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ABSTRACT 23 

To better understand the mechanisms underlying distal radius fracture we have developed finite 24 

element models to predict radius bone strain and fracture strength under loading conditions 25 

simulating a fall. This study compares experimental surface strains and fracture loads of the 26 

distal radius with specimen-specific finite element models to validate our model-generating 27 

algorithm. Five cadaveric forearms were instrumented with strain gage rosettes, loaded non-28 

destructively to 300 N, and subsequently loaded until failure. Finite element models were created 29 

from computed tomography data; three separate density-elasticity relationships were examined. 30 

Fracture strength was predicted for three specimens that failed at the distal radius using six 31 

different failure theories. The density-elasticity relationship providing the strongest agreement 32 

between measured and predicted strains had a correlation of r=0.90 and a root mean squared 33 

error 13% of the highest measured strain. Mean absolute percent error (11.6%) between 34 

measured and predicted fracture loads was minimized with Coulomb-Mohr failure theory and a 35 

tensile-compressive strength ratio of 0.5. These results suggest that our modeling method is a 36 

suitable candidate for the in vivo assessment of distal radius bone strain and fracture strength 37 

under fall type loading configurations.  38 

 39 

Keywords: Finite element model; Density-elasticity relationship; Failure criteria; Experimental 40 

validation; Falls 41 

42 
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INTRODUCTION 43 

 44 

Distal radius fractures are the most common upper extremity fractures in adults 65 years 45 

and older [1]. Nearly 80% of distal radius fractures result from a fall [2]. Because many of these 46 

falls occur from standing height or lower, fractures of the distal radius are considered low-energy 47 

fractures and are associated with age-related declines in bone quality. Distal radius fractures are 48 

a source of considerable morbidity; approximately 40% of all dollars spent on physical therapy 49 

following osteoporotic fractures go to treat the distal forearm, 50% of patients are dissatisfied 50 

with their functional outcome six months post-fracture, and more than one third experience pain 51 

or weakness [3]. 52 

The propensity for skeletal fracture to occur as a result of a fall is dependent on the 53 

loading intensity during impact (i.e., stress and strain within the bone itself). Previous research 54 

has focused on preventive strategies, such as surface compliance [4] and fall arrest manipulations 55 

[5], to reduce peak bone loading. These studies have used the external reaction force as a 56 

surrogate measure of bone loading because the direct measurement of bone strain in vivo requires 57 

invasive surgical procedures [6]. Unfortunately, the relationship between external force and 58 

internal bone loading is often complex and nonintuitive. This is because external forces generate 59 

location-specific triaxial stress-strain states that are dependent on bone size, shape, and material 60 

properties. Thus, the ability to quantify radius bone strain non-invasively, and ultimately define 61 

fracture strength, would greatly aid in the development and evaluation of preventive measures to 62 

minimize the occurrence of distal radius fracture.  63 

Subject-specific finite element models have been an effective tool for both bone strain 64 

and fracture strength assessment. The accuracy of these models is heavily dependent on the 65 

chosen constitutive equation that relates stress to strain [7, 8], and the chosen failure criterion 66 
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that defines fracture threshold [9]. The purpose of this study was to compare experimental 67 

surface strains and fracture loads of the distal radius with specimen-specific finite element 68 

models for the purpose of validating our model-generating algorithm. Our immediate use for the 69 

model is to gain a better understanding of the mechanisms underlying distal radius fracture. For 70 

this reason, the model was validated under loading conditions simulating a fall.  71 

METHODS  72 

Specimens  73 

Five female cadaveric right forearms with hand intact (mean age 78 yrs, range 59-93 yrs) 74 

were obtained through anatomical gift. Specimens were freshly-frozen and stored at -20 °C, but 75 

thawed to room temperature for: 1) computed tomography (CT) data acquisition 2) specimen 76 

dissection and potting and 3) strain gage application and mechanical testing. In these instances, a 77 

saline solution spray was used periodically to keep the specimens moist. The distal most 12 cm 78 

of the forearms were imaged with a clinical CT scanner (BrightSpeed; GE Medical Systems, 79 

