [γ1, . . . , γc]
T are set as the inverse of the mean distance between

training instances from the same class.

After obtaining all the independent mass functions for Xi, they can be fur-

ther fused by a mixed combination rule, called Dempster+Yager rule (Lian et al.,

2015a), so as to obtain a global one describing the class membership of Xi. This165
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rule consists of two main steps : first, using Dempster’s rule to combine mass

functions originated from the same class, and discounting the resulting mass

function according to the number of instances in this class ; second, combining

the discounted mass functions originated from different classes via the Yager’s

rule (Yager, 1987) to output the global mass function. This combination pro-170

cedure integrates the advantages of Dempster’s and Yager’s rules, thus could

robustly represent all imprecision and uncertainty of the training data on the

whole frame of discernment (i.e., Ω).

Finally, based on the global mass functions for all training samples, a loss

function with respect to the binary vector Λ = [λ1, . . . , λV ]T is constructed for

feature selection,

arg min
Λ

1

N

N∑
i=1

c∑
q=1

{Pli({ωq})− ti,q}2 +
1

N

N∑
i=1

mi(Ω) + β||Λ||0, (7)

where mi and Pli, concerning Λ, are the global mass function and the cor-

responding plausibility function of the training instance Xi. The first term of175

(7) is a mean squared error measure corresponding to the first requirement of

EFS (namely high classification accuracy). Binary vector ti is the class label

indicator, with ti,q = δi,q if and only if Yi = ωq. The second term of (7) pe-

nalizes feature subsets that lead to high overlaps between different classes, thus

corresponding to the second requirement of EFS. The last term , which is an180

approximation of the l0-norm of Λ, forces the selected features to be sparse,

thus realizing the last requirement of EFS. Parameter β controls the influence

of this sparsity penalty.

The mixed combination rule used in the original EFS can lead to robust

quantification of data uncertainty and imprecision. However, since a discounting185

procedure is included, additional parameters increase method’s complexity. To

cope with this problem, we propose a new method described in the next section.
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Figure 1: Protocol of the prediction system.

3. Method

The proposed prediction system is learnt on a dataset {(Xi, Yi)|i = 1, · · · , N}

of N tumor patients with already known treatment outcomes. For each patient190

i, vector Xi = [xi,1, · · · , xi,V ]T consists of V input features extracted from dif-

ferent sources of information. Correspondingly, label Yi denotes the (binary)

outcome after treatment. In our applications, the treatment outcomes always

only have two possible values (e.g., recurrence or no-recurrence). Hence, with-

out loss of generality, the frame of discernment (possible classes) is defined as195

Ω = {ω1, ω2} to indicate that only the binary classification problems are con-

sidered in this paper.

3.1. Main Protocol

The rough protocol of the prediction system is shown in Figure 1. To begin

with, features are extracted from multi-sources of information, which include200

FDG-PET images of the patients acquired before and during the treatment,

clinical characteristics and genomic expressions, etc. A data balancing method

is then used to balance the training samples, which are originated from two

different classes, for feture selection. An improved EFS is executed to select

features from the balanced datasets. During this procedure, prior knowledge is205

incorporated into EFS, so as to improve the robustness of the selected features.

Finally, based on the selected feature subset, the Evidential K-Nearest-Neighbor
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(EK-NN) classification rule is trained with the original training dataset to pre-

dict the cancer treatment outcome.

3.2. Feature Extraction210

To extract features, FDG-PET images for the same patient acquired at dif-

ferent time points are registered to the baseline image (i.e., image at initial

staging) with a rigid registration method. The registration result is manually

adjusted by physicians to avoid obvious misregistration. The ROIs around tu-

mors are delineated by a relative threshold method, or manually delineated by215

experienced physicians when the result obtained by the threshold method is not

reliable. It is worth to mention that the reproducibility of the manual tumor de-

lineation has been evaluated in some clinical studies (Lemarignier et al., 2014).

Three types of PET imaging features are quantified, namely SUV-based fea-

tures, texture features, and the temporal changes of these two types of features.220

SUV-based features. Five types of SUV-based features are calculated from the

ROI of each PET stack, namely SUVmin, SUVmax, SUVpeak, MTV and TLG.

The detail description of these features, and the formulas for calculating them

are shown in the Appendix (Table A.7).

Texture features. To characterize tumor uptake heterogeneity, texture features225

are also considered in our prediction system. As has been claimed to be effec-

tive in PET image characterization (Tixier et al., 2011), Gray Level Size Zone

Matrix (GLSZM) (Thibault et al., 2014) is used to extract texture features. To

this end, we resample voxel intensities inside the ROI to 23 different values. By

defining the connected voxels with the same gray level as a zone, a matrix with230

23 rows is then deduced, in which the element at row r and column s stores

the number of zone with gray level r and size s. The number of columns of this

matrix is determined by the size of the largest zone. Therefore, a wide and flat

matrix indicates that the texture information is homogeneous in the predefined

ROI ; while heterogeneity when the matrix is narrow. Based on this matrix,235
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we compute eleven variables to describe the regional heterogeneity. The formu-

las for calculating these GLSZM-based features are presented in the Appendix

(Table A.8).

