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a b s t r a c t 

Long term durability of osseointegrated implants depends on bone adaptation to stress and strain occur- 

ring in proximity of the prosthesis. Mechanical overloading, as well as disuse, may reduce the stability 

of implants by provoking bone resorption. However, an appropriate mechanical environment can improve 

integration. Several studies have focused on the definition of numerical methods to predict bone peri- 

implant adaptation to the mechanical environment. Existing adaptation models differ notably in the type 

of mechanical variable adopted as stimulus but also in the bounds and shape of the adaptation rate 

equation. However, a general comparison of the different approaches on a common benchmark case is 

still missing and general guidelines to determine physically sound parameters still need to be developed. 

This current work addresses these themes in two steps. Firstly, the histograms of effective stress, strain 

and strain energy density are compared for rat tibiae in physiological (homeostatic) conditions. Accord- 

ing to the Mechanostat, the ideal stimulus should present a clearly defined, position and tissue invariant 

lazy zone in homeostatic conditions. Our results highlight that only the octahedral shear strain presents 

this characteristic and can thus be considered the optimal choice for implementation of a continuum 

level bone adaptation model. Secondly, critical modeling parameters such as lazy zone bounds, type of 

rate equation and bone overloading response are classified depending on their influence on the numeri- 

cal predictions of bone adaptation. Guidelines are proposed to establish the dominant model parameters 

based on experimental and simulated data. 

© 2016 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The process of bone adaptation to mechanical stimulations is 

often modeled at the continuum scale through the Mechanostat 

[1] . This theory postulates that a specific mechanical stimulus oc- 

curring in bone is kept within a physiological range (i.e. the lazy 

zone, LZ) through the variation of bone mass [2,3] which in turns 

affect the distribution of elastic modulus in the bone structure. 

These phenomenological adaptation models represent at the con- 

tinuum scale the net result of the local bone adaptation process: 

the sensor network formed by osteocytes and their complex signal- 

ing is described by a mechanical measure of the stress and strain 

in a control volume (the “stimulus”) while the activity of the os- 

teoblasts and osteoclasts resulting in different rates of local bone 

apposition and resorption are represented by the rate of change of 
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bone density at the continuum scale (the “bone apposition rate”). 

In extreme conditions, when bone is overloaded, continuous dam- 

age accumulation supersedes the capacity of bone to adapt and re- 

pair itself, which is represented in the adaptation models by a fast 

reduction of bone stiffness and/or mass above a certain overload- 

ing threshold. Several adaptation models have been implemented 

in order to evaluate the integration of implants, for example in 

dentistry [4–6] by considering both bone apposition and resorp- 

tion due to overloading. The interplay between these phenomena 

has been seen to regulate the peri-implant marginal loss and de- 

termine the long term stability of dental implants [7,8] . 

Despite their versatility, these phenomenological approaches 

rely on many assumptions that are difficult to verify by experimen- 

tation and rarely discussed [9] , such as: the choice of a mechanical 

signal which drives the bone adaptation (‘stimulus’), the relation 

between the bone adaptation rate and the stimulus, the limits of 

bone adaptation and the size of the zone of stimulus diffusion in 

non-local models. 

Indeed, the first open question concerns the choice of the 

mechanical variable used as a triggering signal. Investigations 

http://dx.doi.org/10.1016/j.medengphy.2016.08.008 
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studying signals based on strain [1,10] , strain energy density [2] or 

stress [11,12] all lead to satisfying results in specific applications 

when properly calibrated, however, there is no clear agreement on 

which regulation signal provides the best consistency in a general 

sense. Moreover, signal selection and the definition of bone appo- 

sition and resorption thresholds are not frequently discussed and 

comparisons are rare [5,13] . 

The mathematical form of the adaptation law which relates the 

level of mechanical stimulus to the bone apposition or resorption 

rate is also an open question. In order to preserve the natural 

structure of bone under physiological conditions, continuum level 

isotropic bone adaptation models must at least exhibit a region of 

homeostasis by defining a so-called lazy zone (LZ). The LZ repre- 

sent an equilibrium condition at which normal bone turnover oc- 

curs, i.e. the resorption rate controlled by osteoclasts is equal to 

the apposition rate due to osteoblasts activity. The limits of the LZ 

and the bone overloading threshold are critical variables that con- 

trol the adaptation process by governing the transition between 

bone resorption, homeostasis , apposition and damage. However, 

because of their potential dependency on species, location and bio- 

variability, those bounds are difficult to determine and are only 

rarely defined on a rigorous experimental basis [14] . Furthermore, 

the dependence of bone adaptation rate on the mechanical stim- 

ulus has been formulated through linear [15] , quadratic [16] or 

piecewise functions including a rate saturation [17] , but the sen- 

sitivity of the obtained predictions to these different mathematical 

forms remains unclear. 

Since bone adaptation is assumed to be driven by cell mechan- 

otransduction [18] , several adaptation models involve a spatial av- 

eraging of the stimulus over a zone of influence (ZOI) [3,19,20] to 

represent diffusion processes. The size of the ZOI affects the accu- 

racy of numerical predictions but this dependence is scarcely in- 

vestigated. 

Furthermore, the pre-implantation bone structure and geometry 

differs significantly among one group of individuals, which limits 

the validity of predictions based on an average representative ge- 

ometry. Biovariability is expected to induce a significant scatter in 

results of bone adaptation and this point is seldom discussed. 