Milwaukee, WI, 120 kV, 180 mA, voxel size: 234 x 234 x 625 µm). Images were reconstructed 80 

with GE’s high spatial frequency (bone) algorithm. A subsequent identical scanning session of a 81 

calibration phantom (QRM, Moehrendorf, Germany) with calcium hydroxyapatite equivalent 82 

concentrations of 0, 400, and 800 mg/cm3 was used to establish the following linear relationship 83 

between CT Hounsfield units (Hu) and calcium hydroxyapatite equivalent density (ρha) in g/cm3: 84 

 (r2 = 0.9993). 85 

Experimentation 86 

All soft tissue proximal to the wrist joint capsule was removed and radial/ulnar 87 

osteotomy was performed 14 cm proximal to Lister’s Tubercle. The proximal most 8 cm of the 88 

forearms were embedded in polymethylmethacrylate (PMMA), leaving 6 cm exposed below 89 

Hu*0007.00069.0 ��ha�
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Lister’s Tubercle (Figure 1). Six rectangular strain gage rosettes (TS1N-K120M-PK06-LE, 90 

Micro-Flextronics Ltd, Coleraine, N. Ireland) were adhered circumferentially to the periosteal 91 

surface of the radius. The active gage length for each individual grid within the rosette was 1.5 92 

mm, which corresponded to an overall gage length of 4.2 mm in a stacked rosette configuration. 93 

Three rosettes were mounted distally, immediately proximal to Lister’s Tubercle, and three were 94 

mounted 3 cm proximal to the distal gage locations (Figure 1). These two locations were chosen 95 

to elicit a large range in periosteal surface strains – whereas the distal location was comprised 96 

primarily of trabecular bone, the proximal location was comprised primarily of cortical bone. 97 

Prior to strain gage attachment the periosteum was removed, the surface was cleaned with 98 

isopropyl alcohol, sanded, and recleaned with isopropyl alcohol. Gages were adhered with 99 

cyanoacrylate glue and covered with a polyurethane coating. 100 

For strain assessment, specimens were loaded in compression using a uniaxial-driven 101 

materials testing machine (MiniBionix 858, MTS Systems, Eden Prairie, MN). Force was 102 

applied to the palm of the hand with a custom made fixture mounted to the load actuator (Figure 103 

2). The fixture consisted of a flat aluminum plate with an angular adjustment to mimic ground 104 

contact during a fall onto an outstretched hand. The aluminum plate was angled 60° from vertical 105 

such that the wrist was extended 60° to simulate falling conditions [10]. The amount of wrist 106 

extension was confirmed by a goniometer and an additional aluminum plate was brought into 107 

contact with the dorsal surface of the hand to prevent further extension. The bottom surface of 108 

the PMMA was placed on a smooth, flat, unconstrained aluminum surface mounted to the MTS 109 

load cell.  The PMMA was sanded and coated with lubricant to reduce frictional shear forces 110 

during testing [11]. The actuator was driven at a fixed displacement rate of 0.1 mm/s until a load 111 

of 300 N was reached. Force and displacement data were collected concurrently at 100 Hz, and 112 
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an additional six synchronized analog channels were available for strain information. Therefore, 113 

only data from two rosettes could be collected during each test. Fifteen total tests were 114 

performed allowing for five repeat trials to be collected for each gage. Load repetitions were 115 

separated by approximately two minutes. Following strain assessment, specimens were loaded in 116 

an identical fashion until failure. The fracture load was identified by a rapid decrease in the slope 117 

of the force/displacement curve. Strain gage locations within the CT imaging coordinate system 118 

were determined following mechanical testing, by overlaying dissected cross sections of the 119 

specimens with their respective CT images. 120 

Modeling 121 

Stereolithographic models of the radius, scaphoid, and lunate based on segmented CT 122 

data from Mimics (Materialise, Leuven, Belgium) were imported into IA-FEMesh (University of 123 

Iowa, Iowa City, IA) for finite element model creation (Figure 3). IA-FEMesh allows the user to 124 

define a series of blocks around the surface of interest. Each block is composed of a mesh 125 

seeding with a user-specified refinement that is projected onto the surface, laying the foundation 126 

for the finite element geometry [12]. The models consisted of 18,231 ± 2,402 8-node hexahedral 127 

elements with 21,406 ± 2,600 degrees of freedom depending on specimen size. A nominal 128 

element size of 1 mm3 was chosen in accordance with a preliminary mesh convergence analysis. 129 

