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Abstract

Mesothelioma patients rely on the information their clinical team obtains from medical imaging. 

Whether x-ray-based computed tomography (CT) or magnetic resonance imaging (MRI) based on 

local magnetic fields within a patient’s tissues, different modalities generate images with uniquely 

different appearances and information content due to the physical differences of the image-

acquisition process. Researchers are developing sophisticated ways to extract a greater amount of 

the information contained within these images. This paper summarizes the imaging-based research 

presented orally at the 2018 International Conference of the International Mesothelioma Interest 

Group (iMig) in Ottawa, Ontario, Canada, held May 2-5, 2018. Presented topics included 

advances in the imaging of preclinical mesothelioma models to inform clinical therapeutic 

strategies, optimization of the time delay between contrast administration and image acquisition 

for maximized enhancement of mesothelioma tumor on CT, an investigation of image-based 

criteria for clinical tumor and nodal staging of mesothelioma by contrast-enhanced CT, an 

investigation of methods for the extraction of mesothelioma tumor volume from MRI and the 

association of volume with patient survival, the use of deep learning for mesothelioma tumor 

Corresponding Author: Samuel G. Armato III, Ph.D., Department of Radiology, The University of Chicago, 5841 South Maryland 
Ave., MC 2026, Chicago, IL, USA 60637 s-armato@uchicago.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Lung Cancer. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Lung Cancer. 2019 April ; 130: 108–114. doi:10.1016/j.lungcan.2018.11.033.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation in CT, and an evaluation of CT-based radiomics for the prognosis of mesothelioma 

patient survival.
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Introduction

The biennial conference of the International Mesothelioma Interest Group (iMig) includes a 

dedicated imaging session that features recent advances in imaging research and clinical 

adaptation of imaging technology in the diagnosis and evaluation of mesothelioma [1–5]. 

Imaging continues to play a critical role in the evaluation and surveillance of malignant 

pleural mesothelioma (MPM) patients, and researchers continue to seek ways to enhance, 

optimize, and extend the many roles that imaging has in the MPM setting. This paper 

summarizes research presented in the imaging session of the 2018 International Conference 

of the International Mesothelioma Interest Group in Ottawa, Ontario, Canada, in May 2018.

Imaging research has two broad components: (1) research to improve or optimize image 

acquisition and (2) research to enhance image visualization post acquisition or to extract 

quantitative data for task-specific image analysis.

In the era of precision medicine, imaging agents, imaging technology, and imaging 

applications are rapidly expanding. Positron emission tomography (PET)-based molecular 

imaging in the preclinical setting is emerging as a powerful tool to accelerate development 

of therapies by allowing researchers to visualize (and hence better understand) the 

mechanisms of action in vivo, which, in turn, leads to more intelligent drug development [6].

Image quality and the diagnostic utility of images depend on proper selection of image 

acquisition parameters, which include the time delay between injection of contrast medium 

and initiation of imaging for computed tomography (CT) and magnetic resonance imaging 

(MRI). Standard contrast time delays have evolved for clinical imaging of the chest; 

however, the location of MPM tumor surrounding the outside of the lung peripherally would 

suggest the need for a time delay specific to MPM imaging. Such a customized imaging time 

delay would better maximize the visual contrast difference between MPM tumor and the 

surrounding tissues that, for CT, have similar endogenous x-ray attenuation properties. 

Subsequent computerized image analysis methods would also benefit from the resulting 

enhanced contrast difference. Until recently [5,7], however, optimization of the contrast time 

delay for MR and CT has been ignored in the literature.

The CT-based assessment of MPM clinical stage has been the subject of recent scrutiny [8–

12]. A validated metric for assigning to MPM patients a stage that reflects patient prognosis 

and correlates with patient outcome is essential for proper consideration of treatment 

options. The unique morphology, anatomic location, and growth patterns of MPM require an 

approach to staging that differs from the traditional rubric of stage, specifically with regard 
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to T (“tumor”) and N (“node”) stage. Novel ways of combining visually assessed imaging 

information into the staging system are being investigated with the goal of improved 

correlation between assigned stage and patient survival.

Information visually obtained from CT scans (or images from any medical imaging 

modality) is inherently subjective. Intrinsic, quantitative information may be extracted from 

medical images by using the numeric values (the “pixel values”) that are stored in each 

image file and subsequently displayed as differing levels of brightness for the benefit of 

human observers. The mathematical manipulation of these values forms the basis of image 

processing (for enhanced visualization), computer vision (for automated detection and 

characterization of disease), and radiomics (for the extraction of quantitative measures of 

structure morphology and texture) [13]. A more recent term to describe a concept that has 

been in the literature for decades, “radiomics” has emerged as a powerful tool across a wide 

range of radiologic tasks, from the classification of lung nodules as benign or malignant [14] 

to the prediction of tumor recurrence [15]. The extraction of radiomics features from MPM 

tumor to identify a subset of such features that best correlate with patient survival should 

prove equally valuable.