This work aims at establishing guidelines for the definition of 

the hypothesis needed to obtain accurate predictions of bone adap- 

tation around implants. The modeling parameters, adaptation the- 

ories and mechanical stimuli are classified as critical, important 

or negligible with respect to their influence on results and meth- 

ods are proposed to choose the values of the dominant parame- 

ters. The ‘loaded implant’ animal model is adopted as a bench- 

mark [21] . This animal model allows investigating the effects of 

a controlled external stimulation of the bone tissue surrounding 

two transcutaneous implants inserted in the proximal part of rats’ 

tibiae [22,23] . The ‘loaded implant’ model was chosen here as it 

allows a precise control of the loading history and implant place- 

ment but also because it closely mimics the difficulties found in 

clinical implantations in which a complex three dimensional stress 

state with local stress concentrators are commonly observed. Dif- 

ferent mechanical stimuli are compared on the benchmark of full 

tibiae being subjected to physiological loading conditions. Assum- 

ing that the Mechanostat hypothesis is valid, a clear lazy zone 

should be able to be observed in the distribution of proper adap- 

tation mechanical stimuli under such conditions. Moreover, the LZ 

of the ideal mechanical stimulus should also satisfy the criteria 

of location independence, tissue independence and specimen in- 

dependence. The stimulus which best satisfies these conditions is 

identified and used in combination with a specimen-specific adap- 

tation algorithm to predict bone peri-implant adaptation. A sensi- 

tivity study subsequently highlights the dependence of bone adap- 

tation results on the LZ, on the adaptation law, on the ZOI, on the 

load level and on biovariability. 

Fig. 1. Working principle of the ‘loaded implant’ model: two titanium implants are 

screwed mono and bi-cortically into the proximal part of the rat tibia (view cut). A 

controlled stimulation is provided daily by pulling the implants heads together. 

2. Materials and methods 

2.1. Animal model 

Two transcutaneous Ti implants were screwed mono- and bi- 

cortically into the right tibia of female Sprague-Dawley rats ( Fig. 1 ) 

following the procedures described in [22,23] . After two weeks of 

integration, five animals were euthanized. This ‘basal’ group repre- 

sented the pre-stimulation integration state of the ‘loaded implant’ 

model and was used as a basis for bone adaptation simulation. The 

remaining animals (‘stimulated group’) were subjected to a con- 

trolled external load of 5 N, applied on a daily basis to force the 

implant’s heads together and to stimulate the bone tissue around 

them. The load was applied with the following schedule: 1 Hz si- 

nusoidal cycle from 0 N to 5 N, 900 cycles/day, 5 days/week for 4 

weeks (total of 20 days of stimulation) with a progressive increase 

of load amplitude during the first week ( + 1 N/day). After sacrifice, 

all tibiae were dissected, cleared of their soft tissue coverage and 

frozen at −21 °C. The specimens were then thawed out and ana- 

lyzed using a high resolution CT imaging system ( μCT-40, Scanco 

Medical AG, Brüttisellen, Switzerland, isotropic voxel size: 20 μm). 

The technical aspects of surgery, implant design, activation setup 

and CT imaging that characterize the ‘loaded implant’ model are 

described in detail in [22–24] . 

2.2. Finite element models 

Continuum-level specimen-specific FE models of bare and im- 

planted rat tibiae were generated from CT scans through a verified 

and validated procedure [24] . The CT images were segmented to 

isolate the continuum bone and implants domains and processed 

with an open-source FE model generator to quality second order 

tetrahedral meshes. These models represent the whole bone struc- 

ture as a continuum, elastic, isotropic and inhomogeneous mate- 

rial. The local average BMD is calculated in each element of the 

model using the mean BMD of the CT voxels contained in the el- 

ements. To avoid potential checkerboard patterns and oscillations, 

the BMD field is then averaged at the nodes of the mesh to ob- 

tain a continuous description. Subsequently, the integration points 

were assigned their material properties by interpolation of the 

nodal BMD and by using the density-elasticity relationship devel- 

oped by Cory et al. [25] . Five whole tibiae were processed to gen- 

erate specimen-specific FE models, which were then subjected to 

a gait-based loading condition that had been shown to generate 

a sound physiological pattern of deformation [26] ( Fig. 2 a). These 

specimens were adopted as the benchmark for the comparison of 

mechanical stimuli. 
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Fig. 2. (a) Gait-based loading condition applied to FE models of whole tibiae for the comparison of stimuli [26] . Loads: medial and lateral condylar reactions, C m and C l , 

ankle joint reaction A j , bicep femoris B f , vastus medialis V m and lateralis V l , rectus femoris R f , tibialis anterior proximal T Ap and distal T Ad . (b) Loading condition applied to 

FE models of implanted specimens for iterative computations. The dotted areas are characterized by a small elastic modulus. L is the inter-implant distance. 

Five implanted specimens scanned at the ‘basal’ state were pro- 

cessed in order to generate the FE models for iterative compu- 

tations on bone peri-implant adaptation. These specimens repre- 

sented the pre-stimulation integration state of the ‘loaded implant’ 

model: they underwent two weeks of post-surgery integration 

which allowed the primary stability to be established [22] , but no 

external loading. These FE models were subjected to the boundary 

conditions shown in Fig. 2 b corresponding to the controlled load- 

ing provided during in-vivo stimulation. The bone-implant contact 

was considered perfectly adherent. However, in order to prevent 

unrealistic transfer of loads to the tissue where the interface was 

subjected to traction [26] , a small elastic modulus was assigned to 

a narrow strip of the tensile loaded regions of the implants in con- 

tact with cortical bone in the distal and proximal directions. 

