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Abstract
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to
cellular macromolecules and subsequently to aging and age-related chronic disease, it has been
difficult to consistently define and specifically identify markers of oxidant stress that are
consistently and directly linked to age and disease status. Inflammation because it is also linked to
oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical
implications of oxidant stress and relevant markers. Much attention has focused on identifying
specific markers of oxidative stress and inflammation that could be measured in easily accessible
tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers
of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting
differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid
oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative
damage and inflammation and discuss their strengths and limitations. We present the current state
of the literature reporting use of these markers in studies of human cohorts in relation to age and
age-related disease and also with a special emphasis on differences observed by race when
relevant.
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1. Introduction
The specific role of oxidative stress in aging and in the development of age-related disease is
an area of active investigation but the exact mechanisms that may define this complex
relationship are unclear (Voss and Siems, 2006). Understanding this complex relationship
may provide potential biomarkers of oxidative stress, which can be objectively measured as
indicators of normal and pathologic processes that result in age-related disease and
decrement in cellular function associated with aging.
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The Harman Free Radical Theory of Aging states that accumulation of oxidative damage to
DNA and other cellular components and tissues over the lifespan leads to aging, disease and
death (Harman, 1956). Free radicals can be formed exogenously by environmental sources
including ionizing radiation, ultraviolet light, and pollutants (cigarette smoke, emissions
from automobiles or factories, asbestos). These sources of oxidative stress, in addition to
endogenous enzymatic sources, such as cellular respiration, cell signaling, and
inflammation, result in oxidative damage in a biologically relevant manner (Mateos and
Bravo, 2007).

1.1. What is Oxidant Stress?
Oxidant stress has been defined as an alteration in the balance between the production of
reactive oxygen species (free radicals) and the antioxidant defense system in place to
counter them (Halliwell, 1994). Free radicals as well as reactive oxygen species (ROS) are
any chemical species with unpaired electrons and are produced through many sources
including the environment (from ozone and nitrogen dioxide) and many varied biological
and biochemical processes (both deliberately and as by-products). Common examples of
free radicals and ROS are the hydroxyl radical (−OH), the superoxide anion (O2

−), nitric
oxide (NO−), and transition metals.

Free radicals are neutralized by the anti-oxidant system. This system functions at the
cellular, membrane, and extracellular levels to protect against free radical attack.
Components that comprise this system include members of the catalase, peroxidase, and
dismutase families as well as the glutathione system, including superoxide dismutase (SOD)
(converts superoxide to hydrogen peroxide), catalase (removes hydrogen peroxide), and
glutathione peroxidase (removes hydrogen peroxide generated by SOD).

In addition to the endogenous enzyme antioxidant system, additional antioxidants play a key
role in defense against ROS including vitamins A, C, and E. These antioxidants are
classified into two groups: those that are hydrophobic (Vitamins A and E) protect
membranes from free radical attack and those that are hydrophilic (Vitamin C) interact with
free radicals in the blood and cytosol (Sies, 1997) to neutralize the free radicals that are
formed.

Free radicals can cause damage in DNA that can potentially lead to mutagenesis and thus
cellular transformation and uncontrolled proliferation. In addition, oxidant stress is thought
to contribute to the development of human diseases including but not limited to Alzheimer's
disease (AD) (Butterfield, 2006; Christen, 2000; Halliwell, 2006; Nunomura et al., 2006;
Perry et al., 2002), cardiovascular disease (Aviram, 2000), atherosclerosis (Parthasarathy et
al., 2008; Stocker and Keaney, 2004), Parkinsons disease (PD) (Wood-Kaczmar et al.,
2006), rheumatoid arthritis (Hitchon and El-Gabalawy, 2004), diabetes (Dav et al., 2005;
Giugliano et al., 1996), and motor neuron diseases (Cookson and Shaw, 1999). In this
review we address commonly used markers of oxidant stress as they are related to aging and
age-related diseases only in the context of human studies. These human cohort studies are
summarized in Tables 1 and 2 where we have highlighted the disease state examined, the
methodology and the significant findings.

2. DNA oxidative lesions as a measure of oxidant stress
DNA is a highly susceptible target of free radicals, resulting in oxidation of DNA bases and
the ribose sugar ring leading to sites of base loss and strand breaks. The rate of damage to
DNA by free radicals is estimated to be 1,000 to 1,000,000 hits per day in a single cell
(Ames et al., 1993). The accumulation of free radical DNA damage can be a lethal event for
an organism. An increased baseline level of DNA oxidation (single strand breaks (SSBs)
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and oxidative base damage) is associated with several age-related diseases including:
cardiovascular disease (Collins et al., 1998a), diabetes mellitus (Hannon-Fletcher et al.,
2000), cancer (Malins et al., 2001), neurodegenerative disease (Morocz et al., 2002), and
end-stage renal disease (Domenici et al., 2005). The level of DNA oxidative lesions depends
on a variety of factors, including age (Malins et al., 2001), exposure to environmental
hazards and genotoxic factors (Blasiak et al., 2000; Dusinska et al., 2006; Kopjar and Garaj-
Vrhovac, 2001; Trzeciak et al., 2000; Wojewodzka et al., 1998), smoking (Piperakis et al.,
1998), alcohol intake (Blasiak et al., 2000), and intracellular and extracellular metabolism
(Knaapen et al., 2002).

2.1. 8-oxo-7,8-dihydro-guanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'deoxyguanosine (8-
oxodG)

Oxidative damage to DNA caused by free radicals can result in a variety of mutagenic
lesions including: 2-hydroxy adenine, FapyAdenine, 8-oxoadenine, 5-hydroxycytosine,
cytosine glycol, and thymine glycol. The predominant lesion produced is 8-oxo-7,8-dihydro-
guanine (8-oxoGua). This lesion is produced by oxidative damage at the C-8 position of
guanine, with an estimated number of 100–500 8-oxoGua bases arising daily in the genome
(Lindahl, 1993). If left unrepaired this lesion can result in G-to-T transversion events.
Oxidation of DNA can also result in 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG)
lesions, an alteration to the guanine nucleoside. 8-oxoGua and 8-oxodG are the most
mutagenic consequence of oxidant stress, and can be specifically detected from each other.
Many assays have been developed to measure quantitatively 8-oxoGua and 8-oxodG bases
in human DNA samples, such as HPLC, GC/MS, immunohistochemistry, and ELISA.

The best methodology for assessing 8-oxodG levels has been an area of concern for the
oxidant stress field (the results using multiple methodologies are listed in Table 1). In the
late 1990's the European Standards Committee on Oxidative DNA Damage (ESCODD) was
formed to establish standard protocols for assessing 8-oxodG levels in DNA samples
isolated from lymphocytes of healthy volunteers. This group of research laboratories has
assessed the various methods available to prepare samples and measure 8-oxodG, as well as
define standard units to report damage levels. The ESCODD laboratories have found the
background level of oxidative damage to be approximately 0.3–4.2 8-oxodG per 106

Guanines, and are currently working on defining an absolute level of background oxidative
damage (Gedik and Collins, 2005).

To date, no perfect method has been identified to determine 8-oxodG levels. Based on trials
from member laboratories, it has been concluded that both the CG-MS and HPLC-MS/MS
chromatography methods are not reliable for assessing low levels of oxidative damage
(Collins et al., 2004). The lowest levels of background damage have been detected through
an enzymatic approach utilizing the enzymes Formamidopyrimidine DNA glycosylase
(FPG), Endonuclease III (EndoIII), or human 8-hydroxyguanine glycosylase 1 (hOGG1) to
convert certain kinds of oxidative damage into AP sites or single stranded DNA breaks
(Bjelland and Seeberg, 2003; Boiteux et al., 1992; Smith et al., 2006). The presence of AP
sites and strand breaks can be analyzed using the single cell gel electrophoresis (COMET)
assay under various conditions to assess the levels of 8-oxodG levels in DNA samples
(Collins et al., 1997). Although this approach detects lower levels of damage, it is possible
that it is an underestimate, as FPG, Endo III, and hOGG1 may not convert all oxidative
lesions to SSBs.

Additional methods are available to measure 8-oxoGua and 8-oxodG levels from human
biofluids, such as urine, serum, plasma, and blood. To assess mass spectrometry (MS),
electrochemical detection (EC), and ELISA based methodologies for analysis of DNA
lesions from urine, the European Standards Committee on Urinary (DNA) Lesion Analysis

Jacob et al. Page 3

Mech Ageing Dev. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(ESCULA) was formed. Similar to ESCODD, the member laboratories are working to
achieve a consensus between the various methods, as well as determine reference values for
the lesions (Cooke et al., 2008). To date, ESCULA has shown that for urine analysis there is
strong within technique agreement, as well as strong agreement in the results for both the
MS and EC based assays. In contrast, the ELISA based methods had the largest within
technique variation (possibly because different urine samples were used in the various
studies) and found the highest 8-oxodG levels in urine. The current conclusion of ESCULA
is that a greater than expected consensus was achieved for both MS and EC methodologies;
however there is concern among the member labs about the use of ELISA methods to assess
8-oxodG levels in urine (Cooke et al., 2009; Evans et al., 2012).

Levels of oxidized bases have been assessed using an LC-MS/MS assay, as a first attempt to
define reference ranges in urine. The results of these studies found that females excrete
lower levels of 8-oxoGua in urine than males, and that 8-oxoGua levels are affected by age,
sex, and hOGG1 polymorphism status (Andreoli et al., 2010; Andreoli et al., 2011; Manini
et al., 2009). In addition, it was reported that 8-oxoGua levels are approximately 10 times
higher than those of 8-oxodG (Andreoli et al., 2010; Andreoli et al., 2011).