Temporal changes of image features. Considering that the temporal changes of

these SUV-based and GLSZM-based features may also provide discriminative240

value, we propose to calculate their relative difference between the baseline and

the follow-up PET acquisitions as additional features. The relative difference

can be generally represented as ∆f = (ft − f0)/f0, where f0 and ft denote

the same kind of feature extracted from the baseline and the follow-up images,

respectively.245

Other features. Apart from image features, variables extracted from other sources

of information may be also important knowledge that can be taken into ac-

count. Hence, patients’ clinical characteristics and genomic expressions are also

included in our prediction system as the complementary information.

3.3. Improved EFS250

To reduce the complexity of the original EFS, a new criterion is constructed

for feature selection.

Assuming Xi is a query pattern, other samples in the training pool can be

regarded as independent evidence regarding the outcome label of patient i. As

discussed in Section 2.2, the evidence offered by each training instance Xj ( 6= i)255

can be quantified as a mass function using (6) and (5). Since this mass function

provides little information when di,j is too large (mi,j(Ω) ≈ 1), it is sufficient to

just consider the mass functions offered by the first K (with a large value, e.g.,

≥ 10) nearest neighbors of each query pattern Xi.

Let {Xi1 , . . . , XiK} be the selected training samples for Xi. Correspondingly,

{mi,i1 , . . . ,mi,iK} are their mass functions. We assign {Xi1 , . . . , XiK} into two

different groups (Θ1 and Θ2) according to their outcome labels. In each group

with the same outcome label, the TBM conjunctive rule (3) is used to combine

12



the corresponding mass functions. Hence, when Θq 6= ∅ (q = 1 or 2), the resulting

mass function m
Θq
i can be represented asm

Θq
i ({ωq}) = 1−

∏p=1,...,K
Xip∈Θq

(
1− e−γqd

2
i,ip

)
,

m
Θq
i (Ω) =

∏p=1,...,K
Xip∈Θq

(
1− e−γqd

2
i,ip

)
;

(8)

while, when Θq is empty, m
Θq
i (Ω) = 1. After that, mass functions mΘ1

i and mΘ2
i

are further combined via the TBM conjunctive rule, so as to obtain a global

mass function Mi regarding the class membership of Xi,

Mi({ω1}) = mΘ1
i ({ω1}) ·mΘ2

i (Ω),

Mi({ω2}) = mΘ2
i ({ω2}) ·mΘ1

i (Ω),

Mi(Ω) = mΘ1
i (Ω) ·mΘ2

i (Ω),

Mi(∅) = mΘ1
i ({ω1}) ·mΘ2

i ({ω2}).

(9)

Based on (5) to (9), Mi, ∀i ∈ {1, . . . , N}, is a function of the binary vector260

Λ = [λ1, . . . , λV ]T . Quantity Mi(∅) measures the conflict in the neighborhood

of Xi. A large Mi(∅) means Xi is locating in a high overlapping area in current

feature subspace. Different with Mi(∅), scalar Mi(Ω) measures the imprecision

regarding the class membership of Xi. A large Mi(Ω) may indicate that Xi is

isolated as an outlier from all other training samples in current feature subspace.265

According to the requirements of a qualified feature subset described in

Section 2.2, the new loss function with respect to Λ can be defined as

L(Λ) =
1

N

N∑
i=1

2∑
q=1

{Mi({ωq})− ti,q}2+
1

N

N∑
i=1

{Mi(∅)2
+Mi(Ω)

2}+β||Λ||0. (10)

In (10), the first term is a mean squared error measure, where vector ti is a

indicator of the outcome label, with ti,q = δi,q if Yi = ωq. The second term penal-

izes feature subsets that result in high imprecision and large overlaps between

different classes. The last term, namely ||Λ||0 =
∑V
v=1 λv, forces the selected

feature subset to be sparse. Scalar β (≥ 0) is a hyper-parameter that controls270

the influence of the sparsity penalty. It should be tuned specifically be a rough

gird search strategy.
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Considering that the solution of (10) is integer constrained (vector Λ should

be binary), an integer Genetic Algorithm (GA), namely the MI-LXPM (Deep

et al., 2009), is used to minimize the constructed loss function. As a global275

optimization algorithm, the MI-LXPM (like other GAs) is more effective than

classical optimization methods to find the global optima in the case of non-

convex problems. The MI-LXPM method mimics biological evolution. At each

iteration, it modifies a population of individual feasible solutions according to

well-defined selection, crossover and mutation operations, thus producing a new280

population for the next iteration. Over successive generations (iterations), the

population of feasible solutions finally moves toward an optimal solution.

