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Abstract

Spatial normalization is a key element of statistical parametric mapping and related techniques for analysing cohort
statistics on voxel arrays and surfaces. The normalization process involves aligning each individual specimen to a
template using some sort of registration algorithm. Any misregistration will result in data being mapped onto the
template at the wrong location. At best, this will introduce spatial imprecision into the subsequent statistical analysis.
At worst, when the misregistration varies systematically with a covariate of interest, it may lead to false statistical
inference. Since misregistration generally depends on the specimen’s shape, we investigate here the effect of allowing for
shape as a confound in the statistical analysis, with shape represented by the dominant modes of variation observed in
the cohort. In a series of experiments on synthetic surface data, we demonstrate how allowing for shape can reveal true
effects that were previously masked by systematic misregistration, and also guard against misinterpreting systematic
misregistration as a true effect. We introduce some heuristics for disentangling misregistration effects from true effects,
and demonstrate the approach’s practical utility in a case study of the cortical bone distribution in 268 human femurs.
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1. Introduction

A common procedure in medical image analysis is the
calculation of cohort statistics expressed on voxel arrays
or surfaces. Perhaps the most well-known exemplar is sta-
tistical parametric mapping (SPM) (Friston et al., 1994),
which has become a standard tool for neuroimaging. In
its voxel-based instantiation, SPM starts with an ensemble
of voxel arrays containing, for example, fMRI activations
measured across a number of subjects, where maybe the
subjects are classified into two groups, the interest group
and a set of controls. Since each subject’s brain will be of
a different size and shape, the fMRI data is then spatially
normalized, a process which involves registering each voxel
array to some standardized template. Now that the data
is expressed on a common morphology, a general linear
model (GLM) can be fitted, to explain the data at each
voxel in terms of covariates of interest (e.g. group) and
also confounding covariates (e.g. age, sex). Finally, F - or
t-statistics are calculated at each voxel, to test whether
the data depends significantly on the covariates, with ran-
dom field theory furnishing the corresponding p-values,
corrected for multiple comparisons to control the overall
image-wise chance of false positives. The SPM paradigm
can also be applied to data expressed on surfaces (Tucholka
et al., 2012; Worsley et al., 2009) and is being increasingly
adopted outside of its neuroimaging roots. For example,
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we have undertaken several studies analysing the thickness
and mass of cortical bone in the proximal femur using a
surface-based approach (Poole et al., 2011, 2012), while
others have analysed both the cortical and trabecular com-
partments with a voxel-based approach (Carballido-Gamio
et al., 2013; Li et al., 2009).

Statistical inference is rarely straightforward, and SPM
p-maps need to be interpreted with caution. One possible
source of error arises from the spatial normalization. There
will always be a degree of misregistration. At best, this will
just reduce the spatial precision of the p-maps. At worst,
the nature of the misregistration will vary across the differ-
ent study groups. Such systematic misregistration is dan-
gerous, since it might lead to the p-maps showing effects
that do not, in fact, correspond to different activations be-
tween groups, but instead to different registration errors
between groups. This phenomenon is well understood and
has been much discussed in the literature, most memorably
in the context of voxel-based morphometry (VBM) (Ash-
burner and Friston, 2001; Bookstein, 2001), an SPM vari-
ant for analysing anatomical shape.

Perhaps not surprisingly, the standard approach to deal-
ing with systematic misregistration is to employ a better
registration algorithm1. However, despite much progress
in medical image registration, particularly in human neu-
roimaging (Klein et al., 2009), SPM studies continue to cite
systematic misregistration as a source of error (Acosta-

1The ubiquitous SPM smoothing kernel helps when the misregis-
tration is not systematic, increasing the likelihood of detecting effects
at the expense of spatial resolution.
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Figure 1: The synthetic lollipop data comprises 100 specimens all
with the same thickness distribution. Two of the specimens are
shown here.