2.3. Mechanical stimuli 

Based on the hypothesis of the Mechanostat and Wolff’s law, 

an appropriate continuum ‘stimulus’ variable should exhibit a clear 

lazy zone in homeostatic conditions i.e. values of the stimulus 

variables should be strictly bounded in homeostatic conditions. To 

have an objective bone adaptation model, the LZ of the stimulus 

should also be independent on the location within bone, if possi- 

ble also independent on the tissue type and ideally be as homo- 

geneous as possible among a population. So, formally, an adequate 

stimulus variable should respect the following criteria under phys- 

iological homeostatic conditions: 

• Location invariance . Under homeostatic conditions, different re- 

gions of the same bone should show the same range of stimu- 

lus (i.e. the same width of the histogram of stimulus in differ- 

ent regions). 
• Tissue invariance . Ideally, the ‘stimulus’ variable should be in- 

dependent on the bone structure. Thus cortical and trabecu- 

lar bone should show the same stimulus range as well (i.e. the 

same width of the histogram of stimulus in both tissues). 
• Specimen invariance . The histogram of the stimulus should be 

homogeneous within a population of specimens. 

If these conditions are not satisfied, the bone adaptation pro- 

cess would become site-specific [10] meaning that the bone cells 

should know a priori their position in the tissue and their target 

equilibrium condition. 

Three isotropic scalar stimuli were compared by highlighting 

their compatibility with these criteria, on the benchmark of whole 

tibiae subjected to physiological deformations [26] . 

The first stimulus considered was the elastic energy per unit 

of mass ψ U ( Eq. (1 )) [10,16] . This energy-based stimulus combines 

the continuum level strain energy density U i that occurs during 

the loading condition i , the local apparent bone density ρ , and the 

number of loading conditions N . 

ψ U = 

1 

N 

N ∑ 

i =1 

U i 

ρ
(1) 

As described by Weinans et al. [10] , ψ U represents the aver- 

age local strain energy density in the trabeculae over a series of 

loading cycles and thus is a global measure of the intensity of the 

local mechanical environment perceived, directly or indirectly, by 

the osteocytes. 

The second stimulus considered was daily stress ψ σ ( Eq. (2 )) 

[11,12] , formulated as 

ψ σ = 

(
ρc 

ρ

)2 

·
( 

N ∑ 

i =1 

n i σ
m 

i 

) 1 /m 

(2) 

ρc is the apparent density of mineralized bone and m is an em- 

pirical constant adopted to weigh the number of cycles and stress 

depending on the physical activity. This stimulus depends on mul- 

tiple load cases N , on the number of loading cycles n i and on the 

effective stress at the continuum level σ . As described by Beaupré

et al. [11] , ψ σ represents the daily average stress at the trabeculae 

level (hence the factor ( ρc 
ρ ) 2 ) and is indirectly related to the strain 

energy measure ψ U through the elastic modulus of bone. 

The third stimulus considered was the octahedral shear strain. 

Frost introduced the hypothesis that the Mechanostat is driven 

by the peak daily strains that occur in the bone tissue [1] . Since 

shear has been shown to influence tissue differentiation [27,28] , 

the strain-based stimulus ψ ε was formulated as a function of the 

octahedral shear strain ε oct : 

ψ ε = max ( ε oct, 1 , ε oct, 2 . . . , ε oct,N ) with 

ε oct = 

2 

3 

√ 

( ε 1 − ε 2 ) 
2 + ( ε 2 − ε 3 ) 

2 + ( ε 3 − ε 1 ) 
2 ... (4) 
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Fig. 3. ROIs for the comparison of mechanical stimuli. (a) Positioning of the inter-implant and cylindrical regions of interest with respect to the implants insertion coordinates 

(ROI II and ROI CY , respectively). View cuts of the tibia: overall dimensions of (b) ROI II and (c) ROI CY . 

in which ε i denotes the i th principal value of the continuum strain 

tensor ε . In the case of a lattice of straight trabeculae in tension 

or compression, the stimulus ψ ε represents also the local strain 

experienced in the bone tissue. The three signals are investigated 

through a single loading condition ( N = i = 1 ), based on the peak 

musculoskeletal loads occurring during gait [26] . The number of 

loading cycles characterizing daily stress was fixed to n = 1. As a 

consequence, the considered energy, stress and strain-based stim- 

uli are formulated as shown in Eqs. (5 )–( 7 ), respectively. 

ψ U = 

U 

ρbmd 

(5) 

ψ σ = 

(
ρbmd,c 

ρbmd 

)2 

· σ (6) 

ψ ε = ε oct (7) 

where ρbmd and ρbmd,c are the local and the fully mineralized BMD 

(i.e. 1.2 gHA/cm 

3 ). 

The stimuli distribution was investigated in two fixed regions 

of interest (ROI) with respect to the location of the implants ( Fig. 

3 a). The region ROI II was obtained by a dilatation of + / − 0.3 mm 

of the plane where both implant axes lie. ROI II represented the re- 

gion where the external stimulation was more effective. The region 

ROI CY was defined as a cylinder surrounding the proximal implant 

location. It provided an estimation of stimulus around the floating 

implant. Overall dimensions can be seen in Fig. 3 b and c. 