To date a very limited number of studies have attempted to address the issue of 8-oxoGua
and 8-oxodG levels in aging. Analysis of 8-oxodG levels from muscle DNA was performed
by Mecocci et. al from a cohort of healthy individuals (Mecocci et al., 1999). The HPLC
analysis showed an increase in 8-oxodG levels with increasing age (Mecocci et al., 1999).
Similarly, analysis of leukocyte DNA from healthy subjects from a different cohort found
that with increasing age, the levels of 8-oxodG damage also increased (Siomek et al., 2007).
In frail individuals over 65 years of age, increased serum levels of 8-oxodG have been
observed (Wu et al., 2009). Recently, we have found that serum levels of 8-oxodG increase
with age in a cohort of middle aged women (Noren Hooten et al., 2012). These data support
the free radical theory of aging that DNA damage increases with age.

Using many of the above mentioned assays, levels of 8-oxoGua and 8-oxodG have been
examined in many disease states (summarized in Tables 1 and 2). Studies in cancer have
proposed 8-oxoGua as a potential biomarker, with the supporting evidence that GC to TA
transversions (potentially from 8-oxoGua lesions) have been observed within the ras and
p53 genes in liver and lung cancers (Cooke et al., 2003; Hussain et al.; Rodin and Rodin,
2005). Although oxidative stress has been implicated in neurological disorders such as AD
(Gabbita et al., 1998; Lovell et al., 1999; Lyras et al., 1997; Mecocci et al., 1994; Wang et
al., 2005), PD (Alam et al., 1997; Nakabeppu et al., 2007; Zhang et al., 1999), and
Huntington's disease (De Luca et al., 2008), it has been difficult to assess the level or
determine the direct role of DNA oxidative lesions in these disorders (Alam et al., 2000; Te
Koppele et al., 1996). Studies have examined levels of 8-oxoGua relating to cardiovascular
disease and found increased levels of 8-oxoGua and 8-oxodG lesions in atherosclerotic
plaques (De Flora et al., 1997; Martinet et al., 2002), and one study reported a strong
association between increased levels of 8-oxodG and premature coronary artery disease in
men (Collins et al., 1998a).

2.2. Single Stranded DNA Breaks
It is well-established that SSBs are a serious threat to genome stability and to cell survival. If
SSBs are unrepaired there can be serious consequences such as base substitution
mutagenesis, which often results in alteration of multiple bases (Dar and Jorgensen, 1995),
as well as giving rise to double strand DNA breaks. Additionally, SSBs have been shown to
cause stalling of the cell cycle in G1 (Huang et al., 1996b), G2/M abnormal mitoses (Johnson
et al., 2000) and mitotic structures (Ame et al., 2009), and ultimately programmed cell death
(Ame et al., 2009; Johnson et al., 2000; Yan et al., 2003).
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As previously mentioned, one technique used to measure SSBs is the COMET assay. This
assay examines DNA for damage by allowing supercoiled DNA to relax and lengthen to
form what looks like tails upon electrophoresis, with the amount of DNA in the tail being
indicative of the number of SSBs. The alkaline COMET assay is a sensitive and relatively
inexpensive technique used for the detection of DNA damage as well as DNA repair (Singh
et al., 1988). The major advantage provided by the alkaline COMET assay is the ability to
analyze DNA damage and repair in individual cells. Furthermore, small numbers of cells are
required for this assay which is particularly advantageous for analyses performed in samples
from human populations. Since this method is very sensitive, even minimal changes in DNA
damage levels and DNA repair capacity (DRC) in human populations caused by genetic and
demographic variation can be studied.

Although the COMET assay has many advantages, and has been commonly used for
measuring DNA damage by some research groups; there are disadvantages as well (Collins,
2002). One main disadvantage of this assay is that it is very labor intensive, often for only a
small number of samples. For reproducibility of the assay each experiment must be carefully
planned and executed with the proper positive controls to ensure that assays completed at
different times can be compared. Also, the calculations made from the primary data must be
done properly so that data can be compared between laboratories, as well as with other
methods used to measure oxidative damage to DNA. In some instances, the COMET assay
may be too sensitive, reaching saturation at low levels of damage and not representing the
actual levels of damage. Many reports have used frozen samples for the COMET assay, but
they must be preserved properly. Live or frozen cells must be at greater than 90% viability,
otherwise erroneously high levels of damage can be detected. Additionally, the presence of
alkali labile sites as well as DNA double strand breaks can interfere with the output of the
assay.

Modifications to the original assay have been made that allow for the detection of oxidized
bases (Collins et al., 1993). In addition human samples may be studied in retrospective
longitudinal studies using a modification that permits accurate and reproducible analysis of
cryopreserved peripheral blood mononuclear cells (PBMCs) (Trzeciak et al., 2009).
Applications of the alkaline COMET assay in biomonitoring include analysis of nutrient and
micronutrient effects on the level of DNA damage (reviewed in (Hoelzl et al.)), examination
of DNA damage levels associated with exposure to genotoxic factors (Blasiak et al., 2000;
Dusinska et al., 2006; Kopjar and Garaj-Vrhovac, 2001), and oxidative stress connected
with human pathology (such as infectious diseases, diabetes mellitus, cardiovascular disease,
and hemodialysis in renal failure patients) (Collins et al., 1998a; Collins et al., 1998b;
Domenici et al., 2005; Hannon-Fletcher et al., 2000). Additionally, COMET has been
extensively used to assess background levels of DNA damage in human populations (Kopjar
et al., 2006; Smith et al., 2003; Stoyanova et al.). Recently, we have shown that sex and race
affect the background level of SSBs in PBMCs from both whites and African-Americans
(Trzeciak et al., 2012). We observed a significant increase in SSB levels in females in the
overall cohort; however when stratified by race, the increase was specifically among
African-American females. No effect was observed for the background levels of SSBs in
relation to age in this cohort, which may be due to the fact that the age range of this cohort is
younger (30–64 yrs) compared to other studies examining similar parameters.

Additional studies have been performed that examined the presence of DNA damage with
increasing age and have yielded varying results. Using the COMET assay, increased DNA
damage and FPG-sensitive sites were observed in older cohorts as compared to younger
ones (Barnett and King, 1995; Dusinska et al., 2006; Humphreys et al., 2007; Kruszewski et
al., 1998; Moller, 2006; Mutlu-Turkoglu et al., 2003), as well as in African Americans
compared to whites (Watters et al., 2008). In contrast, additional studies have found that
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there is no correlation between increased age and frequency of DNA damage (Dusinska et
al., 2006; Garm et al., 2012; Hyland et al., 2002; King et al., 1997; Wojewodzka et al.,
1998). These different findings may have been influenced by the small cohort size or by the
age distribution of the cohort studied. In Table 1, we have included information about cohort
size and age range to further compare these different studies and their outcomes.

Another epidemiologic application of the assay is in determination of inter-individual
variation in DRC (Popanda et al., 2003; Rajeswari et al., 2000; Smith et al., 2003). Analysis
of DRC in human populations is an attractive biomarker to pursue for clinical investigators
because alterations in several DNA repair pathways are linked with both heritable and
sporadically occurring age associated diseases. The capacity of cells to repair DNA damage
is an important factor, which affects the level of DNA damage present in cells. SSB repair
can be expressed as the logarithm of the initial rate of DNA repair, the logarithm of the half-
time of DNA repair, or the residual DNA damage after 30 and 60 min (Trzeciak et al.,
2008). The logarithm of the initial rate of DNA repair is directly proportional to DRC,
whereas other DNA parameters are inversely proportional to DRC. Studies have been
completed on healthy individuals and cancer patients and found that there is decreased SSB
repair capacity (SSB-RC) with increasing age (Spitz et al., 2003; Wei et al., 2000; Wei et al.,
1993). However, other studies have reported no effect on SSB-RC by age, gender, smoking
status, or frailty (Collerton et al., 2012; Garm et al., 2012; Marcon et al., 2003; Muller et al.,
2002; Muller et al., 2001; Paz-Elizur et al., 2007; Rajaee-Behbahani et al., 2001; Smith et
al., 2003).

We have found that SSB-RC is dependent on age, sex and race in cohort studies (Trzeciak et
al., 2008; Trzeciak et al., 2012) using a modified COMET assay that evaluated the SSB-RC
in PBMCs (Trzeciak et al., 2009). The results of these studies found a significant positive
correlation in the entire cohort between the logarithm of the half-time of DNA repair and
SSBs, as well as between the residual DNA damage after 30 min and SSBs. Additionally,
we found a negative correlation between SSB-RC and the level of SSBs in the overall
cohort. When stratified by sex, we found a significant increase in the fast SSB-RC in white
females with age, while a decrease was observed in African-American females. Given that
sex and race had significant changes in the various parameters is suggestive that SSB-RC
has the potential to become a clinical biomarker. These results are the first steps to help us
understand the relationship between DRC and oxidative damage to DNA and the role they
play in human health and disease.

2.3. Double Stranded DNA Breaks
One of the most toxic lesions to DNA is the double-strand break (DSB). DSBs can be
induced by ionizing radiation, stalled replication forks, meiotic recombination, V(D)J
recombination, class switch recombination, and can be generated as a consequence of
normal cellular processes like oxidative respiration that generates ROS. DSBs are formed
when both DNA strands encounter DNA damage, within 10–20 base pairs of each other,
resulting in a break of the phosphodiester bond. The presence of only a few DSBs (1–10
breaks) can induce p53-dependent G1 arrest and cell death (Huang et al., 1996a), explaining
the toxicity of these lesions when unrepaired. DSBs cannot be repaired by the numerous
template-directed repair systems, as both DNA strands are broken. DSBs can be repaired in
two ways: by direct rejoining of the DNA ends, a process called non-homologous end
joining or by use of the undamaged sister chromosome as the template for repair, a process
called homologous recombination.

