
DRAMMS: Deformable Registration via Attribute Matching and
Mutual-Saliency Weighting

Yangming Ou*,a, Aristeidis Sotirasb,c, Nikos Paragiosb,c, and Christos Davatzikosa

aSection of Biomedical Image Analysis (SBIA), University of Pennsylvania, 3600 Market St, Ste
380, Philadelphia, PA, USA, 19104
bMAS Laboratory, Ecole Centrale de Paris, Grande Voie des Vignes, 92 295, Chatenay-Malabry,
France
cEquipe GALEN, INRIA Saclay - Ile-de-France, Orsay, 91893, France

Abstract
A general-purpose deformable registration algorithm referred to as “DRAMMS” is presented in
this paper. DRAMMS bridges the gap between the traditional voxel-wise methods and landmark/
feature-based methods with primarily two contributions. First, DRAMMS renders each voxel
relatively distinctively identifiable by a rich set of attributes, therefore largely reducing matching
ambiguities. In particular, a set of multi-scale and multi-orientation Gabor attributes are extracted
and the optimal components are selected, so that they form a highly distinctive morphological
signature reflecting the anatomical and geometric context around each voxel. Moreover, the way
in which the optimal Gabor attributes are constructed is independent from the underlying image
modalities or contents, which renders DRAMMS generally applicable to diverse registration tasks.
A second contribution of DRAMMS is that it modulates the registration by assigning higher
weights to those voxels having higher ability to establish unique (hence reliable) correspondences
across images, therefore reducing the negative impact of those regions that are less capable of
finding correspondences. A continuously-valued weighting function named “mutual-saliency” is
developed to reflect the matching reliability between a pair of voxels implied by the tentative
transformation. As a result, voxels do not contribute equally as in most voxel-wise methods, nor in
isolation as in landmark/feature-based methods. Instead, they contribute according to the
continuously-valued mutual-saliency map, which dynamically evolves during the registration
process. Experiments in simulated images, inter-subject images, single-/multi-modality images,
from brain, heart, and prostate have demonstrated the general applicability and the accuracy of
DRAMMS.
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1. Introduction
Image registration is the process of finding the optimal transformation that aligns different
imaging data into spatial correspondence [Zitova and Flusser, 2003; Crum et al., 2004]. It is
the building block for a variety of medical image analysis tasks, such as motion correction
(e.g. [Zuo et al., 1996; Bai and Brady, 2009]), multi-modality information fusion (e.g.,
[Meyer et al., 1997; Verma et al., 2008]), atlas-based image segmentation (e.g., [Prastawa et
al., 2005; Lawes et al., 2008; Gee et al., 1993]), population studies (e.g., [Geng et al., 2009;
Sotiras et al., 2009; Ou et al., 2009b; Zollei et al., 2005]), longitudinal studies (e.g., [Csapo
et al., 2007; Shen and Davatzikos, 2004; Xue et al., 2006]), computational anatomy (e.g.,
[Joshi et al., 2004; Ashburner, 2007; Leow et al., 2007; Thompson and Apostolova, 2007])
and image-guided surgery (e.g., [Muratore et al., 2003; Gering et al., 2001; Hata et al.,
1998]). During the past two decades, a large number of deformable (non-rigid) image
registration methods have been developed, and several thorough reviews can be found in
[Maintz and Viergever, 1998; Lester and Arridge, 1999; Hill et al., 2001; Zitova and Flusser,
2003; Pluim et al., 2003; Crum et al., 2004; Holden, 2008].

These existing deformable registration methods can be generally classified into two main
categories: landmark/feature-based methods and voxel-wise methods. Examples of the
former category include [Thompson and Toga, 1996; Davatzikos et al., 1996; Rohr et al.,
2001; Shen and Davatzikos, 2003; Joshi and Miller, 2000; Chui and Rangarajan, 2003; Zhan
et al., 2007; Ou et al., 2009a; Gee et al., 1994], among others. Examples of the latter
category include [Glocker et al., 2008; Vercauteren et al., 2007, 2009; Ou and Davatzikos,
2009; D'Agostino et al., 2003; Kybic and Unser, 2003; Christensen et al., 1994; Collins et
al., 1994; Thirion, 1998; Rueckert et al., 1999; Maes et al., 1997; Wells et al., 1996; Friston
et al., 1995], among others. Specifically, landmark/feature-based methods, the former
category, often explicitly detect and establish correspondences on those anatomically and/or
geometrically salient regions (e.g., surfaces, corners, boundary points, line intersections),
and then spread the correspondences throughout the entire image space. This category of
methods is fairly intuitive and computationally efficient, since only a small proportion of the
imaging data detected as landmarks/features is used. However, they usually suffer from
inevitable errors in the landmark/feature detection and matching processes, and suffer from
the often non-uniform distribution of landmarks within the image space, which causes non-
uniform distribution of registration accuracy. Another drawback is that, the choice of
landmark/feature detection tools is usually heavily dependent on the specific contents of
images being registered. For instance, the landmark/feature detection tool that is used to
recognize the surface of corpus callosum for brain image registration tasks is usually quite
different from the landmark/feature detection tool that is used to recognize nipples for breast
image registration tasks. Because of all these reasons in landmark/feature-based methods,
recent literature on general-purpose registration has mostly focused on voxel-wise methods,
i.e., the second main category of registration methods, which usually equally utilize all
imaging data and find the optimal transformation by maximizing an overall similarity
defined on certain voxel-wise attributes (e.g., intensities, intensity distributions).

The general-purpose registration method proposed in this paper belongs essentially to voxel-
wise methods. It is developed to overcome the following two limitations in traditional voxel-
wise methods.

The first major limitation in traditional voxel-wise methods is that, they characterize voxels
by attributes that are not necessarily optimal. Since the matching between a pair of voxels is
based upon the matching between the attributes characterizing them, suboptimal attributes
will unavoidably lead to matching ambiguities [Shen and Davatzikos, 2003; Xue et al.,
2004; Wu et al., 2006; Liao and Chung, 2009]. Indeed, most voxel-wise methods
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characterize voxels only by image intensity; however, intensity attribute alone leads to large
matching ambiguities – for instance, hundreds of thousands of gray matter voxels in a brain
image would have similar intensities; but they all correspond to different anatomical regions.
To reduce matching ambiguities, other methods (e.g., [Shen and Davatzikos, 2003])
attempted to characterize voxels by a richer set of attributes, such as surface curvatures and
tissue membership. These attributes, although capable of reducing matching ambiguities, are
often task- and parameter- specific, hence not generally applicable for diverse registration
tasks. In this paper, we argue and demonstrate that, an ideal set of attributes should satisfy
two conditions: 1) discriminative, i.e., attributes of two voxels will be similar if and only if
they are anatomically corresponding to each other, therefore leaving minimum ambiguity in
matching; 2) generally applicable, i.e., a good set of image attributes should be able to be
extracted from almost all medical images, while still satisfying the first condition, regardless
of the image modalities or contents. Finding a set of attributes that satisfy these two criteria
and developing a method to select the best components thus become the first major
contribution in this paper.