Cabronero et al., 2010; Garrido et al., 2009; Jung and
Haier, 2007; Mohammadi et al., 2012; Oakes et al., 2007;
Vangberg et al., 2006). It is our contention that there
will always be a degree of arbitrariness in the spatial nor-
malization — we shall argue this point more strongly in
Section 3 — and the arbitrariness may turn out to be sys-
tematic, affecting different groups in different ways.

In this brief paper, the focus is not on improved regis-
tration algorithms, but on methods for detecting and ame-
liorating false positive and negative inferences caused by
systematic misregistration. In neuroimaging, it is not un-
common to allow for total intracranial and grey matter vol-
umes in the GLM (Barnes et al., 2010; Peelle et al., 2012).
Depending on the particular registration algorithm, global
size measures such as these may correlate with misregistra-
tion, and allowing for them in the GLM may guard against
false inference. Local misregistration may also be detected
by VBM and allowed for in the GLM by way of voxelwise
anatomical covariates (Casanova et al., 2007; Oakes et al.,
2007). Beyond neuroimaging, we speculate that misregis-
tration will generally depend on the individual specimen’s
shape, and present here a series of experiments designed
to investigate the effects of allowing for global shape in
the GLM. Our testbed in Section 2 is surface-based statis-
tics on femur-like synthetic surfaces, followed by a case
study with real femur data. In addition to allowing for
shape, we also outline some well-motivated heuristics that
attempt to disentangle misregistration effects from true ef-
fects. In Section 3 we discuss our findings before drawing
some broad conclusions in Section 4.

2. Experiments and results

2.1. Synthetic experiments with fixed surface data

In order to explore how systematic misregistration af-
fects surface statistics, we need a cohort of surfaces with
known shape and surface data. To this end, we gener-
ated triangular meshes of 100 “lollipop” shapes, two of
which can be seen in Figure 1. In a parody of our work
analysing the cortex of the human femur, the lollipops had
a “shaft” and a “head”, and to every vertex we assigned
a (cortical) “thickness”. All 100 specimens had 6000 ver-
tices and identical surface topology. The thickness at each
vertex was the same for each specimen, increasing linearly
from 0.5mm at the bottom of the shaft to 4.0mm at the
apex of the head2. In contrast, the shapes varied ran-
domly across two degrees of freedom. The head-shaft angle
was uniformly distributed in the range 34◦–71◦, while the
head length was uniformly distributed in the range 3.9 cm–
4.8 cm. Full details of the procedures used to generate the
synthetic data may be found in Appendix A.

We then proceeded to perform a classical, SPM-like
analysis of the lollipops’ thickness distributions. The first
step was to map each individual distribution onto a com-
mon morphology, by registering a canonical lollipop (with
average head-shaft angle and head length) to each individ-
ual. Registration was a two stage process. We first found
the seven degree-of-freedom similarity transformation that
best aligned the canonical lollipop to the individual. This
was accomplished within an iterative framework. At each
iteration, every vertex of the canonical mesh was matched
with its nearest neighbour on the individual, and then the
Levenberg-Marquardt algorithm (More, 1977) was used to
find the similarity transformation that minimized the sum
of the squared distances between the two point sets. This
process was iterated until convergence, requiring typically
50–100 iterations. Following this rough, global alignment,
we applied a B-spline free form deformation (FFD) to the
canonical surface, with a 4 × 4 × 4 grid of control points,
again using iterative nearest neighbour vertex matching
and Levenberg-Marquardt optimization to find the con-
trol point positions that best aligned the matched ver-
tices. Finally, the individual’s thickness distribution was
projected onto the aligned canonical surface and smoothed
with a 8mm full-width-half-maximum filter, with all sub-
sequent analysis taking place on the canonical morphol-
ogy. This procedure is what we use in our femur work and
is an unremarkable examplar of similar algorithms used
for spatial alignment in medical imaging (Rueckert et al.,
1999; Szeliski and Lavalle, 1996; Wang and Fei, 2013). We
shall henceforth refer to it as B-spline-based point match-
ing (BPM).