To analyze tissue invariance, the signals were also differenti- 

ated between cortex, trabecular tissue and marrow through BMD 

thresholds. In detail, stimuli were classified as cortical if BMD 

> 0.8 gHA/cm 

3, and trabecular if 0.3 < BMD < 0.8 gHA/cm 

3 [25] . 

These BMD thresholds approximately corresponded to BV/TV val- 

ues of 0.25 and 0.6 respectively. Results belonging to “marrow”

(BMD < 0.3 gHA/cm 

3 ) were neglected. For each ROI, tissue cate- 

gory and specimen, the volume histogram of the investigated stim- 

ulus variable was reconstructed from the FE simulation results. The 

mean value and SEM of the histograms of five specimens were fi- 

nally calculated and compared in order to evaluate the aforemen- 

tioned invariance criteria. 

2.4. Bone adaptation algorithm 

The simulations of bone adaptation were based on the hypoth- 

esis that the mechanical stimulus tends towards a constant range 

of values, corresponding to the LZ [1,11] , by reducing or increasing 

the bone density. The density variation was computed through the 

formulation described in Eq. (8 ), inspired by Li et al. [ 16 ]: 

d ρbmd 

dt 
= 

{
0 i f ψ ≤ ψ a 

K a ( ψ − ψ a ) 
(
1 − ψ−ψ a 

ψ d −ψ a 

)
i f ψ > ψ a 

(8) 

where ψ is the chosen mechanical stimulus, K a is the adaptation 

rate, and ψ d and ψ a are the damage and apposition LZ limits, re- 

spectively ( Fig. 4 a). This formula implies that implant loading has 

no effect if the stimulus is low ( d ρbmd /dt = 0 if ψ < ψ a ), a positive 

effect of the stimulation if the stimulus is in the apposition range 

( d ρbmd /dt > 0 if ψ a < ψ < ψ d ) and resorption due to overloading 

occurs if the stimulus overcomes the damage limit ( d ρbmd /dt < 0 

if ψ > ψ d ). Disuse was not considered as physiological loads were 

sufficient to maintain the bone structure [16,17] . This formulation 

implies a parabolic evolution of the apposition rate with a maxi- 

mum at a stimulus ψ = 

1 
2 ( ψ a + ψ d ) followed by a progressive re- 

duction representing sub critical damage accumulation in the bone 

up to ψ = ψ d where bone damage accumulation cannot be com- 

pensated any more. 

The calculation of the effective stimulus included a spatial av- 

eraging of the mechanical variables over a spherical zone of influ- 

ence (ZOI) [3] which represents the diffusion distance associated to 

mechanotransduction signaling. In detail, the signal at each node 

was calculated through Eq. (9 ) 

ψ i = 

ψ i + 

∑ Z 
j=1 f 

(
D ji 

)
ψ j 

1 + 

∑ Z 
j=1 f 

(
D ji 

) (9) 

Z is the number of nodes included in the defined ZOI and f ( D ji ) is 

a function that weighs the signal contribution of the node j with 

respect to its distance D ji from the current node i . 

Eq. (8 ) was solved iteratively through forward Euler integration 

in order to update bone density in relation to tissue deformation 

until convergence. A controlled BMD variation was calculated at 

each iteration with an adaptive time step to guarantee the stability 

of the simulations [29] . 

2.5. Sensitivity analyses 

Five specimen-specific FE models of implanted tibiae were pro- 

cessed with different sets of parameters to perform a sensitivity 

study on the numerical predictions of bone adaptation. Due to the 

large number of parameters, the study was structured into several 
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Fig. 4. Adaptation rate d ρ/d t versus mechanical stimulus ψ (a) quadratic form (b) linear form and (c) piecewise form with plateau. 

Table 1 

Details of sensitivity studies. 

Parameter Nominal Levels # simulations 

Adaptation thresholds (·10 −2 ) ψ a 1.25 1; 1.25; 1.5; 1.75 80 

ψ d 4.51 4.1; 4.51; 1.5; 5.5 

ZOI Radius (mm) 0.3 0; 0.15; 0.3; 0.6; 0.9 65 

Type Gaussian Linear, Gaussian, exponential 

Law formulation Quadratic Linear, quadratic, plateau 15 

External load (N) 5 3.3; 5; 6.7; 8.3; 10 25 

separate parametric studies, which are presented in the following 

sections and summarized in Table 1 . 

2.5.1. Nominal parameters 

Based on the invariance analysis of the mechanical variables 

( Section 3.1 ), the octahedral strain stimulus was chosen as the ref- 

erence signal for the sensitivity analysis. The correlation between 

mechanical stimulus and bone apposition rate was provided by Eq. 