The second major limitation of traditional voxel-wise methods is that, they often utilize all
imaging data equally, which usually undermines the performance of the optimization
process. Actually, different anatomical regions/voxels usually have different abilities to
establish unique correspondence [Anandan, 1989; McEachen and Duncan, 1997; Wu et al.,
2007]. An obvious example is when there is missing data, or loss of correspondence. For
instance, in Fig. 1, the lesion regions in the diseased brain image (subject) could hardly find
correspondences in the normal brain image (template). In a more general setting, even if
there is no missing data or loss of correspondence, certain parts of the anatomy are still more
easily identifiable than others. In Fig. 2, for instance, three voxels (depicted by red, blue and
orange crosses) are examined. A similarity map is generated by calculating attribute-based
similarity between one of these three voxels in the subject image and all voxels in the
template image. The similarity maps (Fig. 2(c)(d)(e)) reveal a smaller number of matching
candidates for the red point, more candidates for the blue point and much more candidates
for the yellow point. This indicates their different abilities to establish unique
correspondences, or conversely, different degrees of matching ambiguities. Naturally, these
three points should be treated with different “confidences” during registration.
Unfortunately, most voxel-wise methods, such as the mutual-information based methods,
treat all voxels equally, ignoring such differences. Other approaches attempted to address
this issue, by driving the registration adaptively/hierarchically using certain anatomically
salient regions. However, in their approaches only a small proportion of voxels are finally
utilized, and the potential contributions from other non-utilized voxels are ignored.
Moreover, the determination of which voxels to be utilized and which not is largely heuristic
or dependent on the a priori knowledge. In this paper, we propose and demonstrate that, an
ideal optimization process should utilize all imaging voxels, but with different weights,
based on their abilities to establish unique correspondences across images. This is important
for increasing the matching reliability in general, and for minimizing the negative impact of
the loss of correspondence (or missing data) when they exist (like in Fig. 1).

In this paper, we present DRAMMS – Deformable Registration via Attribute Matching and
Mutual-Saliency Weighting – to overcome these two aforementioned limitations. To
overcome the first limitation, DRAMMS extracts a rich set of multi-scale and multi-
orientation Gabor attributes at each voxel and automatically selects the optimal attributes.
The optimal Gabor attributes render it relatively robust in attribute-based image matching,
and are also constructed in a way that is readily applicable to various image contents and
image modalities. To overcome the second limitation, DRAMMS continuously weights
voxels during the optimization process, based on a function referred to as “mutual-saliency”.
Mutual-saliency measure quantifies the matching uniqueness (hence reliability, used
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thereafter interchangeably) between a pair of voxels implied by the transformation. In
contrast to equally treating voxels or isolating voxels that have more distinctive attributes,
this mutual-saliency based continuous weighting mechanism utilizes all imaging data with
appropriate and dynamically-evolving weights and leads to a more effective optimization
process.

This paper is an augmented version of a previously published conference version [Ou and
Davatzikos, 2009]. The extensions include more detailed method descriptions, more
validations and more thorough discussions. Also, the gradient-descent-based optimization
strategy in the conference version has now been replaced by the state-of-the-art discrete
optimization strategy [Komodakis et al., 2008], leading to higher speed while maintaining
registration accuracy. We also refer to HAMMER registration method [Shen and
Davatzikos, 2003], which is closely related to our work, and the difference between
DRAMMS and HAMMER is discussed in Section 5.5.

In the remainder of this paper, DRAMMS is elaborated in Section 2, with implementation
details in Section 3 and experimental results in Section 4. The whole paper is discussed and
concluded in Section 5.

2. Methods
2.1. Problem Formulation

Given two intensity images I1 : Ω1 ↦ ℝ and I2 : Ω2 ↦ ℝ in 3D image domains Ωi(i = 1, 2)
⊂ ℝ3, DRAMMS seeks a transformation T that maps every voxel u ∈ Ω1 to its counterpart
T(u) ∈ Ω2, by minimizing an overall cost function E(T),

(1)

where  (i = 1, 2) is the optimal attribute vector that reflects the geometric and
anatomical contexts around voxel u, and d is its dimension. By minimizing

, we seek a transformation T that minimizes the dissimilarity between
a pair of voxels u ∈ Ω1 and T(u) ∈ Ω2. The extraction of attributes and selection of optimal
attribute vector  (i = 1, 2) will be detailed in Sections 2.2.1 and 2.2.2.

ms (u, T(u)) is a continuously-valued weight that is calculated from the mutual-saliency
between two voxels u ∈ Ω1 and T(u) ∈ Ω2 – higher uniqueness (reliability) of their
matching in the neighborhood indicates higher mutual-saliency, and hence higher weight in
the optimization process. The definition of mutual-saliency will be discussed in Section 2.3.

R(T) is a smoothness/regularization term usually corresponding to the Laplacian operator, or
the bending energy [Bookstein, 1989], of the deformation field T, whereas λ is a balancing
parameter that controls the extent of smoothness. Such a choice of regularization is widely
adopted in numerous registration methods.

In accordance to the overall cost function in Eqn. 1, the framework of DRAMMS is also
sketched in Fig. 3. The two major components – optimal attribute matching (AM) and
mutual-saliency (MS) weighting – will be detailed in the subsequent sections 2.2 and 2.3.
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2.2. Attribute Matching (AM)
This section will address the first major component of DRAMMS, namely, attribute
matching (AM). The aim is to extract and select the optimal attributes that can reflect the
geometric and anatomic contexts of each voxel, and at the same time, to keep the attribute
extraction and selection readily applicable to diverse registration tasks. This component
consists of two modules: attribute extraction (described in section 2.2.1) and attribute
selection (described in section 2.2.2).

2.2.1. Attribute Extraction—The idea of characterizing each image voxel with a rich set
of attributes has been previously explored in the community. In their pioneer work, [Shen
and Davatzikos, 2003] incorporated geometric-moment-invariant (GMI) attributes, tissue
membership attributes and boundary/edge attributes into a high-dimensional attribute vector
to better characterize a voxel in human brain images. Since then, a number of geometric and
texture attributes have been explored, including, but by no means limited to, intensity
attributes (e.g., [Ellingsen and Prince, 2009; Foroughi and Abolmaesumi, 2005]), boundary/
edge attributes (e.g., [Shen and Davatzikos, 2003; Zacharaki et al., 2008; Sundar et al.,
2009; Ellingsen and Prince, 2009]), tissue membership attributes (requiring task-specific
segmentation) (e.g., [Shen and Davatzikos, 2003; Xing et al., 2008; Zacharaki et al., 2008;
Ellingsen and Prince, 2009]), wavelet-based attributes (e.g., [Xue et al., 2004]), local
frequency attributes (e.g., Liu et al. [2002]; Jian et al. [2005]), local intensity histogram
attributes (e.g., [Shen, 2007; Yang et al., 2008]), geodesic intensity histogram attributes
(e.g., [Ling and Jacobs, 2005; Li et al., 2009]), tensor orientation attributes (specifically for
diffusion tensor imaging registration) (e.g., [Verma and Davatzikos, 2004; Munoz-
Moreno09 et al., 2009; Yap et al., 2009]), and curvature attributes (specifically for surface
matching) (e.g., [Shen et al., 2001; Liu et al., 2004; Zhan et al., 2007; Ou et al., 2009a]).
These studies have all demonstrated improved registration accuracies as a result of more
distinctive characterizations of voxels. However, as most of these attributes are pre-
conditioned on segmentation, tissue labeling, or edge detection, and are tailored to specific
image content or modality, there is still need to systematically find a common set of
attributes that are generally applicable for various image contents. And also, there is need to
automatically, other than heuristically, select the optimal attribute components. DRAMMS
aims in this direction. In particular, DRAMMS extracts a set of multi-scale and multi-
orientation Gabor attributes at each voxel by convolving the images with a set of Gabor
filter banks.