The scaphoid and lunate were modeled as non-deformable rigid bodies. Articular cartilage was 130 

included in the model by extruding elements of the radial-carpal bone articular surface 1 mm 131 

[13] in a local-normal direction (producing a tissue thickness “just touching” the carpal bones). 132 

The cartilage was modeled as a neo-Hookean hyperelastic material with a modulus of 10 MPa 133 

[14]; near-incompressibility was assumed [15], thus Poisson’s ratio was set to 0.49. For the 134 

radius, internal elements were assigned the median ρha of the comprising voxels; surface 135 
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elements were assigned the maximum ρha to avoid partial volume effects. Three previously 136 

established density-elasticity relationships (Eqs. i – iii) were investigated that allowed for 137 

inhomogeneous linearly-isotropic material properties to be assigned to the finite element models 138 

(Figure 3):   139 

(i)  [16], 140 

(ii)  [17], 141 

(iii)  [18], 142 

where E is expressed in MPa, and ρapp  (apparent density) and ρash  (ash density) are expressed in 143 

g/cm3. For Eq. (i), calcium hydroxyapatite equivalent density was converted to ρash using: 144 

 [19]. 145 

For Eqs. (ii) and (iii),  ρash was divided by 0.6 to obtain ρapp [8]. Moduli lower than 0.01 MPa 146 

were assigned a new value of 0.01 MPa [20]. We determined that sufficient model accuracy (% 147 

change in principal strains less than 1%) could be obtained by binning moduli in increments 148 

corresponding to 20 Hu, or ρha = 0.014 g/cm3. However, moduli were binned in increments 149 

corresponding to 10 Hu, or ρha = 0.007 g/cm3, because the increased computational time was 150 

negligible. This resulted in 239 ± 13 bins ranging from 0.01 to 21,547 ± 2,728 MPa for Eq. (i), 151 

23,714 ± 1,997 MPa for Eq. (ii), and 34,218 ± 5,565 MPa for Eq. (iii), depending on ρha range. 152 

Each bin was assigned a Poisson’s ratio of 0.4 [11, 21].  153 

Finite element analyses were performed using FEBio software (Musculoskeletal 154 

Research Laboratories, Salt Lake City, UT). The proximal end of the radius was fully 155 

constrained at the location of potting. To simulate the boundary conditions imparted by 60°  156 

wrist extension, the scaphoid and lunate were rotated about the flexion-extension axis 50° and 157 

35°, respectively. These rotations were based on average values from in vivo and in vitro 158 

29.2
ash10500E ��

49.1
app6950E ��

3
app2875E ��

ha839.00698.0 �� ��ash
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examinations of carpal bone kinematics as a function of wrist angle [22, 23]. Contact was 159 

modeled between the surfaces of the radius and scaphoid, and the radius and lunate. We assumed 160 

that during load application, the radial-carpal ligaments and wrist joint capsule kept the carpal 161 

bones seated within the articular cartilage. Therefore, a “tied” interface contact model was 162 

utilized in which the carpal bones were not free to slide once initial contact was made. The 163 

contact constraints were enforced using the augmented Lagrangian method [24]. A ramped 164 

quasi-static load of 300 N was applied to the centroids of the scaphoid (180 N) and lunate (120 165 

N) based on the assumption that the scaphoid bears 60% of the load transmitted through the wrist 166 

[25, 26]. The line of action of the resultant force vector was determined for each specimen using 167 

an unsymmetrical beam theory analysis based on proximal strain gage and CT information 168 

(Figure 4; See Appendix for specific details). 169 

Bone failure was simulated with the finite element method by applying a ramped load up 170 

to 3000 N in increments of 120 N.  Six different stress- and strain-based failure criteria were 171 

evaluated based on previous successful predictions of distal radius fracture [27] and femoral 172 

fracture load [9]. These criteria, which are summarized in Table 1, assume that element failure 173 

will occur when the factor of safety is less than or equal to 1. The Coulomb-Mohr (CM), 174 

Hoffman (Hσ), Hoffman Strain Analog (Hε), and Maximum Principal Strain (εmax) theories allow 175 

for different tensile (σyt, εyt) and compressive (σyc, εyc) failure strengths. Assuming, σyt=k σyc and 176 

εyt=k εyc, we examined four different values of k to investigate a range of material behaviors: 1, 177 