(8 ), and the value of the apposition threshold, ψ a = 1 . 25 × 10 −3 , 

was fixed in agreement with the physiological deformations occur- 

ring in rat tibiae during gait [26] . The value of the damage thresh- 

old ψ d = 4 . 51 × 10 −3 was fixed in agreement with the longitudi- 

nal strain limit of 4 × 10 −3 already adopted for a study concerning 

bone damage [15] . As the steady state solution was only of interest 

in the present study, the adaptation rate K a was given the value of 

1 (gHA/cm3)/(time unit) similarly to Li et al. [16] . The nominal ZOI 

radius was chosen corresponding to the limit of validity of con- 

tinuum description (‘LVC’) of trabecular bone as described in [30] , 

corresponding to 3–5 inter-trabecular lengths which is estimated 

at 0.3 mm in the present case. The decay of the signal with in- 

creasing distance from the central node of the ZOI was computed 

through a Gaussian function ( Eq. (10 )), which is typical for many 

diffusion-like natural processes [19] . 

f 
(
D ji 

)
= e 

− D ji /r 

2 β2 (10) 

with β = 0 . 4085 . These settings are considered as the reference for 

the sensitivity study. 

2.5.2. Sensitivity to the lazy zone thresholds 

The ranges of octahedral shear strain thresholds ψ a and ψ d 

were discretized in four intervals between 1 × 10 −3 and 1.75 ×
10 −3 , and 4.1 × 10 −3 and 5.5 × 10 −3 , respectively. The bone adap- 

tation solutions were computed for each specimen and each pair of 

adaptation thresholds, while keeping all other parameters at their 

nominal values therefore leading to 80 simulations. 

2.5.3. Sensitivity to the adaptation law formulation 

Three mathematical formulas of the adaptation law were com- 

pared: the quadratic form in Eq. (8 ), a linear formulation [15] and 

a piecewise law with a plateau [17] ( Eq. (11 ) and Fig. 4 b, Eq. (12 ) 

and Fig. 4 c, respectively), for a total of 15 simulations. 

Table 2 

Parameters of the adaptation laws. 

Law Eqs. Adaptation thresholds (·10 −2 ) Rate constant 

ψ a ψ a 
′ ψ a 

′′ ψ d K a K a ’ K d 

Quadratic ( 2 ) 1.25 – – 4.51 1 – –

Linear ( 5 ) 1.25 – – 4.51 1 – 1 

Plateau ( 6 ) 1.25 1.5 1.75 4.51 0.05 1 1 

dρ

dt 
= 

⎧ ⎨ 

⎩ 

0 i f ψ ≤ ψ a 

K a ( ψ − ψ a ) i f ψ a < ψ ≤ ψ d 

K d ( ψ − ψ d ) i f ψ > ψ d 

(11) 

dρ

dt 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 i f ψ ≤ ψ a 

K a ( ψ − ψ a ) i f ψ a < ψ ≤ ψ 

′ 
a 

K a 

(
ψ 

′ 
a 
− ψ a 

)
+ K 

′ 
a 

(
ψ a − ψ 

′ 
a 

)
i f ψ 

′ 
a 
< ψ ≤ ψ 

′′ 
a 

K a 

(
ψ 

′ 
a 
− ψ a 

)
+ K 

′ 
a 

(
ψ 

′′ 
a 
− ψ 

′ 
a 

)
i f ψ 

′′ 
a 
< ψ ≤ ψ d 

K d ( ψ − ψ d ) i f ψ d < ψ 

(12) 

The adopted parameters were calculated to preserve the nomi- 

nal adaptation thresholds and are presented in Table 2 . Compared 

to the quadratic form in Eq. (8 ) which shows a peak apposition 

rate at ψ = 2.88%, the linear adaptation model shows a maximum 

apposition rate at the bone damage threshold ψ d = 4 . 51% followed 

by an abrupt transition to damage driven bone resorption. In con- 

trast, the piecewise model in Eq. (12 ) presents a wide range of con- 

stant apposition rate which reaches its maximum rate (saturation) 

much earlier ( ψ 

′′ 
a = 1 . 75% ) than the other two models. 

2.5.4. Sensitivity to the zone of influence 

The ZOI radius r was varied from 0 to 0.9 mm, and three types 

of weight functions were considered: Gaussian, linear and expo- 

nential ( Eqs. (10 ), ( 13 ) and ( 14 )), for a total of 65 simulations. 

f 
(
D i j 

)
= 0 . 95 

(
1 − D i j 

r 

)
+ 0 . 05 (13) 

f 
(
D i j 

)
= e −2 . 99 

D i j 
r (14) 
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Fig. 5. Regions of interests (ROIs) where BMD is monitored. 

To achieve comparable effects, the constants used in the differ- 

ent forms of f ( D i j ) were chosen to achieve f ( D i j ) = 1 for D ij =0 

and f ( D i j ) = 0.05 for D ij = r . The contribution of nodes outside the 

ZOI ( D ij > r ) was neglected. 

2.5.5. Sensitivity to load level 

The specimen-specific FE models were simulated with default 

parameters at five applied load levels ranging from 3.3 to 10 N, 

therefore giving 25 simulations. 

2.5.6. Convergence criteria and selected output variables 

Simulations were stopped when 99.9% of nodes showed null 

adaptation errors (signal within lazy zone). Local BMD variations 

were assessed in six ROIs ( Fig. 5 ). The longitudinal stability of im- 

plants was monitored by estimating the variation of inter-implant 

strain defined as d/L , where d and L are the relative inter-implant 

heads displacement and inter-implant distance, respectively. 