The use of Gabor attributes in DRAMMS is mainly motivated by the following three
properties of Gabor filter banks:

1. General applicability and successful application in numerous tasks. Almost all
anatomical images have texture information, at some scale and orientation,
reflecting the underlying geometric and anatomical characteristics. This texture
information can be effectively captured by Gabor attributes, as demonstrated in a
variety of studies, including texture segmentation (e.g., [Jain and Farrokhnia,
1991]), image retrieval (e.g., [Manjunath and Ma, 1996]), cancer detection (e.g.,
[Zhang and Liu, 2004]) and tissue differentiation (e.g., [Zhan and Shen, 2006; Xue
et al., 2009]). Recently, Gabor attributes have also been successfully used in [Liu et
al., 2002; Verma and Davatzikos, 2004; Elbakary and Sundareshan, 2005] to
register images of different contents/organs. This promises the use of Gabor
attributes for a variety of image registration tasks. The previous methods have also
pointed out some drawbacks related to the use of Gabor attributes, such as the high
computational cost and the need for an appropriate choice of attribute components
due to the conveyed redundant information. DRAMMS addresses both drawbacks
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by developing a module for selecting the optimal Gabor components, which will be
detailed in Section 2.2.2.

2. Suitability for single- and multi-modality registration tasks. This is mainly because
of the multi-scale property in Gabor filter banks. Specifically, those high-frequency
Gabor filters often serve as edge detectors, detected edge information is, to some
extent, independent of the underlying intensity distributions, and is therefore
suitable for multi-modality registration tasks. This holds even when intensity
distributions in the two images no longer follow consistent relationship, in which
case mutual-information [Wells et al., 1996; Maes et al., 1997] based methods are
challenged [Liu et al., 2002]. On the other hand, the low-frequency Gabor filters
often serve as local image smoothers, and the corresponding attributes are
analogous to images at coarse resolutions, which will largely help prevent the cost
function from being trapped at the local minima. As a demonstration Fig. 4 shows a
typical set of high- and low-frequency Gabor attributes for two typical human brain
images from different modalities. In this case, edge information extracted by high-
frequency Gabor filters (first row in the figure) provides basis for the multi-
modality registration.

3. Multi-scale and multi-orientation nature. As [Kadir and Brady, 2001] pointed out,
scale and orientation are closely related to the distinctiveness of attributes. The
multi-scale and multi-orientation attributes are more likely to render each voxel
distinctively identifiable, therefore reducing ambiguities in attribute-based voxel
matching. For instance, compared with traditional edge detectors (e.g., Canny,
Sobel), the multi-orientation Gabor attributes will easily differentiate edges in
horizontal and vertical directions (see Fig. 4).

Direct computation of 3D Gabor attributes is usually time consuming. To save
computational cost, the approximation strategy in [Manjunath and Ma, 1996; Zhan and
Shen, 2006] is adopted in this paper. Specifically, the 3D Gabor attributes at each voxel are
approximated by convolving the 3D image with two groups of 2D Gabor filter banks in two
orthogonal planes (x-y and y-z planes). Mathematically, the two 2D Gabor filter banks in
two orthogonal planes are

(2)

(3)

where a is the scale basis set to 2 for image re-sampling. m = 1, 2, …, M is the index for
scales, with M being the total number of scales; as m varies, the scale factor am leads to
different sizes of the neighborhood from which the multi-scale Gabor attributes are

extracted. , ,

 and  are rotated coordinates, where n
= 1, 2, …, N is the index for orientations, with N being the total number of orientations. As n
varies, Gabor envelops rotate in x-y and y-z planes, leading to multi-orientation Gabor
attributes.
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g(x, y) and h(y, z) in the equations above are known as the “mother Gabor filters”, which are
complex-valued functions in the spatial domain. They are each obtained by modulating a
Gaussian envelope with a complex exponential. Intuitively, they are elliptically-shaped
covers (Gaussian envelops) that specify the neighborhood of each voxel, from which the
Gabor attributes will be extracted. Mathematically, the mother Gabor filters g(x, y) and h(y,
z) are expressed as

(4)

(5)

where σx, σy and σz are the standard deviations of the Gaussian envelope in the spatial
domain; fx and fy are modulating (shifting) factors in the frequency domain (often known as
“central frequencies”) [Kamarainen, 2003].

As a result of attribute extraction, each voxel u = (x, y, z) will be characterized by a Gabor
attribute vector Ãi(u) with dimension D = M × N × 4, as denoted in Eqn. 6. Here the factor 4
is because of two parts (real and imaginary) of Gabor responses from two orthogonal planes.

(6)

We call this attribute vector Ã(·) a “full” Gabor attribute vector, in contrast to the “optimal”
attribute vector A⋆(·) to be selected in Section 2.2.2. The numbers of their dimensions are
denoted as D and d, respectively, whereas D is determined by the number of scales and
orientations (D = M × N × 4), and d is determined automatically during the subsequent
attribute selection process.

Note that in Eqn. 6, we have taken magnitude (absolute value) of the Gabor response in the
real and imaginary parts, therefore even contrast changes, the edge information extracted by
high-frequency Gabor filters will remain stable, which is suitable for multi-modality
registration.

Role of Full Gabor Attributes: Before selecting optimal attributes and using attribute
vector for across-image matching, we need to make sure that the extracted full attribute
vector Ãi(u) in Eqn. 6 is able to characterize voxels distinctively, at least within the image
itself. By distinctive characterization, we mean that attributes of a point should be only
similar (or identical) to attributes from the point itself, and should be different from
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attributes of any other voxels in the same image. In Fig. 5, two special points (labelled by
red and blue crosses in sub-figure (a)) and two ordinary points (labelled by orange and
purple crosses in sub-figure (a)) are examined in a typical brain MR image. Similarity maps
(b,c,d,e) are calculated between the attributes of each of these examined voxels and
attributes of all other voxels in the same image. From these similarity maps it can be
observed that, both special voxels and ordinary voxels have been well localized with fairly
small ambiguities by the full Gabor attributes Ãi(u).

2.2.2. Attribute Selection—A disadvantage of Gabor attributes is the redundancy among
attributes, which is largely caused by the non-orthogonality among Gabor filters at different
scales and orientations. This redundancy not only increases computational cost, but more
importantly, it may reduce the distinctiveness of attribute representation, causing
ambiguities in the attribute matching [Manjunath and Ma, 1996; Kamarainen, 2003]. A
learning-based method is therefore designed to select the optimal components.

The main idea of attribute selection is the following: if provided with some pairs of
corresponding voxels from the two images, we can treat them as training samples and
employ a machine learning method to select the optimal attribute components, such that
their matching similarity and uniqueness are preserved or increased.

Two issues sit in the center of formulating this idea: 1) selection of training voxel pairs – in
the context of general-purpose registration algorithm like ours, they should be selected right
from the images being registered and the selection should be fully automatic without
assumption of any a prior knowledge. Moreover, representative voxel pairs should be those
that have high matching similarity and uniqueness; 2) selection of optimal attributes – here
the criterion is to preserve or increase the matching similarity and uniqueness between these
training voxel pairs.

Both issues rely on the quantifications of matching similarity and matching uniqueness
between voxel pairs. Matching similarity sim(p, q) between a pair of voxels (p ∈ Ω1, q ∈
Ω2) can be defined based on their attribute vectors,

(7)

where smaller Euclidean distance between two attribute vectors indicate higher similarity.
Note that the squared Euclidean distance between two attribute vectors is normalized by
their dimensionality D, so as to make the similarity calculated from different number of
attributes comparable. Matching reliability can be encoded by the mutual-saliency weight
ms(·, ·), which will be elaborated in the subsequent section 2.3. With these quantifications,
we can proceed to the two steps towards selecting optimal Gabor attribute components.

Step 1: Selecting Training Voxel Pairs: To encourage the training voxel pairs to represent
all other voxels, they should be scattered in the image domain and far away from each other.
Accordingly, DRAMMS regularly partitions the subject image I1 into a number of J regions

 and selects from each region a voxel pair  that
has highest matching similarity and matching uniqueness (measured by mutual-saliency),
under the full Gabor attributes. Mathematically,
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(8)

Note that the full Gabor attribute vector Ã(·) is used at this step, since no optimal
components have been selected. The mutual-saliency measure ms(p, q) will be elaborated in
a later Section 2.3; for now, the bottom line is that it reflects the matching uniqueness
between p ∈ Ω1 and q ∈ Ω2.