0.75, 0.5, and 0.25. In general, a material’s behavior becomes more brittle as the tensile-178 

compressive strength ratio, k, approaches zero [28]. Cortical bone was assigned an εyc of 0.0154 179 

[29] and cancellous bone an εyc of 0.011 [30]; σyc was determined by multiplying εyc by the 180 

respective element’s E. For both cortical and cancellous bone, γy was assigned a value 0.0146 181 
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[31]. Failure was determined for each element at each load increment. Bone fracture (i.e., crack 182 

propagation) was assumed to occur when a cluster of contiguous failed elements exceeded a 183 

predefined volume. A failed volume of approximately 150 mm3 has been proposed for micro-184 

finite element models of the distal radius [27], while 405 mm3 has been proposed for continuum 185 

models of the proximal femur [11]. Thus, we examined a range of failed volumes from 150 to 186 

450 mm3, in increments of 100 mm3. 187 

Data Analysis 188 

Experimental strain readings from each rosette were used to calculate maximum and 189 

minimum principal strains at the instant the target load of 300 N was reached. The between-trial 190 

reliability of principal strains at 300 N was examined using interclass correlations (ICC) and 191 

variability was assessed using standard error of measurement (SEM), where SEM = standard 192 

deviation*(1-ICC)½ [32]. Model predicted strains for nodes corresponding to each rosette 193 

location were transformed into a local coordinate system with a unit normal to the model exterior 194 

surface. Maximum and minimum principal strains in the surface plane were calculated and nodal 195 

values were averaged at each rosette location. Model predicted and experimentally measured 196 

principal strains at 300 N were compared using Pearson’s r correlation, linear regression, root 197 

mean squared error (RMSE), and maximum error (Max err). The criterion alpha level was set to 198 

0.05 for ICC, Pearson’s r, and linear regression analyses. Scatter was assessed using Bland-199 

Altman plots. These illustrate the difference between predicted and measured strains, expressed 200 

as a percentage of the mean, versus the mean of the predicted and measured strains.  The density-201 

elasticity relationship resulting in the highest correlation and least amount of error was used for 202 

failure simulations. Discrepancies between modeled and experimental fracture loads were 203 
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expressed as a percent error, and the correspondence in fracture location was examined 204 

qualitatively.  205 

RESULTS  206 

Experimentation 207 

Experimentally measured principal strains were highly reliable (gage dehiscence 208 

occurred for the distal strain gages of a single specimen during mechanical testing, so these data 209 

were not included). For example, the ICC for maximum principal strains at 300 N measured 210 

across 5 trials was 0.997 (p<0.001); ICC was 0.994 (p<0.001) for minimum principal strains. 211 

The SEM was 10 με for maximum principal strains and 18 με for minimum principal strains. 212 

These SEM values corresponded to approximately 1.6% and 1.8% of the largest measured 213 

maximum (640 με) and minimum (-977 με) principal strain, respectively.  214 

Of the five specimens loaded until failure, three fractured at the distal radius, one 215 

fractured at the scaphoid, and one wrist dislocated. Interestingly, the line of action of the 216 

resultant force vector fell outside the bone cross section for the dislocated specimen, indicating 217 

poor alignment of the specimen within the testing fixture (Figure 4).  Only the three specimens 218 

with distal radius fracture were used for failure analysis. Distal radius fracture occurred at 219 

loading magnitudes of 813, 971, and 1,214 N. 220 

Comparison between predicted and measured strains 221 

 The finite element predicted strains varied as a function of Eqs. (i-iii) (Figure 5). 222 

Correlation coefficients for experimentally measured strains versus predicted strains ranged from 223 

r=0.90 (p<0.001) for Eq (i) to r=0.86 (p<0.001) for Eq (ii) (Table 2). For Eqs. (i) and (iii) 224 

regression slopes were not different from unity (p≥0.270) and intercepts were not different from 225 

zero (p≥0.178). Despite having a relatively high correlation coefficient and an intercept that was 226 
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not different from zero (p=0.056), the regression slope for Eq. (ii) was different from unity 227 

(p<0.001). The RMSE among density-elasticity Eqs. ranged from 13% to 14% of the highest 228 

measured strain. Max error was smallest for Eq. (i) and largest for Eq. (ii).   229 

Bland-Altman plots illustrated a randomly distributed scatter across strain magnitudes for 230 