Figure 2 shows some illustrative registration results.
Although the distance between the registered surfaces is

2In this respect the lollipops do not mimic real femurs, where the
cortical thickness tends to decrease from the shaft to the head.
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(a) BPM #38 (b) BPM #65 (c1) BPM #94 (c2) 1-to-1 #94

Figure 2: Alignments of the canonical lollipop to specimens 38 (a), 65 (b) and 94 (c). The canonical surface is shown in red with the individual
specimens in green. Where the rendering appears red, the canonical surface is slightly in front of the individual specimen, and vice versa for
green. (a), (b) and (c1) are BPM alignments. (c2) shows an alignment found not using BPM, but by enforcing the correct 1-to-1 mapping
between red and green vertices, and then optimizing the B-spline FFD parameters to minimize the distances between corresponding vertices.
Note that a small hole was left in the meshes at the apex of the head. This makes it easier to spot any misalignment since the holes should
coincide, as they do in (a) and (c2).

everywhere small, the BPM algorithm does not always find
the correct 1-to-1 vertex correspondence, instead getting
trapped in some local minimum that depends on the shape
of the specimen. In Figure 2, specimen #38 is well reg-
istered in (a), but the canonical apex is too high in spec-
imen #65 (b) and too low in specimen #94 (c1), where
there is also significant misalignment at the bottom of the
shaft. (c2) shows the FFD that best aligns 1-1 correspond-
ing vertices, with a residual error of 0.119mm per vertex,
compared with 0.461mm per vertex in (c1). Hence, most
of the misregistration must be attributed to local minima,
though a little (0.119mm per vertex for specimen #94)
arises from the inability of the FFD to capture perfectly
the actual deformation.

Following registration, principal component analysis
was used to build a point-based, statistical shape model
from the 100 sets of canonical vertex coordinates obtained
by applying the 100 FFDs. Let Xi be the 18000-element
vector formed by concatenating the canonical vertex co-
ordinates following registration with specimen i, and let
X̂ = 1

100

∑100
i=1 Xi. Then the principal modes of shape

variation are the eigenvectors mi of the sample covariance
matrix 1

99

∑100
i=1(Xi − X̂)(Xi − X̂)T . The first five shape

modes are shown in Figure 3. Even though there were
only two degrees of freedom in the synthetic lollipop data,
there are 99 in the shape model, since the registrations
are imperfect and the actual deformations are not additive.
Shape models of this nature are the standard way to obtain
compact shape descriptors of individual specimens, which
may be represented according to Xi ≈ X̂ +

∑n
i=1 Simi.

For example, setting n = 5 would produce a 5-element

shape vector [S1 . . . S5] accounting for 90% of the shape
variation observed in the population of 100. We shall refer
to Si as the shape coefficients.

The next stage in the SPM analysis is to fit a GLM
to the thickness distributions (now all expressed on the
canonical morphology), to investigate how the thickness
depends on explanatory and confounding variables of in-
terest. We used the SurfStat package (Worsley et al., 2009)
to fit the GLM and subsequently perform statistical tests
on the resulting coefficients. In our first example study,
we fitted the GLM 1 +

∑10
i=1 Si and then performed F -

tests on the individual shape coefficients, in order to test
whether thickness depends on shape3 . Figure 4 shows the
GLM coefficients and resulting p-maps for S1, S3 and S5.
Even though all lollipops had exactly the same thickness
distribution, the SPM analysis reveals large areas where
there appears to be a statistically significant relationship
between thickness and shape4. This is because the misreg-
istration depends systematically on each specimen’s shape:
lollipops with a large head-shaft angle tend to misregister

3For concision, and in common with many statistics packages, we
use the model formula to specify the independent variables in the
GLM. A model formula of the form 1 +

∑10
i=1 Si implies the GLM

yj = β0,j +
∑10

i=1 βi,jSi+ εj , where yj is the dependent data (in this
case, thickness) at vertex j, βi,j are the model coefficients and εj is
the residual error.