Fig. 6 illustrates the selection of training voxel pairs. Here regular partition is used instead of
more complicated organ/tissue segmentation, in order to keep DRAMMS as a general-
purpose registration method without assumptions on segmentation. Note also that the
template image I2 is not partitioned because at this stage, no transformation is performed and
no corresponding regions should be assumed.

Step 2: Selecting Optimal Attributes: Once training voxel pairs  have been
determined, DRAMMS selects a subset of optimal attribute components A⋆() out of the full
Gabor attribute vector Ã(), such that they maximize the overall similarity and matching
uniqueness on these selected training voxel pairs. Mathematically,

(9)

Like in Eqn. 8, ms(·, ·) is the mutual-saliency that reflects the matching uniqueness and will
be elaborated in the subsequent Section 2.3.

Actually, Eqn. 8 and Eqn. 9 share almost the same objective function [sim(·, ·) × ms(·, ·)].
Difference is that, in Eqn. 8, the full attribute vector Ã(·) is given and held unchanged, and
the objective function is optimized over candidate voxel pairs to select best suitable training

pairs; in Eqn. 9, on the other hand, the training voxel pairs  are held unchanged
and the objective function is optimized over candidate attributes to select a set of optimal
attribute components.

To implement Eqn. 9, DRAMMS adopts an iterative backward elimination (BE) and
forward inclusion (FI) strategy for attribute selection. Such a strategy is commonly used for
attribute/variable selection in the machine learning community (e.g. [Guyon and Elisseeff,
2003;Fan et al., 2007]). The iterative process is specified as follows. Starting from a full set
of D Gabor attributes Ã(·), each time we eliminate one Gabor component such that the
objective function [ms(·, ·) × sim(·, ·)] increases by a larger amount than eliminating other
components (this is known as backward elimination). We continue the elimination until
there is no one to be eliminated (meaning that, eliminating any one attribute component will
lead to decrease of the objective function). This ends one round of backward elimination.
Staring from there, we start to include the previously-eliminated Gabor components once at
a time, so that the cost function [ms(·, ·) × sim(·, ·)] increases by a largest amount than
including other components (this is known as forward inclusion). We keep on this inclusion
until there is no one to be included (meaning that, including any one attribute component
will lead to decrease of the objective function). This ends one round of forward inclusion.

Ou et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, we iterate between backward elimination and forward inclusion and monotonically
increase the objective function, until there is no attribute component to be eliminated or
included. Convergence is guaranteed as the number of attributes is bounded below and
above. Upon convergence, the objective function [ms(·, ·) × sim(·, ·)] is maximized and the
remaining attributes are the optimal set of attributes we will eventually use for attribute
matching, denoted as A⋆(·). Fig. 7 shows a typical attribute selection process for two cardiac
images being registered. In this case, the objective function keeps increasing during one
round of BE process (where 39 attributes were eliminated from the full attribute set), one
round of FI process (where 9 previously-eliminated attributes were included back to the
remaining attribute set), and one more round of BE processes (where 4 attributes were
eliminated from the attribute set), until it reaches the maximum, and then the optimal
attribute set has been selected.

Role of Optimal Gabor Attributes: Fig. 8 compares the intensity attribute, gray-level-
cooccurance-matrix (GLCM) texture attributes [Haralick, 1979], full Gabor attributes, and
the optimized Gabor attributes, in terms of matching ambiguities caused by different
attributes. Similarity maps have been generated by these attributes between a special/
ordinary point in the subject brain/cardiac image and all points in the template image. The
optimal Gabor attributes lead to highly distinctive attribute characterizations, with less
matching candidates both for a special point (depicted by the red cross) and for an ordinary
point (depicted by blue cross). Since the similarity map for a given voxel now looks more
like a “delta” function in the neighborhood of this voxel, the optimal Gabor attributes show
great promise in reducing the risk of being trapped at local minimum.

2.3. Using Mutual-Saliency Map to Modulate Registration
The above Section 2.2 has described extracting a full set of Gabor attributes (2.2.1) and
selecting the optimal Gabor attributes (2.2.2) to characterize each voxel distinctively. That
finishes the first component of DRAMMS, namely, attribute matching (AM). This section
will elaborate the second component of DRAMMS, namely, mutual-saliency (MS)
weighting, to better modulate the registration process.

As addressed in the introduction, an ideal optimization process should utilize all voxels but
assign a continuously-valued weight to each voxel, based on the capability of this voxel to
establish unique correspondences across images. Actually, the idea of reliability detection
for better matching was probably first investigated in [Anandan, 1989; Duncan et al., 1991]
and their follow-up studies [McEachen and Duncan, 1997; Shi et al., 2000]. They developed
a “confidence” quantity for motion tracking on surface points, which measures whether the
matching of two surface points are unique (reliable) in the neighborhood, based on the
similarity defined on their curvatures. Other works explicitly segment the regions of interest
in a joint segmentation and registration framework [Yezzi et al., 2001; Wyatt and Nobel,
2003; Chen et al., 2005; Pohl et al., 2006; Wang et al., 2006; Xue et al., 2008; Ou et al.,
2009a]. Both approaches assign weights to certain feature voxels/regions depending on
detection or segmentation, and are therefore not generally applicable to diverse tasks. For
extension, we aim to develop a quantity that measures matching uniqueness (hence
reliability) for every single voxel in the image and the quantification method should not be
dependent on any prerequisite detection or segmentation.

Recent work [Huang et al., 2004; Bond and Brady, 2005; Yang et al., 2006; Wu et al., 2006;
Mahapatra and Sun, 2008] assumed that more salient regions could establish more reliable
(unique) correspondence and hence should be assigned with higher weights. As a result,
improved registration accuracies have been reported. However, this intuitive assumption
does not always hold, because regions that are salient in one image are not necessarily
salient in the other image, or more importantly, do not necessarily have unique

Ou et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correspondence across images. A simple counter-example could be observed in Fig. 1: the
boundary of the lesion is salient in the diseased brain image, but it does not have a
correspondence in the normal brain image, so assigning higher weights to it will most
probably harm the registration process. In other words, (single) saliency in one image does
not necessarily indicate matching reliability (uniqueness) between two images.

To remedy this problem, [Luan et al., 2008] extended the single saliency criterion into
double (joint) saliency criterion. In their work, higher weights are assigned to a pair of
voxels if they are respectively salient in two input images. The underlying assumption is that
double salient voxels from two images will be more likely to establish reliable
correspondences. However, a salient point in one image may belong to completely different
anatomical structures from a salient point in the other image, even when they are spatially
close or identical to each other. For instance, also in Fig. 1, the boundary of the lesion is
salient in the subject image, whereas another at the same spatial location in the other image
may be also salient but may belong to a different tissue type. In this case, assigning higher
weights to them according to the double saliency criterion will unexpectedly highlight a
matching between a lesion region and a normal region, which is also harmful for the
registration process. The reason that both single saliency and double saliency may fail in
certain circumstances is rooted in the fact that, saliency is measured single images and
matching reliability (uniqueness) is measured across images, therefore are two quantities
that are not always positively correlated, although intuitively so. Strictly speaking, saliency
is only an indirect indicator for matching reliability, neither sufficient nor necessary
condition.