Eqs. (i) and (iii) (Figure 5). In contrast, Eq. (ii) illustrated systematic scatter in which strains 231 

were under-predicted at high strain magnitudes and over-predicted at low strain magnitudes. 232 

Overall, predicted strains using the Eq. (i) were most closely matched to measured strains in 233 

terms of regression coefficients, error, and scatter. Therefore, the finite element models created 234 

using Eq. (i) were used for failure analyses.    235 

Comparison between predicted and measured fracture loads 236 

The predicted fracture loads varied among failure theories, tensile-compressive strength 237 

ratio k, and contiguous volume assumptions. For a given failure theory and volume, changing k 238 

from 0.25 to 0.5, from 0.5 to 0.75, and from 0.75 to 1 increased fracture loads an average of 239 

26%, 9%, and 4%, respectively., For a given failure theory and k, changing volume from 150 to 240 

250 mm3, from 250 to 350 mm3, and from 350 to 450 mm3 increased fracture loads an average of 241 

7%, 5%, and 4%, respectively. For a contiguous volume of 150 mm3, mean absolute percent 242 

error was minimized with Hσ theory and k=0.5 (Figure 6). For contiguous volumes of 250, 350, 243 

and 450 mm3, mean absolute percent error was minimized with CM theory and k=0.5. In all of 244 

these instances, mean absolute percent error varied from 11.6% (range 2.2-25.4% for 350 mm3) 245 

to 12.9% (range 3.90-18.45% for 150 mm3).  246 

The centroids of failed contiguous volumes were located within the distal radius 247 

cancellous region for all failure theories. Crack propagation was not explicitly simulated and as 248 

such, failed elements (failure criterion value ≥ 1) were not observed at the external surface of the 249 
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models. However, the CM failure contours (k=0.5) illustrated higher values at locations where 250 

experimental fracture manifested at the surface (Figure 7).  251 

DISCUSSION 252 

Non-invasive methods to quantify bone strain and fracture strength on a subject-specific 253 

basis are needed so that preventive measures to reduce the incidence of distal radius fracture can 254 

be evaluated. The purpose of this study was to compare experimental surface strains and fracture 255 

loads at the distal radius with specimen-specific finite element models to validate our model 256 

generating algorithm. Of the three density-elasticity relationships investigated, the models 257 

developed using Eq. (i) [16] predicted principal strains that most closely matched the 258 

experimentally measured strains. Average percent error between experimentally measured and 259 

model predicted fracture loads was minimized with the use of CM failure theory, a tensile-260 

compressive strength ratio k=0.5, and a contiguous volume assumption of 350 mm3. In addition, 261 

surface elements illustrating the largest magnitudes of CM failure qualitatively agreed with the 262 

locations where experimental fracture was observed at the surface.   263 

Very few studies have investigated the influence of density-elasticity relationships on the 264 

accuracy of specimen-specific finite element predicted strains [7, 8, 33].  Schileo et al. [8] 265 

compared three density-elasticity relationships for the human femur under several loading 266 

scenarios and concluded that the relationship described by Morgan et al. [17], Eq. (ii) in the 267 

present study, produced the closest agreement between numerical and experimental results. 268 

Austman et al. [7] compared six density-elasticity relationships for the human ulna under a 269 

simplified cantilever bending scenario and observed the most accurate results using the Carter 270 

and Hayes relationship [18], corresponding to Eq. (iii) here, as well as a pooled bone site 271 

relationship described by Morgan et al. [17]. The discrepancy in density-elasticity relationship 272 
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accuracy between the current and aforementioned studies is not surprising. Density-elasticity 273 

relationships depend on variables such as anatomical site [17] and strain rate [18]. Eq. (ii), which 274 

provided the poorest agreement between experimental and predicted surface strains in the present 275 

study, was developed for femoral trabecular bone. Similar to Austman et al. [7], we found 276 

reasonable agreement with Eq. (iii), which is logical given the anatomic similarity of the radius 277 

and ulna. Unfortunately, we are unaware of a density-elasticity relationship specific to the distal 278 

radius. We hesitate to implicate strain rate as a discriminating factor in the present study because 279 

all three density-elasticity relationships investigated were determined using strain rates of 0.01 to 280 