4The p-maps have been corrected for multiple comparisons over
vertices, but not for multiple comparisons over different shape modes.
The latter multiple comparison problem is far less severe than the
former, and is generally ignored in neuroimaging SPM. Regardless,
in Figure 4 the various connected clusters are all significant with p <
0.0002 and would therefore survive a simple Bonferroni correction.
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(a) Mode 1 ±3 s.d. (b) Mode 2 ±3 s.d. (c) Mode 3 ±3 s.d. (d) Mode 4 ±3 s.d. (e) Mode 5 ±3 s.d.

Figure 3: The first five modes of the statistical shape model, accounting for 90% of the population variance.

rightfront

leftback

% change per s.d. p (cluster) p (vertex)

0.05 0−10 0.05 02 0.025 0.025−4

(a) Mode 1

% change per s.d. p (cluster) p (vertex)

0.05 0−2 0.05 00.025 0.0250.2−0.9

(b) Mode 3

% change per s.d. p (cluster) p (vertex)

0.05 0−0.5 0.05 00.025 0.0252.51

(c) Mode 5

Figure 4: SPM analysis of the relationship between lollipop thickness and shape. The GLM fitted was 1 +
∑10

i=1 Si. The percentage change
maps are for the coefficients of S1, S3 and S5 in the GLM. The corresponding p-maps are for F -tests on S1, S3 and S5. The p-maps are based
on the magnitudes of vertex peaks (yellow-orange colour map, sensitive to focal effects) and on the extent of connected clusters exceeding
an uncorrected p-value threshold of 0.001 (cyan-blue colour map, sensitive to distributed effects). The arrows in (b) are for comparison with
Figure 7(b).
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one way, those with a small angle another way, and so
on. Consequently, each specimen’s thickness distribution
“slips” around the canonical surface in a manner that de-
pends on shape, and the resulting, false thickness variation
is incorrectly interpreted as a true effect.

The danger of making a false inference is not limited
to studies that are overtly concerned with shape. There
is also the possibility that some other covariate of inter-
est might depend on shape. Figure 5 shows an example
where a covariate C1 happens to be correlated with S3. A
conventional SPM analysis with GLM 1 + C1 (a) reveals
a thickness effect where there should not be one. Suspect-
ing systematic misregistration, we might allow for shape
in the GLM to avoid such false positive results, effectively
treating the shape coefficients as confounding, as opposed
to explanatory, variables. However, changing the model
to 1+C1 +

∑2
i=1 Si (b) actually strengthens the false sig-

nal, since S1 and S2 explain much of the variance that
was previously interpreted as noise. Only by allowing for
more shape modes with the GLM 1 + C1 +

∑10
i=1 Si (c)

do we remove the false signal, since C1 does not explain
much variance that cannot be explained just as well by
S3. Careful judgement is required to determine how many
shape modes to allow for: too many will result in an elab-
orate model, leaving few degrees of freedom for the statis-
tical analysis and hence compromising statistical power.
There is also the matter of how to interpret any residual
patches of significance after allowing for n modes: such
regions might be caused by systematic misregistration as-
sociated with mode n+1. We shall return to this question
in Section 2.3.

2.2. Synthetic experiments with varying surface data

In Section 2.1, the synthetic lollipop data had fixed
thickness. In contrast, here we adjust the synthetic data
so that there actually is a dependence between a covari-
ate C2 and thickness in a narrow band around the lollipop
shaft. Unlike C1, C2 was not contrived to correlate with
shape. In Figure 6(a), the band of increased thickness
is barely significant under a conventional SPM analysis
with GLM 1 +C2, since the effect is weak compared with
the misregistration effects, which are unaccounted for. It
is necessary to allow for shape as a confounding variable
to see the C2 effect, using models 1 + C2 +

∑2
i=1 Si (b),

1+C2+
∑10

i=1 Si (c) or even 1+C2+
∑30

i=1 Si (d). Allowing
for more shape modes (e–f) becomes problematic, since the
statistical power is gradually reduced until the C2 effect is
no longer significant at the 5% level with 73 modes (not
shown). As we remarked in Section 2.1, however many
modes we allow for, we need to be aware that any appar-
ent effect might actually be caused by systematic misreg-
istration associated with an unallowed-for shape mode.