Fig. 6. Distribution of signals (rows) with respect to the tissue type (columns) and the regions of interest ROI II and ROI CY (legend). In detail: energy-based signal ψ U in 

cortical (a) and trabecular (b) tissue, stress-based signal ψ σ in cortical (c) and trabecular (d) tissue, and strain-based signal ψ ε in cortical (e) and trabecular (f ) tissue. 
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Fig. 7. Sensitivity of (a) inter-implant strain and BMD in (b) ROI1 and (c) ROI3 with respect to the perturbation of the apposition and damage thresholds ( ψ a and ψ d ). The 

mean values (colored surface) and the SEM (upper and lower grids) of the group of five specimens adopted as benchmark are represented. 

3. Results 

3.1. Comparison of stimuli 

The histogram distributions of the signals belonging to differ- 

ent ROIs and tissues are shown in Fig. 6 . Each distribution is rep- 

resented by the mean ± SEM calculated on the five specimen- 

specific FE models of whole tibiae subjected to the gait-based load- 

ing condition [26] . Considering the energy-based stimulus ψ U , a 

large amount of cortical bone in ROI II shows levels of strain en- 

ergy significantly larger to the ones measured in ROI CY ( ∼40% of 

the total, black arrows in Fig. 6 a). Overall, the distributions in both 

ROIs are significantly different. For the trabecular bone, the dis- 

tributions of ψ U are similar between ROIs (i.e. nearly superim- 

posed histograms, Fig. 6 b). However, the range covered by ψ U in 

trabecular bone (from 0 and 2 ×10 −3 J/g) and cortical bone (be- 

tween 0 and 8 ×10 −3 J/g) are very different. Thus, the energy- 

based signal does not satisfy both location and tissue-invariance 

criteria. 

The stress based stimulus ψ σ shows location-invariant distri- 

butions, as shown by the negligible differences between ROIs in 

Fig. 6 c and d, respectively. Nevertheless, the distributions in cor- 

tical and trabecular bone are not comparable either in terms of 

shape or in terms of range. As a consequence, even though it sat- 

isfies the location invariance criterion within a tissue, the stress- 

based signal does not satisfy the tissue-invariance criterion. 

Finally, the distributions of the strain based stimulus ψ ε are 

shown in Fig. 6 e and f. The shape of the distributions is found to 

be similar in both ROIs and tissues, and the bounds of the strain 

based stimulus ψ ε remains homogeneous (between 200 and 1500 

με) . These results therefore demonstrate that the strain based 

stimulus ψ ε respects both the tissue and the location-invariance 

criteria under physiological conditions (i.e. during gait), and for 

this reason this stimulus is chosen as reference for the sensitivity 

study of bone adaptation. 

As a unique range of physiological strain stimulus can be iden- 

tified, the histograms can be used to set the apposition threshold 

of the adaptation model in physiological conditions. Indeed, the 

reference value of the apposition threshold, ψ a = 1 . 25 × 10 −3 , is 

quantified as the 95th percentile of the octahedral shear strain dis- 

tribution characterizing both tissues and ROIs during physiological 

activity. 
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Fig. 8. Sensitivity of (a) inter-implant strain and (b) BMD in ROIs with respect to the law formulation. Mean values and SEM are represented. 

Fig. 9. Sensitivity of (a) inter-implant strain (mean values and SEM) and (b) BMD 

in ROIs with respect to the ZOI radius and weight function (i.e. L = linear, E = expo- 

nential, G = Gaussian). 

3.2. Effect of adaptation thresholds 

The results of this parametric study are shown in Fig. 7 . The 

evolution of the inter-implant strain (inversely proportional to 

stiffness) varies between 0 and −8% with both ψ a and ψ d ( Fig. 7 a). 

The minimum and maximum increase of stiffness coincides with 

the wider and narrower amplitude of the apposition zone. More- 

over, the effect of ψ d reaches a plateau after 5 × 10 −3 , meaning 

that the damage controlled adaptation is no longer activated above 

this point. At 5 N load, the value of the damage threshold ψ d has 

a limited influence on inter-implant strain, which remains mostly 

controlled by the apposition threshold ψ a . The BMD variation in 

ROI1 and ROI3 ( Fig. 10 b and c) shows an even clearer trend: the 

average BMD variation in different ROIs is nearly independent to 

ψ d , whereas it is reduced with the increase of ψ a . 

3.3. Effect of adaptation law formulation 

The effect of adaptation law formulation on inter-implant strain 

variation and BMD increment in ROIs are reported in Fig. 8 a and 

b, respectively. Interestingly, the results of the quadratic and linear 

formulations show clear agreement, with the latter slightly under- 

estimating the inter-implant strain and density increments with re- 

spect to the former. The mathematical form including a plateau in- 

volves a significant overestimation of both outputs. This highlights 

the fact that even though all three adaptation laws have similar 

thresholds, the shape of the adaptation law has an influence on 

the result. 

3.4. Effect of the zone of influence 

As shown in Fig. 9 a, if the ZOI radius is lower than the limit of 

validity of the continuum assumption (‘LVC’, 3–5 inter-trabecular 

lengths) the inter-implant strain increases as the models predict a 

greater resorption due to overloading in regions close to the im- 

plant. The extreme case of no ZOI ( r = 0) provokes a 17% increase 

in inter-implant strain, which is the opposite of what is found with 

the nominal ZOI of 0.3 mm ( −5.5%). For radii above the LVC, there 

is nearly no variation of the inter-implant strain, thus indicating 

that once the signal is averaged on a consistent volume of bone 

(i.e. compatible with the continuum hypothesis), the solution re- 

mains stable. The BMD variation shown in Fig. 9 b shows a moder- 

ate increase in density with an increasing ZOI radius in ROI 1 and 

2 both situated in the inter-implant plane, and subjected to com- 

pression. Interestingly, the effects of the different decay formula- 

tions are found to be negligible. 