3.4. Prior Knowledge

Prior information, such as spatial constraints (Prastawa et al., 2004), shape

prior (Wang et al., 2015) and expertise knowledge, is often available in the285

medical field. In our prediction system, prior knowledge can also be used to

guide the feature selection procedure. Since the SUV-based features have shown

great significance for assessing the response of a treatment (Tan et al., 2013;

Barwick et al., 2013), we incorporate this important information into EFS as a

predefined constraint.290

More specifically, a feature ranking method, namely RELIEF (Kira and Ren-

dell, 1992), is used to rank all kinds of SUV-based features. Let f̃ be a SUV-based

feature that exists in each instance Xi, ∀i ∈ {1, . . . , N}. RELIEF assigns a score

S(f̃) to f̃ in the form of

S(f̃) =
1

N

N∑
i=1

1

k

k∑
j=1

diff(f̃ , Xi,miss
i
j)−

1

k

k∑
j=1

diff(f̃ , Xi, hit
i
j)

 , (11)

where hitij and missij , j ∈ {1, . . . , k}, are the nearest neighbors of Xi that

originated from the same class and the opposite class, respectively. Function

diff(f̃ , X1, X2) calculates the difference between the values of the feature f̃ for

any two instances X1 and X2. The number of nearest neighbors (i.e. k) used in

(11) was always set to 5 in all our applications.295
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The obtained score S(f̃) is directly proportional to the informativeness of the

feature f̃ . Therefore, the SUV-based feature with the largest score is included

in EFS as a fixed element of the optimal feature subset. In other words, if the

pre-determined feature f̃ is located in the first dimension of the input feature

space, the value of λ1 is forced to be 1 (can not be 0) when minimizing (10).300

This added constraint drives EFS into a confined searching space. It ensures

more robust feature selection, thus increasing the reliability of the prediction

system.

3.5. Data Balancing

Ensemble with small training sample size, class imbalance is also a typical305

problem of medical data. Since most of the conventional feature selection meth-

ods are designed for well-balanced training data, the class imbalance problem

could hinder them to obtain a qualified feature subset. For example, as selecting

features according to the accuracy of a specific classifier, SFS and SFFS (Pudil

et al., 1994) may output a feature subset that achieves high classification accu-310

racy by simply assigning all training instances to the majority class.

Pre-sampling, either over-sampling the minority class or under-sampling

the majority class, is a commonly used approach for the imbalanced learning

problems. As a powerful method, Synthetic Minority Over-sampling TEchnique

(SMOTE) can generalize the decision region of the minority class via generat-315

ing synthetic examples (Chawla et al., 2002). It has shown plenty of successes

in many applications, and its variants, such as ADAptive SYNthetic sampling

(ADASYN) (He et al., 2009), can further improve the performance.

On this account, ADASYN is adopted in our prediction system to balance

the training data for feature selection. The key idea of ADASYN is to adaptively320

create synthetic samples according to the distribution of the minority class in-

stances, where more instances are generated for the minority class samples that

have higher difficulty in learning. The level of difficulty in learning for each

minority instance is measured with respect to the ratio of the majority class

instances in its k-nearest-neighborhood (k was set to 5 in all our applications).325
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Algorithm 1: ADASYN-based balancing for feature selection (He et al., 2009)

input : imbalanced dataset {(Xi, Yi)|i = 1, · · · , N}, where Xi = [xi,1, · · · , xi,V ]T and

Yi ∈ {ω1, ω2}. Assume ω1 and ω2 represent the minority class and the majority

class, respectively. Let nmaj and nmin be the number of majority class instances

and the number of minority class instances, respectively.

1 Set the number of synthetic minority class instances as nsyn = nmaj − nmin.

2 for each sample Xj with Yj = ω1 do

3 Find k nearest neighbors of Xj in the training pool.

4 Calculate the parameter rj for Xj as rj = ∆j/k, where ∆j is the number of nearest

neighbors of Xj that belong to the majority class.

5 end

6 for each sample Xj with Yj = ω1 do

7 Define the level of difficulty in learning for Xj as r̃j = rj/
∑nmin
j=1 rj .

8 Determine the number of synthetic instances for Xj as nj = r̃j × nsyn.

9 for l = 1, 2, . . . , nj do

10 Randomly select a minority class instance, Xr, from the neighbors of Xj .

11 Randomly generate a scalar δ ∈ [0, 1].

12 Generate a minority synthetic instance as Sjl = Xj + δ × (Xr −Xj).

13 end

14 end

Given an imbalanced training dataset, ADASYN outputs an balanced training

dataset via the procedure summarized in Algorithm 1. However, due to the ran-

dom nature of the data balancing procedure, and also with a limited number

of training samples, the balanced training dataset obtained by Algorithm 1 can

not always be more representative than the original training dataset. Therefore,330

in our prediction system, ADASYN is totally executed B (> 1) times to pro-

vide B balanced training datasets. EFS is then executed with these balanced

datasets to obtain B feature subsets. The final output is determined as the most

frequently subset that occurred in the B independent actions.

3.6. Classification335

Feature subsets selected by the improved EFS should be used with a clas-

sifier to predict the treatment outcome. To this end, case-based methods, such

as the K-NN rules and the SVM classifier, are practically good alternatives

thanks to their efficiency. As a stable method that offers global treatment of the

imperfect knowledge regarding the training data, the EK-NN (Denœux, 1995)340
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classification rule, developed in the DST framework, is selected as the default

classifier in our prediction system. Parameters used in the EK-NN rule are op-

timized using the method proposed by (Zouhal and Denœux, 1998). It is worth

to note that only the original training dataset with selected features are used to

train the classification rule (i.e., no synthetic instance is used during classifica-345

tion), since we assume that instances from the two different classes are widely

separated in the feature subspace selected by the improved EFS, while the data

balancing procedure has little influence on the classification performance under

this circumstance.

recurrence no-recurrence disease-free disease-positive 

(b) Esophageal Tumors  (a) Lung Tumors 

(c) Lymph Tumors  

complete remission no-complete remission 

Figure 2: FDG-PET uptakes at tumor staging. For each dataset, two examples with different

outcome labels are presented from two complementary views (xy-plane and xz-plane) ; The

arrows point out the tumor locations.