1 s-1 [16-18]. Our strain rates were substantially lower than this with maximum measured values 281 

of 2.5 x 10-4 to 4.5 x 10-4 s-1.  282 

Here, we observed a best-fit correlation of 0.90 between experimental and predicted 283 

strains using Eq. (i). Similar in vitro validation studies have reported various levels of accuracy 284 

ranging from r=0.679 to 0.955 [8, 34-38]. Several factors can explain this relatively large range 285 

in model accuracy including: the number of specimens used, constitutive law applied, loading 286 

scenario(s) investigated, as well as the incorporated model meshing technique (voxel vs. 287 

geometry based). These studies focused on the femur, pelvis, and scapula. In all cases but one 288 

[36], complex bone articulations were not incorporated into in vitro testing and modeling. This 289 

approach is sufficient for bones like the femur, for which the boundary conditions in a fall-type 290 

load configuration are relatively straightforward (e.g. side impact to the greater trochanter). For 291 

the wrist however, load is transferred to the distal radius through its articulating carpal bones.   292 

Finite element models developed to examine the mechanisms underlying distal radius 293 

fracture should be validated with the wrist joint fully intact, allowing the model’s behavior under 294 

physiological loading conditions to be investigated. It is important to note that our accuracy in 295 
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predicted strain is dependent on how well our finite element model represents both the structural 296 

characteristics of and boundary conditions applied to the radius. The boundary conditions that 297 

were applied to the scaphoid and lunate were estimated based on measured surface strains and 298 

radius geometry. Both of these quantities are direct and repeatable measures derived from the 299 

bone itself. In contrast, the finite element model involves some assumptions about how density 300 

relates to modulus of elasticity, and how to best simulate element failure. Our interpretation is 301 

that these last two assumptions are the true subject of the finite element model validation. 302 

Although we adopted a method to approximate the line of action of the resulting force vector 303 

based on unsymmetrical beam theory, there is still some uncertainty in simulating this 304 

“physiological” contact scenario including: the exact load share distribution between the 305 

scaphoid and lunate, the exact carpal bone translations/rotations that occur relative to the radius 306 

with wrist extension, and the possibility of shear forces at the lubricated PMMA/aluminum 307 

interface. Changes in these parameters can influence load transition through the radius [39] and 308 

thus periosteal surface strain, and may have contributed to our observed error. 309 

The volume of failed contiguous elements chosen to represent bone fracture in this study 310 

was a topic of uncertainty. This approach, which has been used by others to predict the fracture 311 

strength of the distal radius [27, 40] and proximal femur [11, 20], assumes that a given amount of 312 

tissue must fail in order for a crack to propagate. This approach also reduces the potential error 313 

caused by CT scanning and finite element modeling artifacts that may underestimate the failure 314 

strength of individual elements. Although, changing this volume influenced the predicted 315 

fracture load, the mean absolute percent errors were not substantially altered by volume 316 

assumption (See Figure 6). This is because the most accurate volume for fracture strength 317 

prediction varied amongst specimens. This specific response may be related to differences in the 318 
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age of the specimens tested to failure (59, 71, and 93 yrs). The bone of younger adults can 319 

undergo more plastic deformation before failure [41], which would require an increased 320 

contiguous volume assumption to replicate in our linear elastic models. Further study with an 321 

increased sample size and a thorough statistical analysis would be necessary to verify this 322 

assumption.  323 

Here we observed a fracture strength prediction accuracy of 11.6 to 12.9%, depending on 324 

the chosen contiguous volume. This is comparable to the 13% accuracy reported for microCT 325 

finite element models of the distal radius [27]. Our most accurate predictions were obtained 326 

using CM and Hσ theories with k=0.5. Investigations of bovine trabecular bone have reported 327 

tensile-compressive strength ratios ranging from 0.3 to 0.7 [42, 43]. Both CM and Hσ theories are 328 

stress-based criteria intended to be applicable across a range of material types (i.e., ability to 329 

account for different tensile and compressive strengths). In their simplest form where k=1, CM 330 

and Hσ theories are equivalent to Tresca (max shear stress) and von Mises (max distortion 331 

energy) criteria, respectively. These findings suggest that shear or distortion modes of failure 332 

play an important role in bone fracture, at least at the continuum level. At the microstuctural 333 

level, bone fracture is indeed strain controlled [44]. Thus from a theoretical standpoint the 334 