3.5. Effect of the load level 

In Fig. 10 , the inter-implant strain variation after convergence 

is plotted against the applied load for all five specimens (S1 to 

S5). A 3.3 N load provokes only a weak inter-implant strain reduc- 

tion ( −3%), which is then nearly doubled by imposing 5 N ( −5.5%). 

With higher loads, the system stability decreases significantly and 

the effects of biovariability are strongly amplified. By applying 
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Fig. 10. Inter-implant strain sensitivity to the external load magnitude. Mean values and SEM are represented. 

6.7 N, the average level of the inter-implant strain becomes positive 

( + 3.3%, i.e. inter-implant stiffness decreases) with a larger spread 

with respect to lower load levels. At 8.6 N the imbalance between 

resorption and apposition reaches critical levels for 3 out of the 

5 specimens, characterized by the failure of all the tissue sur- 

rounding the distal implant ( Fig. 11 ). Nevertheless, two specimens 

did reach a stable converged solution with increased inter-implant 

strain ( + 20%). Finally, none of the FE models adapted to 10 N: re- 

sorption due to overloading dominates the adaptation mechanism 

provoking the instability of the distal implant. Inter-implant BMD 

fields estimated with all load levels are shown in Fig. 11. 

The local BMD variations in the ROIs show a similar trend ( Fig. 

12 ) and explain the variations in implant stability. Indeed, at low 

force, increased BMD in the compressive regions between implants 

is correlated to the reduction of inter-implant strain. However, the 

average BMD in the ROIs continue to increase with higher loads 

(i.e. 6.3 and 8.7 N) but regions of significant bone resorption de- 

velop ( Fig. 11 ), leading to a progressive reduction of the implant’s 

stability. Thus, it is worth noticing that the implants stability and 

BMD variation in the selected ROIs are not correlated at high loads. 

4. Discussion 

This paper focuses on the reliability of Mechanostat-based pre- 

dictions of bone adaptation estimated through specimen-specific, 

continuum FE models. The adopted modeling strategy relies on 

nominal parameters which are consistent with the physiology of 

the ‘loaded implant’ model and with the problem length-scale. 

The predictions obtained with these parameters were validated 

through comparison with in-vivo experiments and are used as ref- 

erence [31] . Since these phenomenological predictions are the re- 

sult of several assumptions, it is of great interest to clarify the 

methods which have been used to define the key parameters and 

highlight their influence on the results. 

Three mechanical variables were compared on the benchmark 

of full tibiae subjected to physiological loading conditions. The 

analysis of the stimuli distribution ( Fig. 6 ) with respect to position, 

tissue and specimen invariance criteria highlights that, among the 

three stimulus considered, the octahedral shear strain is the most 

appropriate stimulus for the implementation of the Mechanostat 

theory at the continuum scale. When physiological gait-based 

loads are applied, this signal is the only one that shows location, 

tissue and specimen-independent distributions as implied by the 

Mechanostat and Wolff’s law. This result confirms the existence 

of a unique range of selected stimulus variable corresponding to 

physiological homeostatic conditions (i.e. the lazy zone), which 

drives bone macroscopic structural adaptation to mechanical 

stimulations. However, not all mechanical stimulus variable show 

this property. 

An exhaustive sensitivity study highlighted the robustness of 

the adopted strategy by clarifying the influence of biovariability, 

bone adaptation thresholds, adaptation law formulation, ZOI and 

external load on numerical predictions. The effects of all these 

variables were evaluated by performing multiple specimen-specific 

iterative computations that generated results dependent on the 

features of each individual. 

The default bounds of the lazy zone (i.e. apposition and dam- 

age thresholds ψ a and ψ d ) were defined by analyzing physiologi- 

cal deformations occurring during rats’ gait and reference literature 

data. Nevertheless, the dependency of results on the perturbation 

of these parameters is of great interest considering that the equi- 

librium between the peri-implant bone apposition and the apical 

resorption from overloading is a key factor in implant stability. The 

results show that the perturbation of the adaptation thresholds 

within consistent ranges of strain does not affect the robustness of 

the investigated adaptation process (e.g. no worsening of the im- 

plant lateral stability is predicted, Fig. 7 ). However, these param- 

eters clearly affect the prediction of both BMD and inter-implant 

strain variations. This therefore highlights the need for a rigorous 

way of determining the apposition threshold ψ a in particular. The 

determination of this parameter through an histogram analysis of 

the octahedral strain stimulus in physiological conditions, as used 

in this study, is highly recommended in order to obtain reliable 

predictions. Another possibility, however more complex and inva- 

sive, is obviously in-situ strain measurements under physiological 

conditions. 

The mathematical formulation of the density adaptation rate 

dependence on the stimulus also has a strong influence on the 

results. The quadratic form adopted as reference ( Eq. (8 )) allows 

describing both apposition and resorption due to overloading with 

few parameters. This model also presents a smooth transition be- 

tween apposition and damage-driven resorption. Nevertheless, this 

phenomenological formulation may not be representative of the 

actual correlation between bone mass variation and mechanical 

stimulus. In this work, the results obtained with the quadratic 

law are compared with the ones obtained with a linear form and 

a piecewise formulation which includes a plateau ( Eqs. (11) and 

(12) , respectively). The results shown in Fig. 8 highlight that the 

quadratic and linear formulations can be considered equivalent. 