4. Clinical Datasets350

The prediction system proposed in this paper has been evaluated by three

real-world datasets.
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1) Lung Cancer Data. A cohort of twenty-five patients with inoperable stage II

or III non-small cell lung cancer (NSCLC), treated with curative-intent chemo-

radiotherapy (CRT) or radiotherapy (RT). This dataset was extracted from355

three prospective studies (Calais et al., 2015). The total dose of included RT

was 60-70 Gy, delivered in daily fractions of 2 Gy and five days a week. Each

patient had histological proof of invasive NSCLC, and also had evaluable tumor

lesions according to the Response Evaluation Criteria in Solid Tumors (RECIST

1.1). Initial tumor staging was performed based on fibreoptic bronchoscopy, CT360

scan, pulmonary function tests and biopsy. All patients also underwent FDG-

PET scans at initial staging (i.e., PET0, the baseline). The following PET scans

for the same patient were acquired using the same device and under the same

operational conditions. The first FDG-PET/CT acquisition (PET1) was ob-

tained after induction chemotherapy and before RT, followed by the second365

FDG-PET/CT scan (PET2) performed during the fifth week of RT (approxi-

mately at a total dose of 40-45 Gy). The treatment response was systematically

evaluated and followed-up at three months and one year after RT, or if there

was a suspicious relapse. The endpoint was local/distant relapse (LR/DR) vs.

complete response (CR) at one year, which was primarily defined by clinical eval-370

uation and CT according to RECIST 1.1, and supplemented by FDG-PET/CT

and fiberscope. Finally, nineteen LR/DR patients were grouped into the recur-

rence class (majority class), while the remaining six CR patients were labeled

as no-recurrence (minority class).

2) Esophageal Cancer Data. A cohort of thirty-six patients with histologically375

confirmed esophageal squamous cell carcinomas, treated with definitive CRT

according to the Herskovic scheme. This dataset was extracted from a retro-

spective clinical trial (Lemarignier et al., 2014). The included RT delivered 2

Gy per fraction per day, five sessions per week for a total of 50 Gy over five weeks.

The initial tumor staging was performed based on oesophagoscopy with biop-380

sies, CT scan, and endoscopic ultrasonography. Each patient also underwent

a FDG-PET/CT scan at initial tumor staging, but the following PET scans
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were not complete for all the thirty-six patients. The patients were systemati-

cally evaluated and followed-up in a long term up to five years. According to

RECIST 1.1 criteria, the response assessment performed one month after CRT385

was based on clinical evaluation and CT, and possibly supplemented by FDG-

PET/CT, and oesophagoscopy with biopsies. Thirteen patients were grouped

to the disease-free class (minority class), since neither locoregional nor distant

disease was detected on them ; the remaining twenty-three patients were labeled

as disease-positive (majority class).390

3) Lymph Cancer Data. A cohort of forty-five patients with diffuse large B-cell

lymphoma (DLBCL), treated with rituximab and a cyclophosphamide, dox-

orubicin, vincristine and prednisone (CHOP)/CHOP-like regimen. This dataset

was the same as that in (Lanic et al., 2012). Each patient underwent FDG-PET

scans before the onset of chemotherapy (PET0) and also after three/four cycles395

of chemotherapy (PET1). At least three weeks after the end of chemotherapy,

the treatment response was evaluated according to the International Workshop

Criteria (IWC) for non-Hodgkin lymphoma (NHL) response and according to

IWC+PET. Thirty-nine patients were observed complete remission (majority

class) ; while, the remaining six patients with refractory or partial response400

were grouped to the class non-complete remission (minority class).

For each dataset, PET image examples acquired at tumor staging are pre-

sented in Figure 2.

Feature Description. As discussed in Section 3.2, three types of PET image fea-

tures (SUV-based features, texture features and the temporal changes of them)405

were extracted. Apart from these image features, variables extracted from other

sources of information are also potentially predictive factors. For the esophageal

tumor dataset, since only PET images before the treatment were available, some

clinical characteristics (patient gender, tumor stage, tumor location, dysphagia

grade, etc) were included as the complementary knowledge. In the lymph tumor410

dataset, only four PET image features were available. As the supplementary in-

formation for them, eighteen genes related to the tumor subtype classification,
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and five genes related to the glucose transportation were also gathered accord-

ing to the molecular analysis (Lanic et al., 2012). The three clinical datasets are

briefly summarized in Table 1, where the number of features and the number415

of instances are presented. In addition, let the minority (majority) class be the

positive (negative) class, we defined the imbalance ratio as r = Np/(Np +Nn),

where Np and Nn are the number of positive and negative samples, respectively.