appropriate failure criterion should be strain-based as well. Unfortunately, our continuum and 335 

linearly isotropic assumptions do not allow us to properly model the microstructural properties of 336 

bone. For present purposes it is more important to determine a robust failure theory that 337 

phenomenologically describes fracture load and location given the various simplifications and 338 

limitations of the modeling procedure.   339 

This study is limited by the relatively small sample size of five specimens for strain 340 

assessment and three specimens for failure analysis. However, most specimen specific finite 341 
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element model validation studies have relied on sample sizes of three or less [34-38, 45, 46], 342 

with only a few having reported sample sizes greater than this [8, 11]. Here, we dealt with partial 343 

volume effects by assigning surface elements the maximum density of the comprising voxels, 344 

which could be considered a less refined method than other published techniques [47], and may 345 

have contributed to the observed scatter between measured and predicted strains. However, given 346 

the homogeneity of cortical bone, variation in Hu within elements at the bone surface would 347 

largely be explained by partial volume artifacts, providing rationale for the assignment of 348 

maximum density.  349 

 For this initial validation, a slow rate of loading (0.1 mm/s) was used for fracture 350 

analysis corresponding to approximately 10-20 N/s. Actual loading rates during a fall can 351 

approach 90 to 180 kN/s [48]. Our future work will focus on validating similar models able to 352 

predict bone strain and fracture load at rates of loading consistent with a fall. Presumably, this 353 

would require us to incorporate strain-rate dependent behavior into our models, which could be 354 

done for Young’s modulus by including a second power-term in the density-elasticity 355 

relationship [18]. Additionally, bone elicits a ductile-to-brittle transition with increases in strain 356 

rate, which influences post-yield behavior [49]. This would likely require smaller contiguous 357 

volume assumptions [46] and different ultimate failure strengths. Alternatively, an elastic-plastic 358 

material model could be incorporated with strain-rate dependent post-yield behavior. Such a 359 

material model would also likely improve our overall prediction accuracy [50].Unfortunately we 360 

were unable to compare experimental and predicted fracture location in a quantitative manner. 361 

This stems from our inability to identify the location of fracture onset during experimentation. 362 

Future studies could incorporate high-speed video to approximate the location of fracture onset 363 

[46], provided that crack nucleation occurred at the periosteal surface.  364 
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In summary, the present study has shown that our model generating algorithm provides 365 

realistic measures of radius bone strain and fracture strength under a physiological loading 366 

scenario simulating a fall. Given our model’s level of accuracy for strain (r=0.90, RMSE=13% of 367 

the highest measured strain) and fracture prediction (mean absolute percent error of 11.6%), we 368 

consider it a suitable candidate for in vivo examinations of preventive strategies to minimize the 369 

occurrence of distal radius fracture.   370 
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APPENDIX A 376 

The axial force, P, and bending moments, Mx and My, acting at the cross section 377 

corresponding to the proximal gage locations were resolved using unsymmetrical beam theory as 378 

described by Rybicki et al., [51]. Assuming the origin of the reference system is at the cross 379 

section centoid, the axial strain εzz at any point (x, y) can be determined as: 380 

yκxκεε xy0zz ���  381 

where ε0 is the strain created by the axial force, and κy and κx are the radii of curvature about the 382 

x and y-axis, respectivity. Using the measured strain from the axial gage at each of the three 383 

rosette locations the unknown parameters ε0, κy, and κx can be determined. The axial force, P, and 384 

bending moments, Mx and My, acting at the cross section are then: 385 

� �0εAEP �  386 

� �xyyxxxx IκIκEM ��  387 
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� �yyyxyxy IκIκEM ���  388 

where E is the elastic modulus, A is the cross sectional area, and Ixx, Iyy, and Ixy are the cross 389 

sectional moments of inertia defined as: 390 
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were n is the number of bone pixels and dAi is the ith bone pixel area. The line of action of the 395 

applied force was then calculated by assuming that it was directed from the scaphoid and lunate 396 

centroids through location (xact, yact), using the following formulae: 397 

P
Myx act � and 

P
Mxyact

�
� . 398 

It can be seen that the calculation of xact and yact is independent of the chosen E. 399 
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TABLES 

Table 1. The six failure criterion investigated with their respective equations. 