One of the first cellular responses to DSBs is phosphorylation of histone H2AX (Rogakou et
al., 1998). Thousands of H2AX molecules adjacent to the break site become phosphorylated
within minutes of the generation of a DSB, resulting in the formation of gamma-H2AX (γ-

Jacob et al. Page 6

Mech Ageing Dev. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



H2AX) foci (Rogakou et al., 1999) that most likely represent single DSBs (Pilch et al.,
2003; Sedelnikova et al., 2002). By use of antibodies available against γ-H2AX, staining of
γ-H2AX foci has become a valuable tool for the detection and evaluation of single DSBs in
nuclei. Detection of γ-H2AX foci has been used as a biomarker for various cancers and
cancer progression (reviewed in (Ivashkevich et al.)), and detection of foci at eroded
telomere ends is used as a marker of aging (Nakamura et al., 2008; Takai et al., 2003).

Detection of γ-H2AX foci can be done in a number of ways, including staining and
quantifying γ-H2AX foci by immunofluorescence microscopy, fluoresence-activated cell
sorting (FACS) or immunoblotting to detect whole cell levels of γ-H2AX. Using
lymphocytes isolated from human blood samples, Sedelnikova et al. found that levels of
endogenous γ-H2AX foci increase with age (Sedelnikova et al., 2002). Similarly, using
lymphocytes from individuals in the Baltimore Longitudinal Study on Aging, it was found
that γ-H2AX foci increase with age, and increased γ-H2AX foci were also present in
individuals with hypertension (Schurman et al., 2012). Additionally, it has been shown that
the γ-H2AX response decreases with age in a non-significant manner (Garm et al., 2012).

An additional methodology to assess the level of DNA DSBs is by the neutral COMET
assay. This assay is performed in a similar manner as the alkaline COMET assay (previously
described) under neutral pH conditions, and the DNA in the tail formed during
electrophoresis represents the presence of DNA DSBs. There are a very limited number of
studies that have used this technique to examine DSBs in aging and age-related diseases.
However, the neutral COMET assay has been used to detect DSBs in male sperm. The
results have been contradictory finding no change in DSB levels (Schmid et al., 2007) as
well as increases in DSB level with age (Singh et al., 2003). In addition, analysis of DSBs in
age-related macular degeneration found no increase in DNA DSBs with age (Szaflik et al.,
2009), while a recent study by Garm et. al found that DSB-RC decreases with age (Garm et
al., 2012). The results of these studies, coupled with the fact that neutral conditions for the
COMET assay may not just measure DSBs (Collins et al., 2008), contribute to the thought
that further improvement of this technique is needed to accurately measure DSBs.

3. RNA oxidative lesions as a measure of oxidant stress
The human genome consists of more than 21,000 genes, encompassing only 1.5% of the
total bases of the genome, yet approximately 80% of the DNA is transcribed into RNA
(Birney et al., 2007). Recent data indicates that many of the non-gene encoding but
transcribed RNAs have functional roles; however, the focus on nucleic acid oxidation
research has been centered on DNA. The vast number and types of RNAs in the body
provide a sizable target for ROS. There are many reasons that RNA is more prone to
persistant oxidative damage than DNA including: 1) RNA is mainly single stranded, leaving
it easily accessible to ROS 2) there is no identified active repair mechanism for oxidized
RNA 3) RNA is less protected by proteins compared to DNA and 4) cytoplasmic RNAs are
near the mitochondria where many ROS are produced. Indeed, it has been shown that
oxidative damage to RNA is more prevalent than oxidative damage to DNA in humans
(Henriksen et al., 2009; Hofer et al., 2005; Shen et al., 2000; Weimann et al., 2002), and that
RNA oxidation is influenced by environment not by genetics as shown through twin studies
(Broedbaek et al., 2011a). Multiple studies have shown that increased RNA oxidization
products are present in diseases related to aging including: dementia with Lewy bodies
(DLB) (Nunomura et al., 2002), AD (Abe et al., 2002; Isobe et al., 2009; Nunomura et al.,
1999a; Nunomura et al., 1999b), PD (Kikuchi et al., 2002; Zhang et al., 1999),
atherosclerosis (Martinet et al., 2004), and myopathies (Tateyama et al., 2003). In addition,
increased RNA oxidation has been observed in hemochromastosis (Broedbaek et al., 2009),
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Down syndrome (Nunomura et al., 1999a), prion disease (Guentchev et al., 2002; Petersen
et al., 2005), and xeroderma pigmentosum (Hayashi et al., 2005).

3.1. Types of Oxidized RNAs
ROS oxidation of RNA subtypes has not been thoroughly studied. Not surprisingly, it has
been shown that both ribosomal (rRNA) and messenger (mRNA) RNAs can be oxidized.
Studies of both mild cognitive impairment (MCI) and in AD patients have found increased
rRNA oxidation in the inferior parietal lobe (Ding et al., 2005) and as a consequence of
RNA-bound iron oxidized by the Fenton reaction (Honda et al., 2005). It has been found that
in AD patients oxidation occurs in up to 50% of mRNA of the frontal cortices (Shan and
Lin, 2006), and that some mRNA species are more susceptible to oxidation than others
(Nunomura et al., 2006; Shan et al., 2003). Oxidation of other non-coding RNAs, including
microRNAs, transfer RNAs, small nuclear RNAs, long non-coding RNAs, small nucleolar
RNAs has not been investigated. Given the important roles of these different RNAs in gene
function and regulation, it will be important in the future to investigate whether these
different RNAs are susceptible to oxidative damage and whether this changes the role of
these RNAs in aging and/or disease. Although we have just begun to investigate the
outcomes of RNA oxidation, currently known consequences of RNA oxidation include
premature termination of reverse transcription (Rhee et al., 1995), ribosomal dysfunction
resulting in decreased protein synthesis (Ding et al., 2005), translation of nonfunctional or
truncated proteins (Tanaka et al., 2007), and proteins containing mutations that results in
misfolding or protein aggregation (Lee et al., 2006; Nunomura et al., 2010; van Leeuwen et
al., 1998).

3.2. 7,8-dihydro-8-oxo-guanosine (8-OHG)
The similarity between human DNA and RNA molecules would lead to the idea that the
oxidative lesions observed in DNA could also be observed on the corresponding bases in
RNA (Barciszewski et al., 1999; Bellacosa and Moss, 2003). However, at present only the
oxidized product of guanosine, 7,8-dihydro-8-oxo-guanosine (8-OHG), has been actively
investigated (current studies summarized in Table 1). 8-OHG is the most examined of the
RNA oxidation products due to its similarity to the 8-oxoG lesion in DNA, and the ability to
use many of the same methodologies verified on DNA substrates for the analysis of RNA
oxidation products. These methodologies include: chromatography and immunological
(antibody based) detection (the two most often used methods), primer extension and reverse
transcription (Rhee et al., 1995), aldehyde reactive probes (Cooke, 2009; Tanaka et al.), and
Southern blotting (first creating cDNA followed by DIG-labeling of sUTPs) (Shan and Lin,
2006).

The various chromatography methods utilized to detect oxidized RNA products are highly
specific and include HPLC methods coupled with UV (Park et al., 1992), electrochemistry
(EC) (Hofer et al., 2006), or mass spectrometry (MS) (Andreoli et al., 2010; Andreoli et al.,
2011; Henriksen et al., 2009; Weimann et al., 2002), as well as UPLC separation and
detection by tandem mass spectrometry (UPLC-MS/MS) (Henriksen et al., 2009). Of these,
the HPLC-EC method is able to detect 8-OHG bases at 20 fmol and the HPLC-MS
procedure can detect 8-OHG bases at 12.5 fmol (Hofer et al., 2006; Weimann et al., 2002).
As previously discussed, the verification efforts made by the ESCODD and ESCULA
groups for the 8-oxoG and 8-oxodG DNA oxidation products has facilitated and promoted
the use of the same chromatography methods for RNA oxidation products, although the
studies performed by both groups have not yet looked specifically at 8-OHG. Currently,
these procedures have been used for human urine and cerebral spinal fluid (CSF) samples,
but for organ or site specific disease analyses tissue samples would be preferred. However,
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at this time large tissue samples (50–100 mg) are required for analysis making these studies
difficult or impractical to perform.

Employing the chromatography protocols, studies on healthy cohorts have found that there
are higher levels of 8-OHG oxidation in RNA than 8-oxodG oxidation in DNA (Henriksen
et al., 2009; Park et al., 1992; Weimann et al., 2002), that men secrete higher levels of 8-
OHG than females, and that levels of the 8-OHG oxidation product increase with age
(Andreoli et al., 2010). Abe et al found that 8-OHG levels were increased in the CSF of both
AD and PD patients, but that the increased levels in AD patients were not recapitulated in
measurements from the serum, indicating the oxidation levels in CSF may more accurately
represent oxidation observed in brain tissues (Abe et al., 2003; Abe et al., 2002; Isobe et al.,
2009). Similarly, increased levels of 8-OHG were identified in urine samples from
individuals with Lewy Body dementia with (Nunomura et al., 2002).