Table 1: Description of the three clinical datasets.

dataset sample size feature size imbalance ratio

lung tumor 25 52 0.24

esoph. tumor 36 29 0.36

lymph tumor 45 27 0.13

5. Experimental Results

The presented experiments consist of two parts. In the first part, the feature420

selection performance of the improved EFS was compared with the original

EFS, and also compared with some other feature selection methods. In the

second part, we assessed the predictive power of the selected feature subsets, and

compared them with the predictors that have been proven to be discriminative

in clinical studies (e.g., MTV or TLG at staging for the esophageal cancer425

dataset (Lemarignier et al., 2014)).

5.1. Feature Selection Performance

The improved EFS used in our prediction system was compared with seven

other methods, namely two univariate methods (RELIEF and FAST) and five

multivariate methods (SFS, SFFS, SVMRFE, KCS, and HFS). As discussed430

in Section 1, the univariate methods rank features according to their individ-

ual discriminative power, while the multivariate methods evaluate a subset of

features ensemble according to the class separability for a predefined classifier.

Because of a limited number of instances, and in order to perform a comprehen-

sive assessment, all the compared methods were evaluated by the Leave-One-435
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Out-Cross-Validation (LOOCV), and also by the .632+ Bootstrapping, which

ensures low bias and variance estimation (Efron and Tibshirani, 1997).

As one of the metrics used to evaluate the selection performance, the ro-

bustness of the selected feature subsets was measured by the relative weighted

consistency (Somol and Novovicova, 2010). Its calculation is based on feature

occurrence statistics obtained from all iterations of the LOOCV or the .632+

Bootstrapping. The value of the relative weighted consistency ranges between

[0, 1], where 1 means all selected feature subsets are approximately identical,

while 0 represents no intersection between them. Together with the subset ro-

bustness, the classification results obtained during feature selection were also

used to assess the feature selection performance. As the most classical figure of

merit used in general pattern classification applications, the average Accuracy

was adopted, which is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

where TP (true positives), TN (true negatives), FP (false positives) and FN

(false negatives) represent, respectively, correctly classified positive cases, cor-

rectly classified negative cases, incorrectly classified negative cases, and incor-

rectly classified positive cases. However, the simple Accuracy measure is not

adequate in the context of clinical management, where the TP rate and the

TN rate are more clinically relevant, particularly when instances from different

classes are severely imbalanced. For instance, in cancer diagnosis, there are usu-

ally more benign examples (negative cases) than malignant examples (positive

cases), while a FN decision (i.e., misclassifying malignant as benign) usually

comes at greater costs than a FP decision (i.e., misclassifying benign as malig-

nant). Therefore, to comprehensively assess the classification performance of the

imbalanced learning problems, the Receiver Operating Characteristics (ROC)

analysis, which was also utilized apart from the Accuracy measure, is more suit-

able. The ROC makes use of the TP rate and the FP rate, which are defined as

TPrate =
TP

TP + FN
; FPrate =

FP

TN + FP
. (13)
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Based on the ROC curve, the Area Under the Curve (AUC) was calculated as

the complementary measure of the Accuracy in our applications (since all the

three examples are imbalanced).440

Parameters of all the methods used in sequel are summarized as below :

– For the improved EFS, the parameter B was set to 5. The hyper-parameter

β was determined by a rough grid search strategy according to the train-

ing performance. On average, good results were obtained with β between

[0.01, 0.07] for the lung and lymph tumor datasets, while between [0.1, 0.3]445

for the esophageal tumor dataset.

– The cutoff thresholds used in RELIEF, FAST and KCS to output selected

features were changed from 0.5 to 0.9. Then, the best feature subset was

determined according to the average Accuracy. Similarly, the predefined

number of selected features that used in SFS, SFFS and SVMRFE was450

changed from 1 to 5 to output a sparsity feature subset.

– In SFS, SFFS and HFS, the SVM classifier (gaussian kernel, σ = 1) was

chosen as the predefined classifier.

– All parameters used in HFS were the same as that in (Mi et al., 2015).

– For the compared feature selection methods, the SVM classifier (gaussian455

kernel, σ = 1) was adopted to predict the outcome, as it is commonly used

with the multivariate methods, and also often used in clinical studies. In

our prediction system, the EK-NN classification rule (instead of the SVM

classifier) was used with the EFS to predict the treatment outcome.

Evaluation by the LOOCV. The robustness of the selected feature subsets, the460

average Accuracy, the average AUC, and the average subset size for different

methods are summarized in Table 2, where the results for all the input features

(the SVM classifier was used) are also presented as the baselines for comparison.

From Table 2 we can observe that the improved EFS (denoted as iEFS) used

in our prediction system always led to robust feature subsets for all the three465

examples as compared to other methods. Furthermore, it had better (for the

esophageal and lymph tumor datasets) or at least the same (for the lung tumor
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Table 2: Feature selection performance evaluated by the LOOCV. EFS represents our previous

work (Lian et al., 2015a), while iEFS denotes the improved EFS that proposed in this paper.

”All” represents the results for all the input features (without selection).