To directly measure matching uniqueness (hence reliability) across two images, DRAMMS
extends the concepts of single saliency or double saliency into the concept of mutual-
saliency. Generally speaking, the matching between a pair of voxels is unique (hence
reliable) if they are similar to each other, and meanwhile not similar to anything else in the
neighborhood. That is, the similarity map between a point u in one image and all the points
in the neighborhood in the other image should exhibit a “delta” shaped function, with the
pulse located right at its corresponding point T(u), as shown in Fig. 9. In this case, we can
say that the matching between u and T(u) is reliable, or mutually salient. Therefore, to
calculate mutual-saliency value ms(u, T(u)), we need to quantitatively check the existence
and height of a delta function in the similarity map generated between voxel u and all voxels
in the neighborhood of T(u). This is the idea behind the definition of mutual-saliency.

As shown in Fig. 10 and Eqn. 10, mutual-saliency value ms (u, T(u)) is calculated by
dividing the mean similarity between u and all voxels in the core neighborhood (CN) of
T(u), with the mean similarity between u and all voxels in the peripheral neighborhood (PN)
of T(u), because higher mean similarity in the CN and lower mean similarity in PN will
indicate more reliable (unique) matching.

(10)

where sim(·, ·), the attribute-based similarity between two voxels, is defined in the same way
as in Eqn. 7. Note that voxels in between the core and peripheral neighborhoods of T(u) are
not included in the calculation of mutual-saliency value, because there is typically a smooth
transition from high to low similarities, especially for coarse-scale Gabor attributes. For the
same reason, the radii of these neighborhoods are adaptive to the scale in which Gabor
attributes are extracted. In particular, in accordance to the Gabor parameter that we will
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discuss in Secton 5.2, the radii of core, transitional and peripheral neighborhood are 2, 5, 8
voxels, respectively, for a typical isotropic 3D brain image.

In implementation, mutual-saliency map is updated each time when the transformation T is
updated, such as in EM strategy, since mutual-saliency relies on the current transformation T
according to Eqn. 10 and vice versa according to Eqn. 1.

Role of Mutual-Saliency Maps—The mutual-saliency map effectively identifies regions
in which no good correspondence can be found and assigns them with low weights. This
helps reduce their negative impact in the optimization process. In Fig. 11, motivated by our
work on matching histological sections with MRI, we have simulated cross-shaped tears
(cuts) in the subject image, which are typical when sections are stitched together. The
mutual-saliency map assigns low weights to the tears/cuts, therefore reducing their negative
impact towards registration. On the contrary, registration without using mutual-saliency map
tends to fill in the tears by over-aggressively pulling other regions. This causes artificial
results as pointed out by the arrows in Fig. 11(c). Besides, by using mutual-saliency
weighting, the deformation field in Fig. 11(g) is smoother and more realistic than the one
without using mutual-saliency map (d).

3. Numerical Implementation
A complete registration framework usually consists of three parts: 1) similarity measure,
which defines the criterion to align the two images; 2) deformation model, which defines the
mechanism to transform one image to the other; and 3) optimization strategy, which is used
to calculate the best parameters of the deformation model such that the similarity between
the two images is maximized.

The attribute matching and mutual-saliency weighting components together in DRAMMS
(Eqn. 1) are essentially a new definition of image similarity measure, namely the first part of
a registration framework. It should be readily combined with any deformation model and
any optimization strategy to form a complete registration framework. For the sake of
completeness, we have specified free form deformation (FFD) as the deformation model and
the discrete optimization as the optimization strategy in the following two sub-sections.

3.1. Choice of Deformation Model
A wide variety of voxel-wise deformation models can be selected, such as demons [Thirion,
1998; Vercauteren et al., 2009], fluid flow model [Christensen et al., 1994; D'Agostino et al.,
2003], and free form deformation (FFD) model [Rueckert et al., 1999, 2006]. In our
implementation, the diffeomorphic FFD [Rueckert et al., 2006] is chosen, because of its
flexibility to handle a smooth and diffeomorphic deformation field, and its popularity among
the deformable registration community. In the following experiments, the distance between
the control points is chosen at 7 voxels in x-y directions and 2 voxels in z direction. The
deformation is set diffeomorphic by constraining the displacement at each control point
(node) in the FFD model not to exceed 40% of the spacing between two adjacent control
points (nodes). Choi and Lee [2000] has elegantly shown that this 40% hard constraint will
guarantee diffeomorphism of deformation field. Note that, this 40% hard constrain is the
maximum displacement in each iteration of each resolution. Therefore, composition of
transformations in multiple iterations and multiple resolutions can still cope with large
deformation while maintaining diffeomorphism.
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3.2. Choice of Optimization Strategy
To optimize the parameters for the FFD deformation model, an numerical optimization
strategy is needed. A large pool of optimization strategies can be used, including gradient
descent and Newton's method. In DRAMMS, we have chosen a state-of-the-art strategy
known as discrete optimization [Komodakis et al., 2008]. Loosely speaking, the discrete
optimization strategy densely samples the displacement space and seeks a group of
displacement vectors on the FFD control points (nodes) so that they altogether minimize the
matching cost. The choice of discrete optimization over gradient descent optimization
strategy is because that, although gradient descent strategy is intuitive and easy to
implement, it is very computationally costly and is more prone to be trapped at local
minima. In contrast, the discrete optimization has shown computational efficiency, with
similar or even improved registration results. Table 1 compares the computational time for
three typical sets of images by using gradient descent optimization and discrete
optimization, respectively. The speedup from discrete optimization is not difficult to be
observed.

Another reason for the choice of discrete optimization is that it should be less likely to get
trapped by local minima, because of its discrete nature of the solution space. This has been
demonstrated in [Glocker et al., 2008], where increased registration accuracy has been
obtained compared to traditional gradient descent strategy. In our implementation though,
registration accuracy by the two optimization strategies are almost equivalent, probably
because of the distinctiveness of the attribute characterization, which might have already
reduced the risk of being trapped at local minima, as demonstrated in Figs. 5 and 8.
Therefore, the main merit of choosing discrete optimization in our framework is still the
considerable speedup factor, without any loss of registration accuracy.

Since the novel respects of DRAMMS are mainly in the development of attribute matching
and mutual-saliency weighting, it is outside the scope of this paper to further discuss and
compare different optimization strategies. However, for the sake of completeness of this
paper, the discrete optimization strategy is briefly described below. Interested readers are
referred to [Komodakis et al., 2008; Glocker et al., 2008] for details.

Let Φ = {ϕ} be the entire set (grid) of control points (nodes) ϕ, then the energy in Eqn. 1 can
be rewritten after being projected onto the nodes as:

(11)

where η−1 (·) is an inverse mapping function that maps the influence from a node ϕ ∈ Φ to
every ordinary point u; Tϕ is the translation that is applied to the node ϕ of the grid Φ.
Compared to [Glocker et al., 2008], here the inverse weighting function η−1 (·) acts only as
an apodizer function, which does not give weights to the voxels with respect to their
distance from the control points. The only weights given are the ones due to the mutual
saliency value ms(·, ·).

Following [Glocker et al., 2008], the registration problem will be cast as a multi-labelling
one and the theory of Markov random fields (MRF) will be used to formulate it
mathematically. The solution space was discretized by sampling along the x, y and z
directions as well as along their diagonals, resulting in a set L of (18 × n + 1) labels, where n
is the number of sampling labels (discretized displacement) along each direction. What we
search now is which label to attribute to each node of the deformation grid, i.e., which
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displacement to be applied to each node. The energy in Eqn. 11 can be approximated by a
MRF energy whose general form is the following:

(12)

where l is the labeling (discretized displacement) that we search, lϕ, lψ ∈ L and Vϕ, Vϕψ are
the unary and the pair-wise potentials respectively. The unary and the pair-wise potentials
encode the data and the regularization term of the energy in Eqn. 11. Specifically, for the
case of the data term:

(13)

The regularization will be defined in the label domain as a simple vector difference, thus:

(14)

which encourages nearby control points (nodes) to have consistent geometric displacements.