2.3. Synthetic experiments with varying surface data that
depends on shape

For our final series of synthetic experiments we again
adjust the data, this time to induce a dependence be-

tween shape, specifically S3, and thickness in a narrow
band around the lollipop shaft. Figure 7 shows the results
of two different experiments with the GLM 1 +

∑10
i=1 Si,

both looking for any relationship between thickness and
S3. In (a), the data was contrived to show a strong pos-
itive correlation between thickness and S3 all around the
band, while in (b) the effect was much weaker. The SPM
analysis conflates the true thickness effect with the mis-
registration effect. Note from Figure 4(b, arrows) that the
misregistration results in a negative correlation between
thickness and S3 at the back of the shaft, which cancels
with the true, weak effect in Figure 7(b, arrows).

We shall use these two experiments to explore the ques-
tion that arose at the ends of Sections 2.1 and 2.2: can we
disambiguate a true effect from a misregistration effect?
One approach would be to compare the scale of the ap-
parent effect with the gradient of the mean thickness dis-
tribution. In Figure 8(a), we see the mean thickness of the
100 lollipops alongside a very crude estimate of the peak
directional derivative computed on the surface. In Fig-
ures 8(b) and (c), we divide the S3 GLM coefficients (left)
by the peak gradient, to obtain an estimate (right) of the
amount of misregistration, in mm, that would account for
the change in thickness induced by one standard deviation
of S3. Note that we are computing an independent mis-
registration at each vertex: we are disregarding the fact
that in any physically plausible, smooth misregistration,
neighbouring vertices are displaced in roughly the same di-
rection. Looking at Figure 8(b), to explain the thickness
effect at the shaft would require a local misregistration
in excess of 5mm per standard deviation, whereas every-
where else only a 1mm misregistration is necessary. This
strong discontinuity suggests that there is a true thick-
ness effect at the shaft. In contrast, in Figure 8(c) all the
thickness effects are consistent with a misregistration of
less than 1mm. Note, though, that this might not cor-
respond to a physically plausible, smooth misregistration.
So negative results of this nature are inconclusive.

To disambiguate the weak S3 effect from the misregis-
tration artefacts, we must resort to a more sophisticated
test that establishes whether the apparent effects are con-
sistent with a smooth misregistration. To some extent, we
could attempt this by eye. For example, looking at Fig-
ure 6(c), it is fairly obvious that there is no smooth warp of
the average lollipop thickness distribution that would pro-
duce this effect. To produce the band of positive thickness
change, we would need to stretch the shaft downwards,
but this would cause collateral damage above and below
the band. For less trivial examples, we might seek the as-
sistance of an automatic registration algorithm. Consider
again the weak S3 effect that the simple gradient test failed
to disambiguate from a misregistration in Figure 8(c). In
Figure 9(a), we see (right) the mean thickness of all 100
specimens, mapped onto the canonical lollipop and (left)
the mean thickness plus the apparent thickening explained
by S3. Figure 9(b) shows the difference between the two
thickness distributions: this correlates with the percentage
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Figure 5: SPM analysis of the relationship between thickness and a covariate C1 using three different GLMs. In each case, the percentage
change maps are for the coefficient of C1 in the GLM. The corresponding p-maps are for F -tests on C1.
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(b) 1 + C2 +
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(c) 1 + C2 +
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% change per s.d. p (cluster) p (vertex)

0.05 0−0.2 0.05 00.025 0.0251.60.7

(d) 1 + C2 +
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(f) 1 + C2 +
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Figure 6: SPM analysis of the relationship between thickness and a covariate C2 using six different GLMs. In each case, the percentage
change maps are for the coefficient of C2 in the GLM. The corresponding p-maps are for F -tests on C2.
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(a) Strong S3 effect