Lung Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 0.64 0.65 0.85 0.32 0.56 0.50 1.00 0.94 1.00

Accuracy 0.76 0.72 0.76 0.88 0.80 0.76 0.84 1.00 1.00 1.00

AUC 0.50 0.60 0.35 0.95 0.61 0.74 0.81 1.00 1.00 1.00

Subset size 52 10 14 2 5 5 3 3 4 4

Esophageal Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 0.94 1.00 0.26 0.23 0.80 0.94 0.53 0.92 1.00

Accuracy 0.64 0.56 0.64 0.64 0.58 0.72 0.69 0.72 0.83 0.89

AUC 0.12 0.54 0.12 0.50 0.55 0.76 0.57 0.67 0.69 0.77

Subset size 29 2 27 5 5 5 2 5 3 3

Lymph Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 1.00 0.85 0.72 0.34 0.64 1.00 0.90 0.57 0.95

Accuracy 0.87 0.96 0.82 0.89 0.87 0.89 0.96 0.87 0.89 0.93

AUC 0.50 0.68 0.26 0.65 0.29 0.83 0.68 0.36 0.92 0.95

Subset size 27 1 5 2 5 5 1 4 4 4

dataset) AUC as compared to other methods. While the Accuracy of the RE-

LIEF and the KCS was slightly better than the proposed iEFS for the lymph

tumor dataset (difference of 0.03), the AUC obtained by our method was much470

better than other methods (minimum difference of 0.12) for this severely im-

balanced example (imbalanced ratio r = 0.13). Comparing the results obtained

by the original EFS (Lian et al., 2015a) with the proposed iEFS, it can be

found that the data balancing procedure and the incorporated prior knowledge

did improve the reliability (relating to robust feature selection) and accuracy475

(relating to the average Accuracy and AUC) of our prediction system.

Evaluation by the .632+ Bootstrapping. The number of Bootstrap samples was

set to 100. The robustness of the selected feature subsets, the average Accu-

racy, the average AUC, and the average subset size are summarized in Table 3.

Consistent with the results presented in Table 2, the robustness of the proposed480

iEFS that evaluated by the bootstrapping was still better than other methods
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Table 3: Feature selection performance evaluated by the .632+ Bootstrapping. EFS represents

our previous work (Lian et al., 2015a), while iEFS denotes the improved EFS that proposed

in this paper. ”All” represents the results for all the input features (without selection).

Lung Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 0.16 0.11 0.22 0.14 0.12 0.10 0.48 0.21 0.82

Accuracy 0.85 0.82 0.82 0.80 0.80 0.84 0.83 0.85 0.81 0.94

AUC 0.37 0.64 0.60 0.67 0.66 0.53 0.65 0.81 0.77 0.94

Subset size 52 7 10 5 5 5 29 3 4 4

Esophageal Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 0.33 0.61 0.30 0.16 0.31 0.29 0.32 0.44 0.74

Accuracy 0.74 0.69 0.74 0.69 0.66 0.74 0.69 0.74 0.77 0.83

AUC 0.63 0.66 0.63 0.64 0.63 0.75 0.66 0.71 0.75 0.82

Subset size 29 6 25 2 5 5 3 5 3 3

Lymph Tumor Data

All RELIEF FAST SFS SFFS SVMRFE KCS HFS EFS iEFS

Robustness — 0.56 0.19 0.25 0.15 0.37 0.33 0.43 0.32 0.64

Accuracy 0.92 0.92 0.91 0.90 0.90 0.89 0.93 0.91 0.90 0.93

AUC 0.62 0.75 0.63 0.73 0.67 0.78 0.77 0.78 0.82 0.92

Subset size 27 4 15 1 5 5 2 3 4 4

for all the three examples. In addition, it also led to the best AUC (especially for

the lymph and lung tumor examples with severely imbalanced ratio) and the best

Accuracy. Comparing the results shown in Table 3 with that in Table 2, we can

find that the performance of all the compared methods was declined when eval-485

uated by the bootstrapping. This result is reasonable and foreseeable : Since all

the three datasets are small-sized, and due to the random nature of the .632+

bootstrapping, many bootstrap samples may be greatly underrepresented for

learning a qualified feature subset. However, it is also worth to note that the

difference between the proposed iEFS and other methods was increased un-490

der this circumstance, which in some sense confirmed the effectiveness of the

proposed method.

Selected Feature Subsets. The most frequent feature subsets selected by the im-

proved EFS were kept the same between the LOOCV and the .632+ Bootstrap-

ping for all the three datasets. The detail of the selected features are summarized495
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Table 4: The most stable feature subset for the lung tumor dataset.

Feature type Feature description

SUV-based feature SUVmax extracted from PET2.

GLSZM-based feature Change of gray-level-non-uniformity between PET2 and PET0.

GLSZM-based feature Change of zone-percentage between PET1 and PET0.

GLSZM-based feature Change of zone-percentage between PET2 and PET0.

Table 5: The most stable feature subset for the esophageal tumor dataset.

Feature type Feature description

SUV-based feature TLG extracted from PET0.