The immunological methodologies used to identify RNA oxidation products employ the use
of two monoclonal antibodies, 15A3 and 1F7, which detect 8-OHG lesions (Hofer et al.,
2006; Yin et al., 1995). Several groups have conducted studies examining post-mortem brain
tissues from individuals with various neurological disorders through antibody based assays.
These studies have found increased levels of 8-OHG lesions to be associated with AD (Ding
et al., 2005; Honda et al., 2005; Nunomura et al., 1999a; Nunomura et al., 1999b; Nunomura
et al.; Shan and Lin, 2006), PD (Kikuchi et al., 2002; Zhang et al., 1999), Down Syndrome
(Nunomura et al., 1999a; Nunomura et al., 2000), and dementia with Lewy Bodies
(Nunomura et al., 2002). Similarly, using both immunohistochemistry and ELISA assays it
has been shown that increased 8-OHG levels are present in individuals with atherosclerosis
(Martinet et al., 2004; Martinet et al., 2002). Although experimentation using antibodies to
detect 8-OHG has shown increased levels of RNA oxidation products, the antibody
specificity is often still questioned. Many experiments using the immunological methods
require validation by other more specific methods.

4. Protein oxidation as a measure of oxidant stress
Another target of free radical attack is proteins, which can be both oxidized and cross-
linked. These alterations to proteins can result in inhibition of function of various cellular
proteins, in some cases permanently. It is estimated that 30–50% of cellular proteins are
altered or dysfunctional in cells of older animals due to free radicals (Levine and Stadtman,
2001; Stadtman, 1995). Furthermore, oxidation of proteins has been demonstrated to affect
the enzymatic activity of certain proteins in other species.

4.1. Protein Carbonyls
Oxidation of protein can lead to protein carbonyls (Garrison et al., 1962), which are most
often formed on the amino acids lysine, arginine, proline, and threonine and by the
fragmentation products of peptide bond cleavage reactions. Protein carbonyls are produced
by the addition of carbonyl groups (such as aldehydes and ketones) as side chains on these
amino acids. The assay detecting protein carbonyls is one of the most frequently used
methodologies to examine levels of protein oxidation caused by oxidative stress (Beal, 2002;
Chevion et al., 2000; Shacter, 2000; Stadtman and Berlett, 1997). One key feature for the
use of protein carbonyls to assess oxidative damage is the fact that they are chemically
stable and can be stored at −80°C for 3 months without changes in detectability (Griffiths,
2000).

Several studies have shown age-related increases in protein carbonyl levels for healthy
human subjects (all reviewed in (Voss and Siems, 2006)), particularly in heart, muscle,
brain, and plasma (Floyd and Hensley, 2002; Gianni et al., 2004; Gil et al., 2006; Grune et
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al., 2001; Stadtman, 2001). Elevated levels of protein carbonyls in serum, plasma, and
tissues are observed in diabetes (Dominguez et al., 1998; Telci et al., 2000), inflammatory
bowel disease (Lih-Brody et al., 1996), AD (Conrad et al., 2000; Korolainen et al., 2002;
Smith et al., 1991), Werner Syndrome (Oliver et al., 1987), PD (Floor and Wetzel, 1998),
Cystic Fibrosis (Range et al., 1999), essential arterial hypertension (Kedziora-Kornatowska
et al., 2004), and rheumatoid arthritis (Mantle et al., 1999)(for review see (Dalle-Donne et
al., 2006; Stadtman, 2001)). Most studies have agreed that increased levels of protein
carbonyls correlate with age. Various methods (Spectrophotometric, ELISA based, and
protein oxidation assays) using plasma, serum, and brain tissues have found this positive
correlation of protein carbonyl levels and age (Gil et al., 2006; Kasapoglu and Ozben, 2001;
Mutlu-Turkoglu et al., 2003; Smith et al., 1991; Traverso et al., 2003) (summarized in Table
1). An additional study by Howard et al found that protein carbonyl levels correlated with
poor grip strength in women in the Women's Health and Aging Study (WHAS), implying
that oxidative stress may contribute to reduced grip strength and concordant loss of muscle
strength in aging (Howard et al., 2007). In a bi-racial cohort, we observed no significant
relationship between the levels of protein carbonyls in plasma and oxidative DNA lesions
(Trzeciak et al., 2012).

5. Oxidant Stress of Red Blood Cells (RBCs)
Red blood cells are the most abundant cells in the human body and primarily act to transport
O2 and CO2 between the lungs and tissues of the body. RBCs pass through the lungs
approximately once per minute, where they are exposed to conditions of oxidative stress. A
unique feature of RBCs is an effective antioxidant system that protects these cells as well as
other organs and tissues from free radical attack. However, despite the presence of an
antioxidant system, RBCs are highly susceptible to oxidative damage.

The major protein in RBCs is hemoglobin, which constitutes nearly 90% of the dry weight
of the cell. The abundance of hemoglobin and the constant exposure to oxygen in RBCs
create the ideal conditions for oxidation of hemoglobin. In the body, free iron is readily
oxidized to Fe (III), which cannot bind oxygen; however, in hemoglobin Fe (II) is much
more stable. Nevertheless, 3% of the hemoglobin is oxidized in a 24-hr period via
autoxidation, producing Fe(III)hemoglobin (metHb) and a superoxide anion radical (Rifkind
et al., 2004). Although there are enzymatic systems in place to reduce the Fe (III) back to the
functional Fe (II) form, approximately 1% of the Fe (III) form is present in the blood at
steady state. The production of superoxide anions oxidation of hemoglobin is thought to be
the major source of oxidative stress in red blood cells, and contribute to additional damage
in other tissues (Rifkind et al., 1993).

5.1. Fluorescent Heme Degradation Products
A novel marker of protein oxidation, fluorescent heme degradation products (hemoglobin
band 1), are end products formed as a result of ROS attack of hemoglobin and hemoglobin
autoxidation (Nagababu and Rifkind, 1998). When autoxidation of hemoglobin or ROS
attack on RBCs occurs, hemoglobin is broken down and heme degradation products are
produced. These products can be released into the circulation and the presence of heme
degradation products in fresh blood samples reflect the pool of non-neutralized ROS
generated that have escaped from the RBC antioxidant system. Since red cells have no
enzymatic system in place to remove heme degradation products, it is believed that they may
be a relevant biomarker of oxidative stress originating from the red cell (Nagababu and
Rifkind, 2004). It has been shown that the fluorescent heme band is formed by the reaction
of membrane bound hemoglobin with H2O2 or hydroperoxide which is not eliminated by the
cytoplasmic antioxidant systems (Nagababu et al., 2010).
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Levels of red blood cell oxidative stress may be influenced by many factors including race.
African Americans had higher RBC oxidative stress as measured by fluorescent heme
degradation products than Whites (Szanton et al., 2011). Though this is the first time that
RBC oxidative stress has been studied in an African American cohort, this is not the first
time that measures of oxidative stress have been found to be elevated in African Americans.
Levels of plasma carbonyls, nitric oxide, and oxidized glutathione were found to be higher
in African Americans in comparison to whites by in vivo assays and in some cases in in
vitro measurements as well (Feairheller et al.; Morris et al., 2012). In addition, work
underway has shown that heme degradation products may be related to race. (Evans MK et
al, manuscript in preparation).

There is some evidence in the literature that psychological stress may also play a role in
generating oxidative stress. Szanton and colleagues found that perceived racial
discrimination reported by both African Americans and whites correlated with higher levels
of RBC oxidative stress as measured by fluorescent heme degradation products (Szanton et
al., 2011). Notably, when this cohort was stratified by race, the association was only
significant for African Americans. These early findings may suggest a link between
oxidative stress and psychological stress which might play a role in the disproportionate
burden of age-associated diseases like cardiovascular disease, cancer and diabetes mellitus
among minority populations.

In a bi-racial cohort we have investigated the relationship between heme degredation
products, SSB levels and SSB-RC (Trzeciak et al., 2012). We observed increased SSB levels
with increasing heme degradation product levels in African-American males. In contrast,
African-American females showed a decrease in SSBs with levels of heme degradation
products. We also observed a negative correlation between the level of heme degradation
products and SSB-RC as measured by the residual DNA damage after 60 min, as measured
by the comet assay, in the entire cohort. These results provide what we believe is the first
evidence of a relationship between DNA damage in PBMCs and heme degradation products,
and may in the future result in a clinically useful marker for oxidative damage.

6. Other Markers of Oxidant Stress
6.1. Glutathione (GSH)

The glutathione system is pivotal and thought to be a critical safeguard in the cellular
defense against oxidative stress. GSH plays a central role as a non-enzymatic antioxidant
and functions to eliminate peroxides and maintain the thiol/disulfide redox state of proteins
that are critical for proper biological function. GSH also maintains the redox state of
ascorbate enhancing its function as a non-enzymatic antioxidant (Jones, 2006).

Several laboratories have reported that reduced glutathione levels with age are associated
with a decrease in antioxidant capacity (Erden-İnal et al., 2002; Gil et al., 2006; Matsubara
and Machado, 1991). It has been established that a decrease of whole blood, plasma, and
lymphoblast GSH concentration may be associated with aging (Lang et al., 1992; Samiec et
al., 1998), as well as rheumatoid arthritis (Gambhir et al., 1997), AIDS (Pirmohamed et al.,
1996), AD (Cecchi et al., 1999), respiratory distress syndrome (Rahman and MacNee,
2000), Werner syndrome (Pagano et al., 2005), ALS (Bonnefont-Rousselot et al., 2000),
alcoholic liver disease (Hadi Yasa et al., 1999), diabetes (Samiec et al., 1998), essential
arterial hypertension (Kedziora-Kornatowska et al., 2004), and cataract genesis (Lou and
Dickerson, 1992).