In this discrete optimization, the number of labels (discretized displacement) in the search
space is the key factor to balance between the registration accuracy and computational
efficiency. More labels correspond to denser sampling of the possible displacements,
therefore higher accuracy but lower computational efficiency. A good trade-off is obtained
by a multi-resolution approach, where greater deformations (coarsely-distributed labels in
larger search space) will be recovered in the beginning and the solution will be refined in
every step by considering smaller deformations (densely-distributed labels in a small search
space). In that way, the solution can be precise enough while the method rests computational
tractable.

A list of parameters in this implementation is provided as follows. The regularization
parameter λ was set to 0.1 for the discrete optimization case in Eqn. 11. The η−1 (·) indicator
function was defined in such a way that all the voxels belonging to a 26–neighborhood
centered to a node contribute to the energy projected to it. A number of n = 4 labels were
sampled per direction. The distance between the control points is chosen at 7 voxels in x – y
directions and 2 voxels in z direction. All the experiments were operated in C code on a 2.8
G Intel Xeon processor with LINUX operation system, and computational time of discrete
optimization for several typical scenarios can be found in the rightmost two columns in
Table 1.

4. Results
DRAMMS was tested extensively in various registration tasks containing different image
modalities and organs. The results are compared with those obtained from mutual
information (MI)-based FFD, another commonly-used deformable registration method. A
public software package MIPAV (Medical Image Processing, Analysis and Visualization)
[McAuliffe et al., 2001] available from NIH is used for MI-based FFD registration. The use
of MIPAV is because of its friendly cross-platform user's interface, its computational
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efficiency and its popularity within the society. Specially, the MI-based FFD in MIPAV is
implemented in multi-resolution and by Powell's optimization strategy.

4.1. Simulated Images
Registration results on simulated images have already been shown in Fig. 11. In that case,
we have simulated partial loss of correspondence by generating a cut in the subject image
Fig. 11(a). DRAMMS largely reduced the negative impact caused by missing data and
therefore generated anatomically more meaningful result than that from MI-based FFD.

4.2. Inter-Subject Registration
Our second set of experiments is performed on registration between brain images and
between cardiac images from different individuals (the ones shown in the left column of Fig.
8). The images being registered are of the same modality. Therefore, the registration results
can be quantitatively compared in terms of mean squared difference (MSD) and correlation
coefficient (CC) between the registered and the template images – high registration accuracy
should correspond to decreased MSD and increased CC. This evaluation criterion has also
been used in Rueckert et al. [1999]. In this experiment, we recorded registration accuracy
obtained by intensity, by Gabor attributes, by optimal Gabor attributes, and by optimal
Gabor attributes together with the mutual-saliency weighting. Overall, Fig. 12 shows that,
each of DRAMMS' components provides additive improvement of registration accuracy
over MI-based FFD. The largest improvement from MI-based occurs at replacing the one-
dimensional intensity attribute with high-dimensional Gabor attributes.

4.3. Atlas Construction
Our third set of experiments consists of atlas construction of human brain images. Fig. 13
shows 30 randomly selected brain MR images used for constructing a atlas. Each brain
image is registered (in 3D) to the template (outlined by the red box), and then the warped
images are averaged to form the atlas. The constructed atlases are shown in Fig. 14, from
there DRAMMS is observed to result in sharper average, indicative of higher registration
accuracy on average. Differences between the constructed atlases and the template image are
further visualized for the central slice, as shown in the top row in Fig. 15. Also shown in
Fig. 15 (bottom row) is the voxel-wise standard deviation among all warped images, by
affine, MI-based FFD and DRAMMS methods, respectively. The smaller difference with the
template in the top row and the smaller standard deviation among all warped images in the
bottom row indicate the accuracy and the consistency of DRAMMS method over MI-based
FFD. Fig. 16 shows mean squared difference (MSD), correlation coefficient (CC), and
errors against expert-defined landmarks, between each warped subject image and the
template image, by three registration methods, respectively. We specially emphasize Fig.
16(c), where DRAMMS recovers voxel correspondences closer to expert-defined locations
in each single pair-wise case compared with MI-FFD method.

4.4. Multi-modality Registration
Our fourth set of experiments is on some fairly challenging multi-modality registration
tasks. Normally, mutual information method is used for multi-modality registrations, as long
as intensity distributions from the two images follow consistent relationship. However, when
this assumption of consistent relationship in intensity distributions is violated, mutual
information based methods are usually severally challenged. The registration between
histological and MR images shown in Fig. 17 is one such case.

For a brief background, histological images are usually taken in the ex vivo environment, by
physically sectioning an organ into slices and examining the pathology of those slices under
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microscopy. Because of the ability to reveal pathologically authenticated ground truth for
lesions and tumor, it is often of research interest to map ground truth from histological
images to in vivo MR images of the same organ, so as to help doctors better understand the
MR signal characteristics of lesions and tumor ??.

Specifically, histology-MRI registration is challenged by the fact that one image is from ex
vivo whereas the other comes from in vivo, therefore, histological and MR images do not
follow consistent relationship in their intensity distributions. For instance, in Fig. 17, we can
observe dark regions corresponding to dark regions across images (blue circle), white
regions corresponding to white regions across images (blue circles), but also dark regions
corresponding to white regions (purple circles). Actually, the challenges in histology-MRI
registration is far more several than in CT-MRI registration, because unlike CT-MRI case,
where both are in vivo modalities, the ex vivo histological image and in vivo MR image have
more drastic contrast differences and resolution differences, causing some structures clearly
present in one image but almost invisible in the other. In this case, mutual information
methods tend to be challenged, as demonstrated in a number of studies [Pitiot et al.,
2006;Meyer et al., 2006;Dauguet et al., 2007]. To make things worse, tears/cuts often appear
in the histological images, causing partial loss of correspondences. In Fig. 17, crosses of the
same color have been placed at the same spatial locations in sub-figure (b), MR image, and
(d) the warped histological image by DRAMMS, in order to visually reveal whether the
anatomical structures have been successfully aligned. Compared with the artificial results
obtained by MI-based FFD, DRAMMS leads to a smooth deformation field that better aligns
tumor and other complicated structures.

5. Discussion
In this paper, a general purpose registration method named DRAMMS is presented.
DRAMMS characterizes each voxel by an optimized multi-scale and multi-orientation
Gabor attribute vector, therefore increases distinctiveness of each voxel and reduces the
matching ambiguity. A second feature is that DRAMMS assigns continuously-valued
weights for each voxel, based on a mutual-saliency measure that evaluates whether this
voxel is capable of establishing reliable (unique) correspondences. With the assistance of
this mutual-saliency weighting mechanism, the registration relies more on regions that can
have reliable correspondences across images, and is therefore capable of reducing the
negative impact caused by missing data and/or partial loss of correspondences. Experiments
in simulated images, across-subject images and multi-modality images from human brain,
heart and prostate have demonstrated the general applicability and registration accuracy of
DRAMMS.

In the following, we will first discuss, in Sub-section 5.1, how DRAMMS bridges the gap
between the two main categories of registration methods in the literature – voxel-wise
methods and landmark/feature-based methods. Then, we will discuss the important issues in
each of DRAMMS components – attribute extraction is discussed in Sub-section 5.2,
attribute selection is discussed in Sub-section 5.3 and mutual-saliency weighting is
discussed in Sub-section 5.4. In the end, we will discuss the difference between DRAMMS
and a closely-related work HAMMER [Shen and Davatzikos, 2003] in Sub-section 5.5 and
conclude the paper in Sub-section 5.6.