Clinical characteristic Tumor staging as II

Clinical characteristic Patient gender

in Table 4 to Table 6, respectively. For the lung tumor (Table 4), the SUVmax

during the fith week of RT (PET2) has also been proven to have significant pre-

dictive power in the clinical study (Calais et al., 2015) ; for the esophageal tumor

(Table 5), the role of the TLG at tumor staging (PET0) has been clinically val-

idated in (Lemarignier et al., 2014) ; and for the lymph tumor (Table 6), the500

difference between the SUVmax before chemotherapy (PET0) and the SUVmax

after three/four cycles of chemotherapy (PET1) has also been recognized as a

variable being capable to predict outcome in (Lanic et al., 2012).

According to above analysis, we could say that the feature subsets deter-

mined by our method are in consistent with the predictors that have been ver-505

ified in clinical studies. More importantly, other kinds of features selected in

each subset can give complementary information for these existing measures to

improve the prediction performance.

5.2. Prediction Performance

The improved EFS used in our prediction system has robust feature selection510

performance. To further evaluate the predictive power of these selected feature

subsets, the EK-NN classifier with K = {1, . . . , 15} was orderly evaluated by

the .632+ Bootstrapping. The number of Bootstrap samples was set to 100.

The prediction performance was compared with that obtained by all the input

features, and also compared with that obtained by the existing measures (pre-515
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Table 6: The most stable feature subset for the lymph tumor dataset.

Feature type Feature description

SUV-based feature Change of SUVmax between PET1 and PET0.

SUV-based feature SUVmax extracted from PET0.

Gene expression MME Gene that relates to tumor subtype.

Gene expression SLC2A5 Gene that relates to glucose transportation.

dictors) which have been clinically validated and discussed in the last part of

Section 5.1. The average AUC with respect to different K is shown in Figure 3,

where (a)-(c) correspond to the results for the lung tumor, esophageal tumor and

lymph tumor dataset, respectively. As can be seen, the selected feature subsets

(green line) always led to higher AUC than the input features (blue line) for all520

the three examples. In addition, they also outperformed the clinically validated

predictors (orange line) that self-included in these selected feature subsets. It

seems to imply that complementary predictors are well determined for these

existing measures in our prediction system.
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Figure 3: Prediction performance of the EK-NN classifier with respect to different K : (a) lung

tumor dataset, (b) esophageal tumor dataset, and (c) lymph tumor dataset. ”all features”,

”selected features”, and ”existing measure” denote the results obtained by the input features,

the selected feature subset and the predictor that has been clinically proven, respectively.

Misclassified instances. The main reason of misclassification is that the fea-525

tures extracted for these patients are located in the high-overlapping areas in

the selected feature space, such as the boundary between two different classes.

For the lung tumor dataset, only one patient, which belongs to the recurrence

class, was often misclassified ; For the lymph tumor dataset, only two instances
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were frequently misclassified ; The prediction performance for the esophageal530

tumor dataset was poorer than the other two examples, due to the lack of time

dependent features extracted from the follow-up PET images.

6. Discussion

Influence of imbalance level. According to the analysis in Section 5.1, the com-

petitiveness of the improved EFS seems to be strengthened when the dataset535

was highly imbalanced (e.g., the lymph tumor example). To support this finding,

we further tested our method on a synthetic dataset with respect to different

imbalance ratio r ∈ {0.1, 0.2, . . . , 0.5}. Both classes (positive or negative) of this

synthetic dataset were generated by multivariate normal distributions. Assume

that µn and µp are the mean vectors for the negative class and the positive540

class, respectively ; while Σ is the identical covariance matrix for both classes.

To be consistent with our clinical examples, the values of µn, µp and Σ were

directly copied as that of the lymph tumor dataset.
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Figure 4: (a) Accuracy, and (b) AUC for the synthetic dataset.

Under each level of the imbalance ratio r, 50 samples were generated as a

small-sized and imbalanced training dataset. After selecting features using the545

improved EFS, the EK-NN classifier was learnt to classify a balanced testing

dataset. To minimize the uncertainty of the performance estimation, the bal-

anced testing dataset consisted of 3000 test samples, and the evaluation was

repeated 50 times for each level of r. The classification results with respect to

different imbalance ratio are finally shown in Figure 4. As can be seen, Accuracy550

and AUC obtained by the proposed method are better than directly using all
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the input features. In particular, the proposed method plays a significant role

when the training dataset is severely imbalanced.
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Figure 5: (a) Subset robustness, (b) Accuracy, and (c) AUC that evaluated by the .632+

Bootstrapping for the improved EFS without data balancing (iEFS+), the improved EFS

without prior knowledge (iEFS∗), and the improved EFS (iEFS), respectively.