RBCs require glutathione to maintain the native structure of hemoglobin and of enzymes
and membrane proteins (Kosower and Kosower, 1978), as well as protecting the cells from
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endogenous and exogenous toxins (Meister and Anderson, 1983). In addition, the level of
GSH in RBCs is approximately 1000 times greater than the levels found in plasma (Beutler
and Gelbart, 1985), making it easier to assess smaller changes in levels. Several studies have
analyzed GSH levels specifically from RBCs, and have found varying results summarized in
Table 1. Two studies performed on groups of either healthy men or healthy women have
found that there is no change in RBC GSH with age (Kasapoglu and Ozben, 2001;
Kędziora-Kornatowska et al., 2007). Contradictory to this, studies of both healthy
individuals and AD patients have found reduced GSH levels in RBCs with age (Liu et al.,
2005; Rizvi and Maurya, 2007). The limited number of studies examining RBC GSH levels
indicate that further investigation is needed to determine whether RBC GSH can be used as
a valid marker of oxidative stress with age and in age-related diseases.

We have assessed the relationship between RBC GSH levels, SSB levels, SSB-RC, race, and
sex in participants from the HANDLS study (Trzeciak et al., 2012). We found that the RBC
GSH concentration is positively correlated with the level of SSB in white females, but
observed no effect in while males or African-Americans of either sex. In white females, we
also found that the RBC GSH concentration is negatively correlated with SSB repair
capacity as measured by both the logarithm of the initial rate of repair and the logarithm of
the half-time of repair. A very significant correlation between RBC GSH concentration and
the level of Endo III-labile sites was observed in white males and females, but not in African
Americans. In addition, the entire cohort showed a positive correlation between the levels of
RBC GSH and heme degradation products. Given the range of study findings, plasma,
serum and/or RBC GSH levels when used alone may not be reliable or consistently
correlative markers of oxidant stress and its association with aging.

6.2. Lipid peroxidation
Peroxidation of lipids is one of the most extensively studied free radical induced reactions in
the body. ROS induced lipid peroxidation occurs when a reactive hydrogen atom is
extracted from the methylene group of an unsaturated fatty acid. Once this process has
begun, lipid peroxidation spreads as a ROS-induced chain reaction until the levels of
peroxidation are sufficiently high to result in the production of a non-radical molecule. The
peroxidation of lipids can result in damage to the cell membrane due to the high
concentration of lipids present. In addition, the end products of lipid peroxidation can be
both mutagenic and carcinogenic, and play a role in aging and disease progression.

Here we discuss F2 isoprostanes as a marker of lipid peroxidation. In recent years, F2
isoprostanes have proven to be the among the most sensitive and reliable biomarkers for the
investigation of lipid peroxidation (Kadiiska et al., 2005; Morrow et al., 1990). They have
been measured as parts of clinical trials and observation studies to determine the role of lipid
peroxidation in aging and disease.

6.2.1. Isoprostanes—Isoprostanes are prostaglandin-like substances produced in vivo by
esterification of arachidonic acid (Morrow et al., 1990; Pryor et al., 1976). There are many
cellular functions of prostaglandins including: activation of the inflammatory response,
where they are produced by white blood cells; regulating blood pressure; increasing blood
flow in the kidneys; and promoting the bronchial constriction associated with asthma
(Miller, 2006). It has also been shown that oxidative stress induces the production of
prostaglandins in human cells (Malek et al., 2001) and that some prostaglandins can produce
intracellular stress (Kondo et al., 2001).

Levels of isoprostanes change very little on a day to day basis in both healthy and disease
states (Bachi et al., 1996; Reilly et al., 1996) and are most commonly measured in urine, as
isoprostanes are chemically stable in this biofluid and artificial auto-oxidation does not
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occur in urine to produce false positives (Cracowski et al., 2002). Products of the
isoprostane pathway have biological actions and may play a pivotal role in human disease
progression (Morrow and Roberts, 1997). It has been shown that isoprostanes can act as a
vasoconstrictor in tissues including the gastrointestinal tract, kidney, blood vessels,
lymphatic vessels (Oguogho et al., 1998; Sinzinger et al., 1997), the bronchi (Janssen et al.,
2000), and the uterus (Crankshaw, 1995). Isoprostanes are believed to be involved in various
disease states of the lung (Janssen, 2008) and have been shown to prevent aggregation of
platelets (Cracowski and Durand, 2006).

There are various forms of isoprostanes, which can be formed from the same initial substrate
in vivo, the D2, E2, F2, and H2 families each containing compounds of various lengths and
conformations (Morrow and Roberts, 1997). The letter corresponding to the various
isoprostane compounds (D, E, F, G, and H) indicate the type of cyclopentane ring that
comprises the molecule (Rokach et al., 1997). The first of these discovered, the F2-
isoprostanes, are considered the best available biomarkers of lipid oxidation and oxidative
stress in vivo (Roberts and Morrow, 2000). F2-isoprostanes are detectable in liquid form in
all bodily fluids and in their esterified form in biological tissues, indicating physiological
levels of oxidative stress (Morrow and Roberts, 1997; Pratico et al., 1998a; Roberts and
Morrow, 2000). Measurement of F2-isoprostanes has many advantages over other potential
biomarkers of oxidative stress including: they are chemically stable; a specific product of
oxidation; formed in vivo; increased levels are observed with oxidant injury; a baseline level
is definable; and levels are unaffected by diet (Gopaul et al., 2000; Montuschi et al., 2007;
Roberts and Morrow, 2000). One of the pitfalls of using F2-isoprostanes as a marker is the
fact that once released into the circulation they are rapidly metabolized and eliminated, thus
plasma levels may vary significantly and not be entirely reflective of actual levels.

An increase in F2-isoprostane levels is an early event in asthma (Dworski et al., 1999;
Montuschi et al., 1999), hepatic cirrhosis (Pratico et al., 1998b), scleroderma (Cracowski et
al., 2001), and AD (Montine et al., 2002; Pratico et al., 2002) implying a role for oxidative
stress in these diseases. Additionally, elevated levels of F2-isoprostanes are detected in
atherosclerosis (reviewed in (Davies and Roberts Ii, 2011)), arthritic diseases (Basu et al.,
2001), diabetes (Gopaul et al., 1995), Huntington's disease (Montine et al., 1999), smoking
(Morrow et al., 1995; Reilly et al., 1996), and renal failure (Holt et al., 1999; Moore et al.,
1998). An investigation of cerebral spinal fluid from healthy volunteers found that there was
a positive correlation between increased F2-isoprostanes and aging (Montine et al., 2011).
However, it has recently been shown that there is no correlation between levels of
isoprostanes and frailty, as a measure of aging (Collerton et al., 2012).

7. Inflammation as a form of oxidant stress
In the format of this review, we are unable to present a complete review of inflammation.
However, we feel that it is important to mention inflammation because of its association
with oxidative stress and with aging and age-related diseases.

Inflammation is the body's reaction to both endogenous and exogenous harmful stimuli and
the initiation of the healing process, which can be classified into two types, acute and
chronic. Chronic inflammation has cellular side effects, including production of free radicals
that can result in oxidative damage and depletion of antioxidants (Hold and El-Omar, 2008).
Macrophages, one of the main components of the inflammatory response, produce ROS in
the forms of superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, hydrochlorous
acid, and peroxynitrite (Fialkow et al., 2007; Maeda and Akaike, 1998). Production of ROS
by the immune system results in production of pro-inflammatory cytokines and chemokines
(Costa et al., 2008; Ryan et al., 2004). There are numerous cytokines activated by
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inflammation these include IL-1, IL-6, TNF-α, and IFN-γ which have been shown to
generate ROS (Chapple, 1997).

Several studies hypothesize that IL-6 is a central mediator of the inflammatory response
(Fasshauer and Paschke, 2003; McCarty, 1999). Many studies suggest that IL-6 levels are
also an indicator of increased frailty (Bandeen Roche et al., 2009; Barzilay et al., 2007;
Collerton et al., 2012; Fried et al., 2009; Hubbard et al., 2009; Leng et al., 2002; Leng et al.,
2011; Leng et al., 2007; Schmaltz et al., 2005); however there are a few reports showing no
association (Leng et al., 2004a; Leng et al., 2004b; Reiner et al., 2009). A positive
correlation was found between SSBs and IL-6 levels under extreme exercise conditions
(Mastaloudis et al., 2004a; Mastaloudis et al., 2004b), as well as in a healthy aged
population (Broedbaek et al., 2011b). No correlation was observed between the RNA
oxidation product 8-OHG and IL-6 in elderly patients with low-grade inflammation
(Broedbaek et al., 2009). Conflicting reports of IL-6 levels in AD have been reported as both
unchanged (März et al., 1997) or decreased (Hampel et al., 1998).