% change per s.d. p (cluster) p (vertex)
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(b) Weak S3 effect

Figure 7: SPM analysis of the relationship between lollipop thickness
and S3. The GLM fitted was 1 +

∑10
i=1 Si. The percentage change

maps are for the coefficient of S3 in the GLM. The corresponding
p-maps are for F -tests on S3. In (a), the synthetic data featured a
strong dependence between thickness and S3, while in (b) the effect
was weaker. The arrows in (b) are for comparison with Figure 4(b).

change map in Figure 7(b). We now use a B-spline FFD
to deform the right hand canonical lollipop so as best to
align the two thickness distributions, producing the result
in Figure 9(c). The post-registration thickness difference
in Figure 9(d) demonstrates that most of the S3 effect can
be explained by warping the mean thickness distribution
(i.e. a misregistration), except in a band around the shaft
where there appears to be a true thickness difference. For
this proof of concept, we aligned the two thickness distri-
butions using a trivial variation of the BPM algorithm.
Instead of matching nearest neighbours, we matched ac-
cording to thickness, with the additional constraint that
matched vertices had to be reasonably proximate. While
this approach did succeed in producing the one-off result
in Figure 9, in other experiments it was less successful,
converging to local minima that were clearly suboptimal.
Further research is required to identify, develop and evalu-
ate more robust registration algorithms capable of reliably
registering some parts of the distributions (those caused
by misregistration) while ignoring others (those caused by
true thickness effects). Whether this is even possible, given
the inevitable difficulties with registration that are a cen-
tral tenet of this paper, is a moot point.

2.4. Case study: the cortical mass of the human femur

Finally, we illustrate how systematic misregistration
can affect real studies of surface data. In this case, the data
is the cortical mass (expressed in mg/cm2) of the human
proximal femur, measured from CT scans of 268 females5

using the technique described in Treece et al. (2012). Fig-
ure 10 shows an SPM analysis examining dependence be-
tween cortical mass and femur size. In Figure 10(a), the
GLM included femur size as well as other obvious covari-
ates (subject age, weight etc.) but not shape. In Fig-
ure 10(b), the GLM was augmented to allow for the first
ten shape modes. Note the increased signal strength when
allowing for shape, most evident in the sizes of the various
significant regions (the p-values are also lower).

Figure 11 shows a second SPM analysis examining de-
pendence between cortical mass and shape modes 1 and 2.
These modes correspond, approximately and respectively,
to femoral neck length and neck-shaft angle. In (c1) and
(d1), we see significant areas where cortical mass appears
to depend on shape. While this is perfectly plausible from
a physiological perspective — a lifetime of walking on dif-
ferent shaped femurs, with different mechanical stress dis-
tributions, is likely to stimulate bone remodelling in dif-
ferent ways — there is also the possibility that the effects
arise from systematic misregistration. It is highly suspi-
cious that many of the significant regions for mode 1 co-
incide with areas of high gradient on the average mass
distribution: see Figure 11(b). To investigate further, we

5Data from the FEMCO study, courtesy of Dr. Ken Poole, School
of Clinical Medicine, University of Cambridge, and the Surgical
Treatment of the Hip Joint in Trauma study, courtesy of Dr. Jan
Štěpán, Charles University and Institute of Rheumatology, Prague.
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Figure 8: A scale-comparison heuristic for disentangling true effects from misregistration artefacts. To obtain the peak gradient estimate
in (a), we calculated the thickness gradient along each edge of the mesh, and then labelled the gradient at each vertex with the maximum
absolute gradient found amongst the edges incident at the vertex.

mm thickness

0

0 0.2

mm discrepancy

2

0.4

4

S  effect
mean +

3 S  effect
mean +

3 mean
deformed

(a) unregistered thickness (c) registered thickness(b) discrepancy (d) discrepancy

mean

Figure 9: A registration heuristic for disentangling true effects from misregistration artefacts. This example is for the weak S3 effect for which
the scale-comparison heuristic in Figure 8(c) was inconclusive. The thickness distribution in (a, left) and (c, left) was generated by adding k×
the GLM coefficient of S3 to the mean thickness. We tuned k to coax the best performance out of the modified BPM registration algorithm.
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(a) Not allowing for shape