5.1. DRAMMS as a Bridge between Voxel-wise and Landmark/feature-based Methods
The two components in DRAMMS can be regarded as bridges between the traditional voxel-
wise methods and the landmark/feature-based methods in two respects. This is listed in
Table 2.
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5.2. Discussion on Attribute Extraction
Gabor attributes are used in the DRAMMS framework because of the three reasons
mentioned in Section 2.2.1: general applicability; suitability in single- and multi-modality
registration; and the multi-scale and multi-orientation nature.

When using Gabor filter banks, the number of scales, number of orientations, and the
frequency range to be covered should all be carefully tuned. Ineffectively setting these
parameters would unnecessarily introduce large redundancy among the attributes extracted,
increasing the computational burden and decreasing the distinctiveness of attribute
description. In this paper, we have adopted the parameter settings developed by [Manjunath
and Ma, 1996], which have found success applications in numerous studies including [Zhan
and Shen, 2006]. In particular, the number of scales is set at M = 4 and the number of
orientations is set at N = 6, the highest frequency is set at 0.4Hz, the lowest frequency at
0.05Hz, and the size of the Gaussian envelope dependent on the highest frequency by a fixed
relationship specified in equation 1 of their paper. Fig. 18 highlights the differences in the
consequent similarity maps between adopting their set of parameters (sub-figures b, c, d, e)
and adopting a random set of parameters (sub-figures b′, c′, d′, e′).

There are, of course, other texture and geometric attributes that can easily fit into the
framework of DRAMMS. Other options include gray-level cooccurrence matrix (GLCM)
attributes [Haralick, 1979], spin image attributes [Lazebnik et al., 2005], RIFT (rotation-
invariant feature transform) attributes [Lazebnik et al., 2005] and fractal attributes [Lopes
and Betrouni, 2009]. Although Gabor attributes are believed to be a proper choice because
of the three merits listed in Section 2.2.1 and because of the experimental comparison in Fig.
8, a rigorous comparative study among all these attributes in the registration context should
be of interest. Such a study is a non-trivial task, as it requires a large number of images to be
registered, requires objective evaluation of registration accuracies, which is difficult, and
ideally, requires quantitative analysis of the number and the depth of local minima in the
cost function as a result of different attributes or their different combinations. We mark such
a study as one of our future research directions.

5.3. Discussion on Attribute Selection
Although the overlaps/redundancies among Gabor filter banks can be largely reduced by
carefully choosing a set of parameters in the very beginning, the redundancy will almost
never vanish completely, simply because of the non-orthogonal nature among Gabor filters.
Therefore, the attribute selection module is needed to further reduce information redundancy
and also computational burden.

Key to the selection of attributes is the quantification of matching reliability and matching
uniqueness, especially the latter. Quantification of matching uniqueness (by mutual-
saliency) enables us to find voxels and attributes components that not only render true
correspondences similar, but more importantly, render them uniquely similar, meaning
similar to each other and not similar to anything else in the neighborhood.

Another nice feature of the attribute selection part is that no a priori knowledge is required.
It is designed to take no other input except the two input images being registered, therefore
keeping DRAMMS a general-purpose method.

Nevertheless, if a priori knowledge is given, DRAMMS framework can be readily extended
to incorporate it without much efforts. For instance, if there are a number of anatomically
corresponding voxels given by experts, then we can directly rely on them to select the
optimal attributes and simply skip the step of selecting the training voxel pairs, as long as
the expert-defined voxel pairs are 1) mutually-salient, 2) representative of anatomic/
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geometric context in images and 3) ideally, spatially distributed. A priori knowledge can be
also obtained if registration is restricted to a specific type of images (e.g. human brain MRI
registration). In this case, a common set of optimal attributes can be learned when
registering a large set of such images. This should provide considerable speedup of the
algorithm for some common registration tasks.

5.4. Discussion on Mutual-Saliency Weighting
The mutual-saliency value is automatically derived to reflect whether the matching between
a pair of voxels is reliable (unique) in the neighborhood. Since saliency is measured
individually in one image and matching uniqueness is measured across images, neither
single saliency or double saliency necessarily lead to matching uniqueness. That is the
motivation for developing mutual-saliency, which directly measure uniqueness across
images. Therefore, it can more effectively capture regions/voxels useful for registration and
regions/voxels having difficulties establishing correspondences.

The mutual-saliency map seems to be most helpful under circumstances of missing data, or
partial loss of correspondences. A typical example is the image cuts/stitches when
registering histological images with MR images (like in Figs. 11 and 17). Another typical
example is the lesions/tumors when registering diseased images with normal images (e.g.
Fig. 1). In these cases, existing methods without using mutual-saliency weighting tend to
over-aggressively match structures that should not have been corresponding to each other.
Although the over-aggressive matching usually lead to smaller residual (like in Fig. 11(c)),
they are not desirable because of the artificial images after registration and because of the
often convoluted deformations. In contrast, the mutual-saliency maps guide registration to
match well the structures that should have been matched, and leave the structures that have
difficulty finding correspondences almost untouched. When the negative impact of the loss
of correspondence is reduced (such as demonstrated in Fig. ??), the registered image is more
anatomically meaningful (like in Fig. 11(f)), and the relative larger intensity residual
becomes a right descriptor to encode the missing data.

It should be noted that the mutual-saliency calculation itself is usually computationally
costly, because it checks voxel-wise similarities in a neighborhood for each individual
voxel, and on top of that, because all these similarities are calculated from high-dimensional
attribute vectors. The computational cost of mutual-saliency map can be observed in Table
1, where incorporating mutual-saliency in the registration will usually cost considerably
more computational time. Therefore, for those registration tasks that do not involve missing
data or loss of correspondence, the mutual-saliency component can be probably dropped,
with noticeable speedup and moderate decrease of registration accuracy.

5.5. Differences between DRAMMS and HAMMER
We refer to HAMMER registration algorithm [Shen and Davatzikos, 2003] as the one
closest to DRAMMS. HAMMER algorithm pioneers the attribute-matching concept, where
it extracts geometric-moment-invariant (GMI) attributes, tissue membership attributes and
boundary/edge attributes for brain image registrations. We point out the following
differences between the two methods:

1. Spatial adaptivity is different. HAMMER is essentially a landmark/feature-based
method and therefore may inherit some challenges that are inherent to landmark/
feature-based methods. DRAMMS is a voxel-wise method with mutual-saliency
weightings on each voxel.

2. Suitable application is different. HAMMER is specifically designed for normal
brain image registration, as the attributes of tissue membership require
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segmentation of brain tissue types prior to registration. DRAMMS is a general-
purpose method, as the Gabor attribute extraction can be generally applied to any
images, regardless of modalities and contents. DRAMMS can even apply to
registration with missing data and partial loss of correspondences.

3. Deformation mechanism is different. HAMMER has its own deformation
mechanism, where the movement of one landmark/feature voxel will guide the
movement of neighboring voxels in a Gaussian kernel. The deformation
mechanism is usually aggressive and, in some cases, not diffeomorphic. DRAMMS
is based on diffeomorphic FFD model that guarantees diffeomorphism.

In this paper, DRAMMS is only compared with other general-purpose methods, and it will
be interesting to compare with those specific-purpose methods including HAMMER in
future studies, to better establish registration accuracies.