High-sensitivity C-reactive protein (CRP) is an acute phase inflammatory protein, belonging
to the pentraxin family, which consists of five non-covalently bound subunits arranged in a
disk (Thompson et al., 1999). Production of CRP is stimulated by cytokines in response to
infection or inflammation in blood vessels or tissues (Clyne and Olshaker, 1999; Libby and
Ridker, 2004). In relation to aging, few groups have examined the relationship between CRP
levels and frailty. These studies have found both a positive correlation (Barzilay et al., 2007;
Collerton et al., 2012; Hubbard et al., 2009; Walston et al., 2002; Wu et al., 2009) and no
correlation (Reiner et al., 2009). Most studies examining the presence of DNA damage in
relation to CRP levels have found a positive correlation. A weak, but positive correlation
was observed between increased SSBs and increased CRP levels in patients with Acute
Coronary Syndrome (Demirbag et al., 2005), while similar correlations were observed in
Cardiac X Syndrome and End Stage Renal Disease for lymphocyte damage and serum levels
of 8-oxodG lesions respectively (Gur et al., 2007; Haghdoost et al., 2006). Analysis of the
urine from elderly patients with low grade inflammation found no correlation between CRP
levels and the levels of the RNA oxidation product 8-OHG excreted in urine.

In a bi-racial cohort we examined the relationship between CRP and the levels of oxidative
DNA lesions and SSB-RC (Trzeciak et al., 2012). We found a statistically significant
increase in SSB level with increasing CRP concentration in African-American males. In the
overall cohort, a significant positive correlation between sex, the logarithm of CRP
concentration, and SSB-RC as measured by the residual DNA damage after 30 min and 60
min was observed; however in females this significant correlation was negative. These same
correlations were true when the cohort was stratified by race. We observed a positive
correlation between the CRP concentration in serum and RBC GSH concentration, but found
no significant relationship between the levels of CRP and heme degradation products.
Interestingly, we recently completed a study examining 8-oxodG levels in women with low
(<3 mg/L) CRP, mid (>3–20 mg/L), and high (>20 mg/L) CRP. Increasing levels of 8-
oxodG were observed in the mid and high CRP groups compared to the low CRP group,
indicating a significant relationship between an inflammatory and oxidative stress marker in
women at risk for cardiovascular disease (Noren Hooten et al., 2012). As several studies
have also associated CRP with 8-oxodG levels in various disease states (Bolukbas et al.,
2006; Demirbag et al., 2005; Haghdoost et al., 2006), it will be important in the future to
further investigate the promising relationship between this inflammatory marker and 8-
oxodG, as well as other oxidative stress markers.
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8. Closing Remarks and Perspectives
In the more than 50 years since the introduction of the Harman Free Radical Theory on
Aging, great strides have been made to understand the role of free radicals in human health
and disease. Our schematic model (Figure 1) highlights pathology, age, race and genotype
(non-modifiable risk factors) as well as modifiable risk factors (diet, socioeconomic status,
environment and behavior) may interact with oxidant stress and inflammatory processes to
contribute to aging and age related disease. These interactions result in oxidative
modifications of cellular macromolecules DNA, RNA, lipid and proteins. These
modifications are associated with a number of bi-products or end-products that are linked to
the oxidatively modified macromolecules (DNA adducts, strand-breaks, heme degradation,
protein carbonyls and isoprostanes). These modifications may alone or in association with
other biologic factors lead to epigenetic changes, changes in gene expression and/or DNA
repair capacity or mitochondrial and membrane dysfunction. Ultimately, these factors over
time and in association with a lifetime of exposures result in aging and age related disease
and the pathologies that are present. We would like to point out that we have not addressed
the role of mitochondria in oxidant stress or mitochondrial DNA damage in this review. It is
known that mitochondria contribute to oxidant stress to DNA, accumulate with age, and are
thought to contribute to the aging process. Therefore, it is possible that mitochondria could
be potential markers of oxidant stress related to aging and age-related diseases. The studies
to support this possible role should be the focus of a future literature review.

To effectively study the various stages of this molecular progression, methodologies must be
developed to assess the types and levels of damage to cellular components, and the results
need to be verified by studies in different laboratories as has been done by ESCOD and
ESCULA. This type of collaborative scientific work pushes the field forward. The studies
we have discussed employ the most commonly used methodologies to measure damage to
DNA, RNA, protein, and lipids that is a result of oxidative stress and various inflammatory
processes. After a thorough review of the literature, we feel that some of the markers of
oxidative stress we discussed have inconsistent results with respect to aging and age-related
disease (Tables 1 and 2). It appears that further investigation is needed before the field can
come to a consensus as to the best and most consistent measure of DNA oxidation,
especially in relation to the use of these measures of oxidative damage as a clinically
relevant marker for aging or age-related disease. That being said, studies investigating
measures of RNA oxidation, protein oxidation, and lipid oxidation show somewhat more
consistency in regard to age and age-related disease. To insure the best results all studies
must increase cohort size to improve the statistical power of future analyses. Further studies
and validation of all markers of oxidative damage would greatly enhance our understanding
of the role oxidative stress plays in aging and disease.
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Highlights

A review of the current status of oxidative stress markers in aging and age-related
diseases

This review discusses the use of different methodologies to assess oxidative stress
levels

Particular focus on the oxidation of DNA, RNA and protein in human cohort studies
with respect to aging
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Figure 1. The role of oxidant stress in aging and age-related disease
Both non-modifiable risk factors (age, race, genotype) and modifiable risk factors (diet,
socioeconomic status, environment) have the propensity to interact with and affect the
inflammatory processes and affect and be affected by oxidant stress. The interaction of all of
these parameters can result in oxidative modifications of cellular macromolecules DNA,
RNA, lipid and proteins. These oxidative modifications alone or in association with other
biologic factors can lead to epigenetic changes, changes in both gene expression and DNA
repair capacity, or mitochondrial and membrane dysfunction.
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Table 1

Population Studies using Selected Oxidative and Inflammatory Biomarkers

Marker Cohort Disorder Methodology Result Reference

8-oxoGua and 8-
oxodG in DNA

n=14
Ages 75–83

Alzheimer's Disease GC/MS of CSF and analysis of intact
DNA structures

↑ 8-oxodG in AD
patients DNA

(p<0.05)

(Lovell et
al., 1999)

n=26
Ages 70–78

Alzheimer's Disease HPLC using brain tissues Correlation of 8-
oxodG with age

in controls
(p<0.0002); ↑ 8-
oxodG in mDNA
compared with

nDNA(p<0.001)

(Mecocci et
al., 1994)

n=20
Ages 75–86

Alzheimer's Disease GC/MS using brain tissues ↑ 8-oxoGua in
AD patients

(p<0.03)

(Gabbita et
al., 1998)

n=76
48–91

Alzheimer's Disease GC/MS using brain tissues ↑ 8-oxoGua in
Occipital lobe of

AD patients
(p<0.001); ↑ 8-

oxoGua levels in
Parietal lobe of

AD patients
(p<0.003)

(Lyras et al.,
1997)

n=16
Ages 81–88

Alzheimer's Disease GC/MS-SIM using brain tissues ↑ 8-oxodG in
mDNA and

nDNA ofAD
patients DNA
(p<0.05); ↑ 8-

oxodG in mDNA
compared with
nDNA (p<0.01)

(Wang et al.,
2005)

n=20
Ages 71–84

Parkinson's Disease GC/MS using brain tissues ↑ 8-oxoGua in
PD patients
(p=0.002)

(Alam et al.,
1997)

n=22
Ages 66–83

Parkinson's Disease Immunohistochemistry of brain
tissues for 8-oxoG

↑ 8-oxoGua
immunoreactivity

in PD patients
synaptic neurons

(p<0.01)

(Zhang et al.,
1999)

n=177
Ages 25–5

Healthy HPLC of using lymphocytes ↑ 8-oxodG levels
in men (p<0.01)
and correlation
with early CAD

(r=0.9)

(Collins et
al., 1998)

n=255
Ages ~8–85

Healthy HPLC of using lymphocytes ↑ in 8-oxodG
with age
(p<0.01)

(Siomek et
al., 2007)

n=21
Ages N.G.

Patients with carotid stenosis >
70%

Immunohystochemistry of carotid
endarterectomy specimens

↑ 8-oxodG
immunoreactivity

of affected
tissues compared
with unaffected
tissue (p<0.01)

(Martinet et
al., 2002)

n=66
Ages 29–93

Healthy HPLC of DNA isolated from muscle ↑ levels of 8-
oxodG with age

(p<0.001)

(Mecocci et
al., 1999)

n=117
Ages 30–64

Community dwelling healthy
females

ELISA using serum ↑ levels of 8-
oxodG with age

(p<0.01)

(Noren
Hooten et
al., 2012)
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Marker Cohort Disorder Methodology Result Reference

n=90
Ages 68–86

Community-dwelling older adults ELISA using serum ↑ levels
correlated with ↑
frailty (p=0.03)

(Wu et al.,
2009)

DNA SSB n=55
Ages 35–69

Healthy males ELISA using human lymphocytes ↑ in SSB in aged
population
(p=0.039)

(Barnett and
King, 1995)

n=55
Ages 21–40 and

61–85

Healthy Alkaline COMET assay using
lymphocytes

~2-fold ↑ in
endogenous SSB

in elderly
(p<0.05)

(Mutlu-
Turkoglu et
al., 2003)

n=80
Ages 21–60

Healthy Alkaline COMET assay using
lymphocytes

↑ in SSB in
individuals over

40 years of age*;
no correlation to
sex or smoking

status

(Diem et al.,
2002)

n=64
Ages 28–59

HBV-related cirrhosis and
chronic HCV

Alkaline COMET assay using
lymphocytes

↑ SSB in both
HBV (p<0.013)

and HCV
patients

(p<0.016)

(Bolukbas et
al., 2006)

n=96
Ages 30–64

Community dwelling bi-racial
cohort

Alkaline COMET assay using
lymphocytes

↑ SSB for
females

(p=0.013)