% change per s.d. p (cluster) p (vertex)
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(b) Allowing for shape

Figure 10: (a) A conventional SPM analysis of the dependence of cortical mass on femur size, allowing for obvious covariates (subject age,
weight etc.) but not shape. (b) The same analysis, but this time allowing for the first ten shape modes. In each case, the percentage change
maps are for the coefficient of femur size in the GLM. The corresponding p-maps are for F -tests on femur size. In (a), the significant connected
clusters span 1011 vertices, whereas in (b) they span 1329 vertices. The arrows indicate areas where the clusters are enlarged in (b).
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Figure 11: The scale-comparison heuristic for disentangling true effects from misregistration artefacts, applied to the study of 268 proximal
femurs. (a) and (b) show, respectively, the mean cortical mass and the peak mass gradient of the 268 specimens. (c1) and (d1) show an
apparent relationship between cortical mass and shape modes 1 and 2. (c2) and (d2) show the amount of misregistration that would explain
the apparent shape effects.
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performed the simple scale-comparison test of Figure 8, re-
sulting in the misregistration maps in Figures 11(c2) and
(d2). True mass effects are likely where the statistically
significant regions in (c1) and (d1) coincide with elevated,
discontinuous regions in the misregistration maps. It ap-
pears that most of the mode 2 effects are associated with
true mass changes. The mode 1 effects are ambiguous,
they could be caused by small misregistrations, though
not necessarily smooth ones.

3. Discussion

One criticism of this work might be that the systematic
misregistration arises through the use of an unsophisti-
cated registration algorithm acting on relatively feature-
less surfaces. While this might indeed affect the scale
and extent of the artefact, systematic misregistration re-
mains an issue, even when applying sophisticated regis-
tration algorithms to feature-rich surfaces like the human
brain (Mohammadi et al., 2012). When registering real
biological shapes, the actual modes of shape variation are
numerous and unknown, and no parametric registration
algorithm will replicate them faithfully, let alone find the
global minimum of the objective function. Nonparametric
registration algorithms, which allow arbitrary correspon-
dences between surface points, are no panacea. In the in-
tervals between distinguished points, there is an inevitable
arbitrariness to the alignment, bridged by way of some rea-
sonable, though arbitrary, smoothness criterion (see Sec-
tion 3.1 of Ashburner and Ridgway (2013) for a succinct
illustration of this point). Hence, quite apart from the sim-
ple failings of unsophisticated registration algorithms, we
must acknowledge the fact that it is generally impossible
to define a uniquely “correct” registration6. And all three
sources of misregistration — under-parameterization, local
minima, arbitrariness — tend to depend systematically on
the surface’s shape.

4. Conclusions

The main contribution of this paper has been to investi-
gate the benefits of allowing for global shape in the GLM
when performing SPM-like analyses. In the presence of
systematic misregistration, this simple step can improve
the signal strength and also guard against making false
inferences. Nevertheless, there remains the risk that sys-
tematic misregistration, caused by unaccounted-for shape
modes, lies behind an apparently significant effect, and
it is for this reason that we have suggested two heuristics

6This must be borne in mind even when there is no systematic
misregistration: the spatial localization of any significant effects is
limited by the arbitrariness of the registration. In practice, how-
ever, this imprecision is most likely small compared with the greater
amount of smoothing (8mm full-width half-maximum in this paper)
that is applied to the surface data, in order to ensure compatibility
with the Gaussian random field theory that underpins SPM.

that might help disambiguate true effects from misregistra-
tion artefacts. These heuristics are neither definitive nor
exhaustive, they are simply two further ideas for best prac-
tice verification of SPM results. Other due diligence checks
one might carry out include: investigating correlations be-
tween covariates and shape modes; comparing the sizes of
significant regions with the sizes of any effects associated
with the first unallowed-for shape mode; and checking that
the results are reasonably invariant to different registration
algorithms, and different templates, and different random
initializations of the registration algorithm.
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Appendix A. Generation of synthetic data