On the contrary, the adoption of a formulation which includes a 

large plateau significantly affects the results, and lead to unrealis- 

tic predictions when compared to experimental observations [ 31 , 

32 ]. Thus, this type of formulation should only be implemented if 

the saturation of density rate is supported by a sound experimen- 

tal validation. 
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Fig. 11. BMD field variation with respect to the external load magnitude. Implants 

are hidden. 

The stimulus average on a ZOI introduces the interesting con- 

cept of transmission of a local mechanical signal all around the 

stimulated area, via biological processes involving the tissue micro 

and cellular-structures. Moreover, the filtered stimulus is a mea- 

sure of the mechanical state in a statistically representative volume 

of bone. It is thus of great interest to investigate the sensitivity of 

the numerical predictions to different ZOI dimensions and stimulus 

decay functions ( Eqs. (10 ), ( 13 ) and ( 14 )). The results of this study 

highlights that the definition of a ZOI is essential to predict consis- 

tent results ( Fig. 9 ). The key factor is the radius of the ZOI, which 

should at least correspond to the LVC size (3–5 trabeculae) while 

the weight function only plays a secondary role. 

The magnitude of the external load regulates mechanical stim- 

ulation transferred from the implant to the surrounding tissue, and 

a study of the results’ sensitivity to different load levels under- 

lines the stimulation limits above which harmful effects are dom- 

inant. Indeed, the results are very sensitive to the load magnitude 

( Fig. 10 ) and evolve in a complex non-linear manner. The range 

of forces generating a positive effect on integration (i.e. augmen- 

tation of peri-implant density and improved implant stability) is 

found to be relatively narrow for the present experiment. Indeed, 

with 3.3 N bone reaction is quite limited while at 5 N the optimum 

is already reached. Higher loads provoke larger increases of BMD 

associated with dangerous peri-implant bone loss due to overload- 

ing ( Fig. 11 ). Interestingly, the results spread increases significantly 

with load due to the difference between specimens. As a conse- 

quence, it can be postulated that the maximum forces to which 

each individual can adapt depends on specimen-specific features 

such as their initial bone structure, and therefore the results of this 

sensitivity study highlight the need to adopt a specimen specific 

approach to study critical overloading. 

Moreover, the performed parametric studies allow establishing 

a ranking of the modeling parameters based on their effects on the 

inter-implant strain and maximum BMD variation ( Fig. 13 ). Three 

categories are identified and can be adopted to optimize similar 

approaches: 

• Critical parameters : the load overestimation and the absence 

of ZOI. They provoke more than 100% variation of both inter- 

implant strain and BMD in ROIs. If these parameters are not 

controlled or not implemented, the numerical predictions can 

become totally inconsistent. The ZOI should be set at least equal 

to 3–5 inter-trabecular spacing to avoid spurious mesh depen- 

dent effects. If critical loads are of interest, results extrapolated 

from populations or an average specimen can be imprecise. In 

this case a specimen specific approach is recommended. 
• Important parameters : the adaptation thresholds, the piecewise 

law formulation with a plateau, the load underestimation and 

the ZOI radius overestimation. An ambiguous implementation 

of these parameters does not lead to unstable solutions, how- 

ever the results are indeed inaccurate (between 10 and 100% 

error). At least, the bone adaptation threshold should be identi- 

fied from physiological conditions and linear or quadratic adap- 

tation law be implemented as a first option. 
• Negligible parameters : the type of formulation (quadratic or lin- 

ear adaptation law) and the type of decay function in the ZOI. 

These perturbations scarcely affect the predictions, and can be 

chosen arbitrarily. 

In conclusion, among the different modeling hypothesis investi- 

gated here to predict peri-implant bone adaptation at the contin- 

uum level, a model formulation based on octahedral shear strain 

stimulus, a linear or quadratic evolution law and a ZOI equal to 

3–5 inter-trabecular spacing is highly recommended based on the 

theoretical consistency considerations described in this work. The 

use of an histogram analysis of the stimuli in physiological loading 

conditions is also shown to provide a sound basis for the determi- 

nation of the LZ bounds and for the selection of robust adaptation 

stimulus variable. 

However, it is important to remind that this work is based on 

a phenomenological description of the bone adaptation at the con- 

tinuum length scale which is at least two to three hierarchical lev- 

els above the cellular levels. The above recommendations conclu- 

sions should thus not be considered as hints on how bone physi- 

ology and mechano-transduction actually works at a smaller scale 

where the actual biophysical processes take place. 

Finally, it should be noted that the proposed bone adaptation 

method has been successfully applied and compared to experi- 

mental data, as described in the works by Piccinini et al. [31] and 
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Fig. 12. Density in ROIs sensitivity to the external load magnitude. Mean values and SEM are represented. 

Fig. 13. Ranking of the perturbations analyzed by sensitivity studies. The variations are computed with respect to the results obtained with nominal settings ( Table 1 ). 

Piccinini [32] . The proposed model has shown consistent predic- 

tion with respect to the experimental observations in terms of 

BMD evolution and inter-implant strain evolution and was able 

to capture at least partially the specimen-specific response within 

a group. However, the physiological relevance of the above rec- 

ommendations still need to be established for other experimental 

conditions. 
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