(Trzeciak et
al., 2012)

n=97
Ages 20–82

Healthy Alkaline COMET assay using
lymphocytes

↑ SSB and Fpg-
sensitive sites in
aged (p<0.001)

(Humphreys
et al., 2007)

n=147
Ages 20–45

Healthy Alkaline COMET assay using
lymphocytes

↑ Fpg-sensitive
sites in African

Americans
(p<0.01)

(Watters et
al., 2008)

n=31
Ages 35–69 and

75–80

Healthy ELISA using lymphocyte samples Old cohort had
similar levels of
SSBs as young

(p=0.42)

(King et al.,
1997)

n=170
Ages 20–64

Healthy Alkaline COMET assay using
lymphocytes

No changes in
DNA damage

with age or sex*;
increase in SSB
with smoking

(p<0.05)

(Kopjar et
al., 2006)

n=156
Ages 95, 94, 90,

86 and
40–60

Swedish NONA Immune Study Alkaline COMET assay using
lymphocytes

No change in
DNA damage

with age*

(Hyland et
al., 2002)

n=136
Ages 44–70

Acute Coronary Syndrome Alkaline COMET assay using
lymphocytes

↑ DNA damage
in ACS patients

(p<0.001)

(Demirbag et
al., 2005)

n=216
Ages 40–77

Twin pairs born 1930–1969 FADU using lymphocytes No change in
DNA damage

with age
(p≥0.51)

(Garm et al.,
2012)

SSB Repair Capacity n=96
Ages 30–64

Community dwelling bi-racial
cohort

Alkaline COMET assay using
lymphocytes

Repair is
dependent on age
(p<0.01 for white
females), gender

(p<0.01), and
race (p<0.002 for

females)

(Trzeciak et
al., 2008)
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Marker Cohort Disorder Methodology Result Reference

n=50 Ages N.G.;
n=28 Ages 21–55
n=240 Ages 39–

70;
n=54 Ages 24–75

Various cancers;
Healthy;
NSCLC;

Various cancers

Alkaline COMET assay using
lymphocytes

No effect of age,
gender, or
smoking in

repair*

(Marcon et
al., 2003;

Muller et al.,
2002; Muller
et al., 2001;

Rajaee-
Behbahani et

al., 2001)

n=96
Ages 30–64

Community dwelling bi-racial
cohort

Alkaline COMET assay using
lymphocytes

Negative
correlation

between SSB-RC
and SSB level

(p=0.041)

(Trzeciak et
al., 2012)

n=632 Ages 32–
86;

n=1441 Ages N.G.

Lung Cancer Host-cell reactivation assay ↓ repair capacity
in patients
(p<0.001),

specifically white
females

(p<0.001)
1

(Spitz et al.,
2003; Wei et

al., 2000)

n=140 Ages 41–63 Breast cancer Alkaline COMET assay using
lymphocytes

↑ DNA damage
in cancer patients
(p<0.001), but no
effect on repair

with age*

(Smith et al.,
2003)

n=223
Ages 20–60

Basal cell carcinoma Host-cell reactivation assay ↓ repair across
life span

(p<0.003);
lowest repair in

young with BCC
(p=0.022)

(Wei et al.,
1993)

n=120
Ages N.G.

Healthy OGG activity assay from lymphocytes ↓ OGG1 activity
in males age 55

and older
(p=0.0064); no

effect of smoking
status (p=0.84)

(Paz-Elizur
et al., 2007)

n=845
Age 85

Newcastle 85+ cohort Automated Fluorimetric Alkaline
DNA Unwinding Analysis

No correlation
between SSB-RC

and frailty
(p=0.13)

(Collerton et
al., 2012)

n=216
Ages 40–77

Twin pairs born 1930–1969 FADU using lymphocytes No changes in
repair capacity

with age (p≥0.7)

(Garm et al.,
2012)

DNA DSBs n=26
Ages 21–71

Healthy Immunocytochemistry of lymphocytes ↑ number of γ-
H2AX foci in
older donors

compared with
younger donors

(p<0.01)

(Sedelnikova
et al., 2002)

n=40
Ages 35–80

Healthy Immunocytochemistry of lymphocytes ↑ number of γ-
H2AX foci with
age; ↑ number of
γ-H2AX foci in
participants over

age 57 with
hypertension

(p=0.037)

(Schurman
et al., 2012)

n=66
Ages 20–57

Healthy Neutral COMET assay using sperm ↑ levels of DSBs
in older

individuals
(p<0.02)

(Singh et al.,
2003)
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Marker Cohort Disorder Methodology Result Reference

n=80
Ages 22–80

Healthy Neutral COMET assay using sperm No changes in
DSB levels with

age (p=0.7)

(Schmid et
al., 2007)

Age-related Macular
Degeneration (AMD)

Neutral COMET assay using
lymphocytes

↑ levels of DSBs
in patients with
AMD (p<0.05)

(Szaflik et
al., 2009)

n=216
Ages 40–77

Twin pairs born 1930–1969 Neutral COMET assay using
lymphocytes; Immunocytochemistry

of lymphocytes

↓ repair of DBS
with age

(p<0.01); ↑
number of γ-

H2AX foci with
age (p<0.01)

(Garm et al.,
2012)

8-OHG in RNA n=20
Ages 45–70

Healthy HPLC-MS of urine ↑ levels of 8-
OHG compared

to DNA
oxidation

products*

(Weimann et
al., 2002)

n=33
Ages 53–71

Alzheimer's Disease HPLC-EC of CSF ↑ 8-OHG in AD
patients

(p<0.001); no
correlation with

age

(Abe et al.,
2002)

n=47
Ages 57–85

Dementia w/Lewy Bodies Immunohystochemistry of brain tissue ↑ 8-OHG
immunoreactivity
in DLB patients

(p < 0.01)

(Nunomura
et al., 2002)

n=22
Ages 3–93

Alzheimer's Disease Immunohystochemistry of brain tissue ↑ 8-OHG
immunoreactivity
in AD patients (p

< 0.0001)

(Nunomura
et al., 1999b)

n=39
Ages 57–93

Alzheimer's Disease Immunohystochemistry of brain tissue ↑ 8-OHG
immunoreactivity
in AD patients (p

< 0.0001)

(Nunomura
et al., 1999a)

n=23
Ages 57–75

Alzheimer's Disease HPLC-EC of CSF and Serum ↑ 8-OHG in CSF
of AD patients
(p>0.001); no

correlation with
age; no change in
8-OHG in serum
of AD patients

(Isobe et al.,
2009)

n=16
Ages 65–93

Alzheimer's Disease Immunohystochemistry of brain tissue Levels of Aβ42
negatively

correlated with 8-
OHG levels

(p<0.02)

(Nunomura
et al., 2010)

n=20
Ages 65–86

Alzheimer's Disease Northwestern Blotting ↑ 8-OHG in AD
frontal cortex

(Shan et al.,
2003)

n=12
Ages 62–86

Alzheimer's Disease Southern blotting and Semi-
quantitative RT-PCR analysis from

brain tissues

50% of mRNAs
are oxidized in

AD frontal
cortices

(p<0.001)

(Shan and
Lin, 2006)

n=26
Ages 80–93

Alzheimer's Disease and Mild
Cognitive Impairment

Northern immunoblot of brain tissue ↑ levels of 8-
OHG in the IP of

AD and MCI
patients

(p<0.01); no
change in levels
from cerebellum

(Ding et al.,
2005)

n=70
Ages 49–74

Parkinson's Disease ELISA from serum and CSF ↑ 8-OHG serum
and CFS for PD

(Kikuchi et
al., 2002)
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patients
(p<0.001); no

correlation with
age

n=39
Ages 53–74

Parkinson's Disease HPLC-EC of CSF and serum ↑ 8-OHG in CSF
of PD patients
(p>0.001); no

change in 8-OHG
in serum of PD

patients

(Abe et al.,
2003)

n=40
Ages N.G.

Patients with carotid stenosis >
70%

Immunohistochemistry of carotid
endarterectomy specimens

↑ 8-OHG
immunoreactivity

of affected
tissues compared

with adjacent
unaffected

tissue*

(Martinet et
al., 2004)

Protein Carbonyls n=55
Ages 21–40 and

61–85

Healthy Spectrophotometric method for
carbonyl assay

↑ levels in aged
(p<0.01)

(Mutlu-
Turkoglu et
al., 2003)

n=29
Ages 15–88

Alzheimer's Disease Spectrophotometric analysis using
brain tissues

↑ levels in aged
(p<0.0001)

(Smith et al.,
1991)

n=76
48–91

Alzheimer's Disease Spectrophotometric analysis using
brain tissues

↑ levels parietal
lobe of AD

patients
(p<0.01); no

correlation with
age

(Lyras et al.,
1997)

n=76
Ages 32–90

Essential arterial hypertension 2,4-dinitrophenyl hydrazine assay
from serum

↑ in patients with
hypertension

(p<0.001)

(Kedziora-
Kornatowska
et al., 2004)

n=194
Ages 18–84

Healthy ELISA of blood plasma Minor ↑ in levels
with age
(p=0.34)

(Gil et al.,
2006)

n=100
Ages 20–70

Healthy Absorbance measurement from serum ↑ levels in aged
(p<0.05)

(Kasapoglu
and Ozben,

2001)

n=84
Ages 23–66 and

92–96

Healthy 2,4-dinitrophenyl hydrazine assay
from plasma

↓ levels in aged
(p<0.01)

(Traverso et
al., 2003)

GSH n=194
Ages 18–84

Healthy Colorimetric assay from RBCs ↓ levels with age
(p<0.001)