The lollipop meshes comprise 100 circular contours with
60 vertices per contour. The first 50 contours have ra-
dius 10mm and are stacked at regular intervals of 1mm
to form a cylindrical shaft. The next 12 contours form
the lollipop neck. They also have radius 10mm, but their
centres are placed at 2mm intervals around a circular arc
which subtends a random angle uniformly distributed in
the range 34◦–71◦. The remaining 38 contours form the
lollipop head. Their radii follow a sine curve, starting at
10mm, peaking at 22mm and finishing at 1.6mm. Their
centres are regularly distributed along a straight line, with
a random (but uniform) separation such that the accumu-
lated head length is uniformly distributed in the range
3.9 cm–4.8 cm. For the experiments in Section 2.1, the
thickness at each vertex was set to 0.5 + 3.5c/99, where
c ∈ {0 . . . 99} is the contour number.

The standard deviation of S3 was 37.1. Covariate C1

was generated by adding Gaussian noise to S3 according
to C1 = 0.1(S3 + N(0, 13)). This gives a correlation co-
efficient between C1 and S3 of 0.94. A high correlation
was necessary to produce an effect in Figure 5(a): had C1

been correlated instead with S1 or S2, a much lower corre-
lation would have sufficed. We chose S3 to illustrate how
allowing for shape modes can, in certain circumstances,
strengthen false signals. Covariate C2 was pure Gaussian
noise according to C2 = N(0, 4).

For the experiments in Figure 6, the thickness at ver-
tices 1500–2500 (roughly contours 26–42) was incremented
by C2/200. For Figure 7(a), the thickness increment was
S3/200 while in Figure 7(b) it was S3/1800.
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Horák, M., Štěpán, J.J., 2012. Cortical thickness mapping to
identify focal osteoporosis in patients with hip fracture. PLOS
ONE 7, e38466.

Poole, K.E.S., Treece, G.M., Ridgway, G.R., Mayhew, P.M.,
Borggrefe, J., Gee, A.H., 2011. Targeted regeneration of bone
in the osteoporotic human femur. PLOS ONE 6, e16190.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O.,
Hawkes, D., 1999. Nonrigid registration using free-form deforma-
tions: application to breast MR images. IEEE T Med Imaging
18, 712–721.

Szeliski, R., Lavalle, S., 1996. Matching 3-D anatomical surfaces
with non-rigid deformations using octree-splines. Int J Comput
Vision 18, 171–186.

Treece, G.M., Poole, K.E.S., Gee, A.H., 2012. Imaging the femoral

cortex: thickness, density and mass from clinical CT. Med Image
Anal 16, 952–965.

Tucholka, A., Fritsch, V., Poline, J.B., Thirion, B., 2012. An empir-
ical comparison of surface-based and volume-based group studies
in neuroimaging. Neuroimage 63, 1443–1453.

Vangberg, T.R., Skranes, J., Dale, A.M., Martinussen, M., Brubakk,
A.M., Haraldseth, O., 2006. Changes in white matter diffusion
anisotropy in adolescents born prematurely. Neuroimage 32, 1538–
1548.

Wang, H., Fei, B., 2013. Nonrigid point registration for 2D curves
and 3D surfaces and its various applications. Phys Med Biol 58,
4315–4330.

Worsley, K., Taylor, J., Carbonell, F., Chung, M., Duerden, E., Bern-
hardt, B., Lyttelton, O., Boucher, M., Evans, A., 2009. Surfstat:
A Matlab toolbox for the statistical analysis of univariate and
multivariate surface and volumetric data using linear mixed ef-
fects models and random field theory. Neuroimage 47, S102–S102.
Organization for Human Brain Mapping, 2009 Annual Meeting.

11


	Systematic misregistration and the statistical analysis of surface data
	gee_media