Criterion Equation 

CM (Coulomb-Mohr) (σ1/σyt)-(σ3/σyc) ≥ 1 

Hσ (Hoffman) (1/2σytσyc)[(σ1-σ2)2+(σ1-σ3)2(σ2-σ3)2]+… 
[(1/σyt)-(1/σyc)](σ1+σ2+σ3) ≥ 1 

Hε (Hoffman Strain Analog) (1/2εytεyc)[(ε1-ε2)2+(ε1-ε3)2(ε2-ε3)2]+… 
[(1/εyt)-(1/εyc)](ε1+ε2+ε3) ≥ 1 

εmax (Maximum Principal Strain) (ε1/εyt) ≥ 1 or (ε3/εyc) ≤ -1 

εeff  (Effective Strain) (1/εy)(2U/E)½ ≥ 1 

γmax (Maximum Shear Strain) (γmax/γy) ≥ 1 

σ1, σ2, and σ3 are the principal stresses for a given element (σ1 > σ2> σ3), ε1 , ε 2, and ε 3 are the 

principal strains for a given element (ε 1 > ε 2> ε 3), γmax is the maximum shear strain, U is the 

strain energy density, and σy, εy, and γy are the normal failure stress, normal failure strain, and 

shear failure strain, respectively. CM, Hσ, Hε, and εmax allow for different tensile (σyt, εyt) and 

compressive (σyc, εyc) failure strengths (σyc and εyc >0).  

Tables



Table 2. Validation parameters as a function of Eqs. (i-iii). 

  Eq. (i) Eq. (ii) Eq. (iii) 

r 0.90 0.86 0.88 

Slope 0.94 (CI: 0.82-1.07) ns 0.51 (CI: 0.42-0.59) a 0.92 (CI: 0.78-1.06) ns 

Intercept  (με) -31.54 (CI: -77.87-14.79) ns -28.83 (CI: -58.48-0.81) ns -18.32 (CI: -68.74-32.09) ns 

RMSE (με) 128.59 138.51 130.15 

RMSE% b 13.17 14.18 13.33 

Max err (με) 476.78 750.87 642.82 

Max err% b 48.82 76.88 65.82 
ns Not significantly different from 1(slope) or 0 (intercept). 

a Significantly different from 1 (slope) or 0 (intercept). 

b Percentage of the maximum absolute measured strain. 

 



FIGURE CAPTIONS 

 

Figure 1. Dorsal, sagittal, and planar views of strain gage rosettes. Three rosettes were mounted 

distally, immediately proximal to Lister’s Tubercle, and three were mounted 3 cm proximal to 

distal rosettes.  

 

Figure 2. Left – three dimensional illustration of experimental setup. A flat aluminum plate was 

positioned 60° from vertical (120° as shown here) and brought into contact with the palm of the 

hand. A second flat aluminum plate was then brought into contact with the dorsal surface of the 

hand to maintain 60° wrist extension. Right – sagittal view of typical experimental setup.    

 

Figure 3. Left – representative finite element model illustrating surface ρash distribution. Top-

right – transverse cross sections illustrating internal ρash distributions. Bottom-right – Plot of 

Young’s modulus as a function of ρash for the three density-elasticity relationships investigated 

(Eqs. i-iii). 

 

Figure 4. Representative proximal cross sections for two specimens illustrating location of 

centroid ( ), strain gage rosettes (▬), and line of action (●). The wrist joint dislocated during 

fracture testing for specimen on the right. Note the line of action fell outside the bone cross 

section for this specimen. The line of action was determined using an unsymmetrical beam 

theory analysis (See Appendix). 

 

Figures



Figure 5.  Top – predicted versus measured principal strains at 300 N for Eqs. (i-iii). Bottom – 

Bland-Altman plots for Eqs. (i-iii). Solid line is the mean difference between predicted and 

measured strain. Dashed lines are the 95% limits of agreement.   

 

Figure 6. The specimen-mean absolute percent error between experimentally measured and finite 

element predicted fracture strength as a function of failure theory, tensile-compressive strength 

ratio k, and contiguous volume assumption. 

 

Figure 7. Surface fracture locations of the distal radius vs. finite element failure contours for CM 

theory, k = 0.5, and volume = 350mm3. Note that surface elements did not fail (CM failure ≤ 1), 

but displayed higher values at locations where experimental surface fracture was observed. 
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Figure 5.  
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