Role of prior knowledge and data balancing. These two critical modules of our

prediction system were successively removed to study the benefits of them. The555

performance that evaluated by the .632+ Bootstrapping (with 100 Bootstrap

Samples) is shown in Figure 5, in which iEFS denotes the improved EFS used

in our prediction system ; while, iEFS+ and iEFS∗ denote iEFS without data

balancing and without prior knowledge, respectively. It can be found that both

the included prior knowledge and the data balancing step are helpful for im-560

proving the selection performance and the prediction performance. When the

dataset is severely imbalance (e.g., the lung tumor example), the data balancing

procedure is especially significant for enhancing the robustness and the AUC.
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Figure 6: (a) Accuracy and (b) AUC of the logistic regression method that evaluated by the

.632+ Bootstrapping. The selected features were compared with all the input features, the

clinically validated predictors (i.e., existing measures), and the clinically validated predictors

joint with features selected by the classical RELIEF (i.e., existing measure+RELIEF).
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Applicability of the improved EFS. To demonstrate whether the improved EFS

has potential benefits for other classifiers (except the EK-NN), the logistic re-565

gression, a well-established method widely used in clinical studies, was also

adopted to classify the three tumor datasets with the feature subsets detailed in

Table 4 to Table 6. The predictive power of the selected features was compared

with that of all the input features, and that of the clinically validated predictors

(i.e., existing measures). Additionally, given the clinically validated predictors570

as the prior, the logistic regression joint with the classical RELIEF, involving to

select features to combine with the clinically validated ones, was also presented

as the basis for evaluation. Finally, results obtained by the .632+ Bootstrapping

(with 100 Bootstrap samples) is summarized in Figure 6, based on which we may

say that the proposed method is not only useful for the DST-based classifiers,575

but also potentially helpful for other classifiers.

Multi-class problems. Apart from the binary-class examples discussed in this

paper, the proposed method can also be easily generalized to handle the multi-

class (c ≥ 2) problems. To this end, we need to replace (9) with
Mi({ωq}) = m

Θq
i ({ωq})

∏c
p 6=qm

Θp
i (Ω),∀q ∈ {1, . . . , c}

Mi(Ω) =
∏c
q=1m

Θq
i (Ω)

Mi(∅) = 1−
∑c
q=1Mi({ωq})−Mi(Ω)

, (14)

and change the first term of (10) as 1
N

∑N
i=1

∑c
q=1 {Mi({ωq})− ti,q}2.

7. Conclusion

A new framework for PET imaging based cancer treatment outcome pre-

diction has been proposed in this paper. Features have been extracted from580

multi-sources of information, which include PET images acquired before and

during the treatment, clinical characteristics, and gene expression files. Based

on our previous work (Lian et al., 2015a), an improved EFS with prior knowledge

and data balancing has been proposed to robustly determine the most informa-

tive feature subsets from the small-sized and imbalanced training pool. After585
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feature selection, the EK-NN classifier has been trained to predict the outcome.

The new prediction system has been evaluated by three clinical studies, showing

promising performance with respect to feature selection and classification.

In the future, to further improve the reliability of our prediction system,

we plan to include more radiomic features extracted from other image modali-590

ties, such as CT, MRI and multi-tracer PETs. In addition, to tackle the imbal-

anced learning problems, other data balancing or cost-sensitive learning methods

should be studied and compared with the method that has been used in this

paper.

Appendix A. Radiomic Features Extracted from PET Imaging595

Table A.7: Definition of SUV-based features. Variable X represents SUVs in the ROI. Func-

tion T [·] is a binary indicator. It equals to 1 iff the argument is true. Function f maps X to

L ={tumor,non-tumor} according to the threshold 40%SUVmax. Operation | · | calculates the

number of voxels within a region.

Feature Calculation Description

SUVmax α = max(X) Maximum uptake in the ROI

SUVmean µ = mean(X) Average uptake in the ROI

SUVpeak µα = 1
|Nα|

∑
x∈Nα x

Average uptake in the neighborhood

(3× 3× 3) of the SUVmax

MTV τ = sum(T [f(X)]) Metabolic tumor volume

TLG ν = µ× τ Total lesion glycolysis
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Table A.8: Definition of GLSZM-based features (Thibault et al., 2014). Let P be the matrix

with size M ×N . Scalar R =
∑M
i=1

∑N
j=1 P (i, j). Each element p(i, j) = P (i, j)/R.

Feature Calculation Description

Small Zone Emphasis
∑M
i

∑N
j
p(i,j)

j2 Distribution of small zones.

Large Zone Emphasis
∑M
i

∑N
j j2p(i, j) Distribution of large zones.

Low Gray Level Zone

Emphasis

∑M
i

∑N
j
p(i,j)

i2

Distribution of low gray

level values.

High Gray Level Zone

Emphasis

∑M
i

∑N
j i2p(i, j)

Distribution of high gray

level values.

Small Zone Low Gray

Level Emphasis

∑M
i

∑N
j
p(i,j)

i2j2

Joint distribution of small

zones and low gray

level values.

Small Zone High Gray

Level Emphasis

∑M
i

∑N
j
i2p(i,j)

j2

Joint distribution of small

zones and high gray

level values.

Large Zone High Gray

Level Emphasis

∑M
i

∑N
j
j2p(i,j)

i2

Joint distribution of large

zones and high gray

level values.

Large Zone Low Gray

Level Emphasis

∑M
i

∑N
j i2j2p(i, j)

Joint distribution of large

zones and low gray

level values.

Gray Level Non-Uniformity
∑M
i

(∑N
j p(i, j)

)2 Similarity of gray level

values inside the ROI.

Zone Size Non-Uniformity
∑N
j

(∑M
i p(i, j)

)2 Similarity of the size of

zones insied the ROI.

Zone Percentage R/(jp(i, j))
homogeneity and distribution

of zones inside the ROI.
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