(Gil et al.,
2006)

n=119
Ages 19–93

Diabetes and Age Related
Macular Degeneration

HPLC from plasma ↓ plasma levels
in aged (p<0.01)

(Samiec et
al., 1998)

n=76
Ages 32–90

Essential arterial hypertension Colorimetric assay from whole blood ↓ in patients with
hypertension

(p<0.01)

(Kedziora-
Kornatowska
et al., 2004)

n=170
Ages 20–94

Healthy Colorimetric assay from whole blood ↓ levels in
healthy aging

adults (p<0.001)

(Lang et al.,
1992)

n=53
Over age 65

Alzheimer's Disease HPLC from RBCs, lymphocytes, and
plasma

↓ levels in male
AD patients

(p<0.05), but no
change in female

patients*

(Liu et al.,
2005)

n=80
Ages 18–85

Healthy Colorimetric assay from RBCs ↓ in erythrocyte
RBC levels with
age (p<0.001)

(Rizvi and
Maurya,

2007)

Mech Ageing Dev. Author manuscript; available in PMC 2014 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jacob et al. Page 38

Marker Cohort Disorder Methodology Result Reference

n=28
Ages 34–82

Healthy Colorimetric assay from RBCs No effect on
erythrocyte RBC

levels with age*

(Kędziora-
Kornatowska
et al., 2007)

n=100
Ages 20–70

Healthy Measured from RBCs by the method
of Fairbanks and Klee

No effect on
erythrocyte RBC

levels with age*

(Kasapoglu
and Ozben,

2001)

Isoprostanes n=421
Ages 21–89

Healthy GC-MSofCSF ↑ of F2-
isoprostanes over
the life span (P,

0.001)

(Montine et
al., 2011)

n=68
Ages 27–71

Arthritis Radioimmunoassay of
immunoreactive (RIA) 8-iso-

PGF2αin Serum

↑ levels in
arthritic disorders
associated with

oxidant stress*

(Basu et al.,
2001)

n=60
Ages 30–60

Diabetes mellitus GC-MS/NICI from plasma ↑ levels in
individuals with

diabetes
(p<0.001)

(Gopaul et
al., 1995)

n=25
Ages 49–61

Renal Failure GS-MS from urine ↑ levels in
patients in renal
failure (p<0.02)

(Holt et al.,
1999)

n=25
Ages 49–61

Renal Failure GS-MS from urine ↑ levels in
patients in renal
failure (p<0.02)

(Holt et al.,
1999)

n=845
Age 85

Newcastle 85+ cohort LC-MS/MS from plasma No correlation
with frailty
(p=0.28)

(Collerton et
al., 2012)

IL-6 n=845
Age 85

Newcastle 85+ cohort Electrochemiluminescence ↑ levels
correlated with ↑
frailty (p=0.023)

(Collerton et
al., 2012)

n=436
Ages 70–79

Women's Health and Aging
Studies

ELISA from blood ↑ levels
correlated with ↑
frailty (p<0.01)

(Fried et al.,
2009)

n=720
Ages 65+

InCHIANTI study population ELISA from serum ↑ levels
correlated with ↓

mobility
(p<0.05)

(Bandeen
Roche et al.,

2009)

n=110
Ages 77–91

Healthy and Function impaired ELISA from plasma ↑ levels
correlated with ↑
frailty (p<0.01)

(Hubbard et
al., 2009)

n=30
Ages 74–98

Community-dwelling older adults ELISA from serum ↑ levels
correlated with ↑
frailty (p<0.01)

(Leng et al.,
2002)

n=51
Ages 77–98

Community-dwelling older adults ELISA from serum No association
between IL-6

levels and frailty
(p=0.26)

(Leng et al.,
2004a)

n=22
Ages 77–96

Community-dwelling older adults ELISA from PBMCs No association
between

unstimulated
IL-6 levels and

frailty*; when
stimulated ↑

levels correlated
with ↑ frailty

(p<0.03)

(Leng et al.,
2004b)

n=1106
Ages 65–101

Women's Health and Aging
Studies

ELISA from serum ↑ levels
correlated with ↑
frailty (p<0.001)

(Leng et al.,
2007)
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n=193
Ages 72–97

Community-dwelling older adults ELISA from serum ↑ levels
correlated with ↑
frailty (p<0.05)

(Leng et al.,
2011)

n=724
Ages 70–79

Women's Health and Aging
Studies

ELISA from plasma ↑ levels
correlated with ↑
frailty (p<0.01)

(Schmaltz et
al., 2005)

n=2826
Ages 65–80

Cardiovascular Health Study ELISA from blood ↑ levels
correlated with ↑
frailty (p<0.01)

(Barzilay et
al., 2007)

n=1800
Ages 65–79

Women's Health Initiative Plasma biomarker assay No association
between IL-6

levels and frailty
(p=0.27)

(Reiner et
al., 2009)

CRP n=845
Age 85

Newcastle 85+ cohort Assayed from blood ↑ levels
correlated with ↑
frailty (p<0.001)

(Collerton et
al., 2012)

n=90
Ages 68–86

Community-dwelling older adults Roche Tina-quant CRP HS assay ↑ levels
correlated with ↑
frailty (p=0.01)

(Wu et al.,
2009)

n=110
Ages 77–91

Healthy and Function impaired Assayed spectrophotometricly from
serum

↑ levels
correlated with ↑
frailty (p<0.05)

(Hubbard et
al., 2009)

n=1800
Ages 65–79

Women's Health Initiative Plasma biomarker assay No association
between CRP

levels and frailty
(p=0.95)

(Reiner et
al., 2009)

n=2826
Ages 65–80

Cardiovascular Health Study ELISA from blood ↑ levels
correlated with ↑
frailty (p<0.001)

(Barzilay et
al., 2007)

n= 4735
Ages 67–79

Cardiovascular Health Study ELISA from blood ↑ levels
correlated with ↑
frailty (p<0.001)

(Walston et
al., 2002)

n=720
Ages 65+

InCHIANTI study population ELISA from serum No significant
association

between CRP
levels and

frailty*

(Bandeen
Roche et al.,

2009)

N.G.= Not Given

*
No statistical values given

1
Same p-values from both studies
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Table 2

Population Studies Correlating Selected Oxidative and Inflammatory Biomarkers

Marker Cohort Disorder Methodology Result Reference

Fluorescent Heme
Degredation

Products

n=96
Ages 30–64

Community dwelling bi-
racial cohort

Alkaline COMET assay
using lymphocytes

↑ SSBs correlates
with ↑ heme

degradation products
in AA males; SSBs
correlated with ↑
heme degradation
products in AA

females; negative
correlation between
heme degradation
products and SSB-

RC

(Trzeciak et
al., 2012)

Protein Carbonyls n=96
Ages 30–64

Community dwelling bi-
racial cohort

Alkaline COMET assay
using lymphocytes

No relationship
between protein

carbonyls and SSBs

(Trzeciak et
al., 2012)

IL-6 n=730
Ages 22–93

Framingham Heart Study Non-cross-reacting
radioimmunoassay from

PBMCs

↑ levels with age and
with increasing CRP

levels (p<0.001)

(Roubenoff et
al., 1998)

n=59
Ages 23–80

Healthy volunteers ELISA from plasma ↑ levels with age, but
no correlation to

CRP levels*

(Hager et al.,
1994)

n=220
Ages 68–75

Healthy ELISA from serum; UPLC
MS/MS from urine

No correlation with
8-oxodG levels

(p=0.24) or 8-OHG
levels (p=0.7)

(Broedbaek et
al., 2009)

CRP n=136
Ages 44–70

Acute Coronary Syndrome Alkaline COMET assay
using lymphocytes

Weak correlation
with SSB in patients
with ACS (r = 0.544,

p < 0.001)

(Demirbag et
al., 2005)

n=130
Ages 46–70

Metabolic syndrome Alkaline COMET assay
using lymphocytes

No correlation with
SSB levels in

healthy and MBS
(r=0.098)

(Demirbag et
al., 2006)

n=96
Ages 30–64

Community dwelling bi-
racial cohort

Alkaline COMET assay Significant
interaction between
CRP and sex in their

effect on residual
DNA damage

(p=0.002)

(Trzeciak et
al., 2012)

n=30
Ages 23–69

Renal Disease on dialysis FISH in flow cytometry ↑ CRP levels
correlate with ↓
telomere length

(r=0.74, p=0.007)

(Ramirez et
al., 2005)

n=64
Ages 43–55

Cardiac X Syndrome Alkaline COMET assay
using lymphocytes

Correlation between
CRP levels and

lymphocyte DNA
damage (p=0.001)

(Gur et al.,
2007)

n=32
Ages 36–86

End Stage Renal Disease on
dialysis

ELISA for 8-oxodG using
serum

Positive correlation
between CRP and 8-

oxodG (ρ=0.4,
p<0.02)

(Haghdoost et
al., 2006)

n=220
Ages 68–75

Healthy ELISA from serum; UPLC
MS/MS from urine

No correlation
between levels and

8-oxodG levels
(p=0.28) or 8-OHG

levels (p=0.11)

(Broedbaek et
al., 2009)

n=96
Ages 30–64

Community dwelling bi-
racial cohort

Alkaline COMET assay
using lymphocytes

positive correlation
in AA males

(Trzeciak et
al., 2012)
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between SSBs and
CRP (p=0.022)

n=117
Ages 30–64

Community dwelling healthy
females

ELISA from serum ↑ levels of 8-oxodG
with ↑ CRP (p<0.02)

(Noren Hooten
et al., 2012)
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