5.6. Conclusion
In summary, a general-purpose image registration method named “DRAMMS” has been
presented in this paper. In DRAMMS, more distinctive characterization of voxels leads to
reduced matching ambiguities, and more spatially adaptive utilization of imaging data leads
to robustness with regard to missing data or partial loss of correspondences. Future work
includes comparing different texture/geometric attributes in the framework, better
understanding the effect of mutual-saliency in registration scenarios with outliers, and more
extensively comparing our method with existing ones in various registration tasks.
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Figure 1.
Need for weighting voxels differently when there is partial loss of correspondence. The
lesion (white region) in the subject image is less capable of establishing unique
correspondences across images and hence should be assigned with lower weights to reduce
its negative impact to registration process.
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Figure 2.
Need for weighting voxels differently in a typical image registration scenario. Similarity
maps (c-e) are generated between one specific voxel (depicted by red, blue and orange
crosses) in the subject image (a) and all voxels in the template image (b). The red point has
higher ability to establish unique correspondences, hence should be assigned with higher
weight during registration, followed by blue point and orange point in descending order.
This figure is better viewed in color version.
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Figure 3.
DRAMMS framework. “AM” stands for attribute matching and “MS” stands for mutual-
saliency weighting. They are two major components in DRAMMS and will be described in
detail in the subsequent sections 2.2 and 2.3.
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Figure 4.
Multi-scale and multi-orientation Gabor attributes extracted from two typical human brain
images. To save space, shown here are only representative attributes from the real part of
three orientations (π/2, π/3 and π) in the x-y plane (a full set of Gabor attributes is
mathematically described in Eqn. 6).
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Figure 5.
Role of full Gabor attributes in characterizing voxels relatively distinctively. Similarity
maps (b-e) are created by calculating attribute-wise similarity between a single point
(depicted by red, blue, orange or purple crosses in (a)) with all points in the same image.
Compared to intensity attribute, the full Gabor attribute vector described in Eqn. 6 has led to
far smaller number of voxels that are similar to the points being examined.
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Figure 6.
Sketch of the selection of representative training voxel pairs, Ωi (i = 1, 2) are image spaces

where two images Ii (i = 1, 2) reside.  are J pairs of voxels that have been selected
with highest matching similarity and highest matching uniqueness (measured by mutual
saliency).
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Figure 7.
A typical scenario for attribute selection. (a) The value of the objective function [ms(,) ×
sim(,)] with regard to the iteration index. (b) The number of attributes selected with regard to
the iteration index. Starting from a full set of attributes, iterative backward elimination (BE)
and forward inclusion (FI) processes are employed to select the optimal attributes. The
objective function increases monotonically until no other attribute could be eliminated or
included to increase it further. When the cost function stops increasing, the corresponding
attributes are the ones selected as the optimal set.
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Figure 8.
Role of attribute selection in reducing matching ambiguities, as illustrated on special voxels
(red crosses) and ordinary voxels (blue crosses) in brain and cardiac images of different
individuals. Similarity maps are generated between a voxel (red or blue) in the subject image
and all voxels in the template image. “GLCM”, gray-level co-occurrence matrix [Haralick,
1979], is another commonly used texture attribute descriptor.
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Figure 9.
Idea of mutual-saliency measure. The matching between a pair of voxels u and T(u) is
reliable if they are similar to each other and not similar to anything else in the neighborhood.
Therefore, a delta function in the similarity map indicates a reliable matching, and hence
high mutual-saliency value.
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Figure 10.
Definition of mutual-saliency function. It measures the uniqueness of the matching between
a voxel pair in a neighborhood. Different colors encode different layers of neighborhoods.
This figure is better viewed in color version.
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Figure 11.
Role of mutual-saliency map in accounting for partial loss of correspondence. (a) Subject
image, with simulated deformation and tears from (b) template image. (c) Registered images
without using mutual saliency map; (d) Deformation field associated with (c); (e) Registered
image using mutual-saliency map; (f) Mutual-saliency map associated with (e); (g)
Deformation field associated with (e). With red points marking spatial locations having
exactly the same coordinates in all the sub-figures, we show that the upper-left corner of the
gray patch (pointed by yellow arrow in (c)) are initially corresponding between source (a)
and target (b) image, and this correspondence is preserved in registered image (e) when
mutual-saliency map is used, but destroyed in registered image (c) when mutual-saliency
map is not used. Since this corner point is right next the image cut, the preservation of
correspondence demonstrates the decreased negative impact caused by missing data when
mutual-saliency map is used.
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Figure 12.
Quantitative evaluation of the registration accuracies of inter-subject brain and cardiac
images, in terms of MSD and CC between registered and template images. The various parts
of DRAMMS – feature extraction, feature selection, mutual-saliency weighting – are added
into the experiment sequentially. As a result, this figure shows that each of DRAMMS'
components provides additive improvement over MI-based FFD.
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Figure 13.
The middle slices of the 30 randomly selected brain images used for constructing the atlas.
The one in the bottom right is chosen as template image and is outlined by a red box.
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Figure 14.
Brain atlases obtained from the randomly selected 30 images in Fig. 13. (a) Template, the
same as the one in the red box in Fig. 13; (b) Atlas by affine registration; (c) Atlas obtained
by MI-based FFD registration; (d) Atlas obtained by DRAMMS. The sharper average in (d)
indicates higher registration accuracy for DRAMMS on average.
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Figure 15.
Further comparison of affine, MI-based FFD and DRAMMS registration algorithms in atlas
construction. (a1-c1) The difference image (=atlas-template) obtained from these three
registration methods; (a2-c2) The standard deviation among all the warped images, by these
registration methods, respectively. Smaller difference and smaller standard deviation
indicate the accuracy and consistency of DRAMMS.
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Figure 16.
Quantitative comparison of registration methods for each subject. (a) The mean squared
difference (MSD) between warped image and the template for all foreground voxels. (b) The
correlation coefficient between warped image and the template. (c) The errors (in voxels)
against manually-defined landmark correspondences.
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Figure 17.
Multi-modality registration between (a) histological and (b) MR images of the same
prostate. Crosses of the same color denote the same spatial locations in all images, in order
to better visualize the registration accuracy. Circles of the same colors roughly denote the
corresponding regions, which are used to demonstrate the lack of consistent relationship in
their intensity distributions.
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Figure 18.
Different similarity maps when using different parameter settings in Gabor filter banks for
attribute extraction. All similarity maps are calculated between a cross point and all other
points in the same image. (b-e) are similarity maps resulted from using Gabor parameters
suggested in [Manjunath and Ma, 1996], while counterparts (b′-e′) are resulted from using a
random set of Gabor parameters. This figure highlights the importance of adopting the right
set of Gabor parameters.
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Table 1

Demonstration of high computational efficiency of discrete optimization (DisOpt) strategy over the traditional
gradient descent (GradDes) strategy. Registration accuracy from the two optimization strategies is almost
equivalent so not listed in this table. Computational time is recorded on registering two (inter-subject) brain
images, two (inter-subject) cardiac images and two (multi-modality) prostate images, for attribute matching
(AM) both with and without mutual-saliency (MS) weighting. Unit: minutes.

FFD + GradDes FFD + DisOpt

AM w/MS AM w/o MS AM w/MS AM w/o MS

Brain images
(256 × 256 × 171) 534.67 268.82 115.78 36.49

Prostate images
(256 × 256 × 34) 245.46 104.77 44.72 15.41

Cardiac images
(256 × 256 × 20) 181.54 88.77 39.07 13.61
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Table 2

List of how DRAMMS bridges the gap between voxel-wise and landmark/feature-based registration methods.

Voxel-wise Landmark/feature-based DRAMMS

Voxel Characterization

Intensity Task-specific attributes Optimal Gabor attributes

(generally applicable to
various tasks, but not
distinctive for voxels)

(distinctive for voxels, but not generally
applicable to various tasks)

(generally applicable to various tasks,
and distinctive for voxels)

Spatial Adaptivity (Voxel
Utilization)

Not adaptive Binarily adaptive Continuously Adaptive

(Weight ≡ 1 for all
voxels)

(Weight=1 for landmarks/features and 0
otherwise)

(Weighting voxels continuously by
mutual-saliency measure)
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