Prior to the computerized analysis of MPM tumor in medical images, knowledge of which 

pixels belong to the tumor is required. In other words, the tumor must be “segmented” from 

the rest of the anatomy captured in the image, and the complete tumor volume must be 

identified. Segmentation of anatomic and pathologic structures from within medical images 

is a challenging task [16]. Advanced methods to segment MPM tumor in CT and MRI 

through deep learning and more traditional thresholding-based approaches will benefit both 

tumor volume calculations as well as radiomics-based assessment of tumor characteristics.

Preclinical imaging

Preclinical research is important in the understanding of tumor biology and in the 

development of new therapies to control and treat disease. In mesothelioma, preclinical 

models are used to test the therapeutic effect and biodistribution of new treatments in an in 
vivo setting, prior to clinical trials. Mesothelioma models may also be used to explore tumor 

growth patterns, investigate the tumor microenvironment, and improve understanding of 

tumor spread. Imaging has the potential to add value to small animal research by 

noninvasively attaining information on cell processes, tumor microenvironment, tumor 

growth, and tumor response to treatment. Imaging can be performed serially (with each 

animal serving as its own control) to better understand treatment effect and minimize the 

number of animals required [17].

Animal models include xenograft tumors (human cell lines implanted in immunosuppressed 

mice) implanted as subcutaneous flank tumors or orthotopically at the site of the primary 

tumor source [18]; in mesothelioma, orthotopic models may include pleural or peritoneal 

implantation. Alternatively, genetically modified mice may be bred to develop de novo 
tumors that parallel the development of human cancers [18]. The MexTAg mouse model is 

an inducible tumor model [19–20]: on exposure to asbestos, the genetically modified mice 

develop mesothelioma with a latency of 20-40 weeks [20]. This model provides an 
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important platform for addressing a number of questions regarding mesothelioma tumor 

development and can be used to test prevention and early intervention strategies [20]. While 

subcutaneous models may be monitored by visual assessment and caliper measurements, 

growth or treatment response in orthotopic and de novo tumors cannot be readily observed 

externally, as these tumors develop on the pleura or peritoneum. Consequently, imaging is 

needed to non-invasively monitor these tumors to evaluate growth pattern and therapeutic 

efficacy.

In preclinical imaging, CT has relatively poor spatial resolution, and MRI is frequently 

performed to confirm anatomic detail. Co-registration of PET and MRI provides both 

functional and anatomic imaging data, which then can be quantified for objective, 

computational analysis. 18F-fluorodeoxyglucose (FDG) PET using a small animal PET 

camera is the most ideal imaging modality for monitoring tumor growth and therapy 

response in the preclinical setting. In the MexTAg de novo tumor model, FDG-PET imaging 

may facilitate the detection of peritoneal tumors and allow therapeutic intervention and 

monitoring (Figure 1). The development of genetic mouse models is expensive, and imaging 

has an emerging important role in optimizing experiments with regard to timing of 

interventions and monitoring of outcomes.

Other PET tracers may be used to assess mesothelioma mouse models. One such example is 

18F-fluoromisonidazole (FMISO) for the evaluation of hypoxia. In clinical trials, hypoxia 

present in human mesothelioma tumors may contribute to resistance to therapy [21]. 

Modulation of hypoxia may increase therapeutic efficacy; therefore, the monitoring of 

hypoxia in preclinical models may lead to the development of strategies that can be 

translated to human clinical trials [4].

In summary, preclinical imaging, specifically with PET, may have several roles. These roles 

include characterizing preclinical models and establishing how closely preclinical models 

parallel tumors in the clinical setting, monitoring the rate and characteristics of tumor 

growth (in particular for de novo tumor models), assessing efficacy of new therapies over 

time with serial time-point imaging, and developing imaging endpoints that correlate with 

efficacy of treatment and can translate into “intelligent” clinical trial design. Multiple 

imaging modalities and imaging probes are available to be matched with the experimental 

question under investigation.

Dynamic enhancement with CT

While most modern CT scanners have high spatial resolution capable of resolving structures 

to under 1 mm in size, accurate staging of MPM remains a diagnostic challenge on CT. For 

example, in a study by Rusch et al. [22] as many as 80% of MPM patients with stage 1 and 2 

disease and 23% of patients with stage 3 disease were upstaged post-operatively. This 

inaccuracy in pre-operative staging (“clinical staging”) with CT is partly due to similarities 

between the tissue attenuation of tumor and adjacent structures including chest wall, 

complex pleural fluid, and atelectatic lung [23]. To improve tissue contrast (i.e., to enhance 

the differential attenuation of tumor with respect to adjacent structures), an intravenous (IV) 

contrast medium can be administered; the timing of image acquisition with respect to the 
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administration of this contrast medium will impact the conspicuity of imaged structures. The 

standard time delay between contrast administration and CT image acquisition is typically 

40-60 s for clinically optimal enhancement of tissues and opacification of arterial and 

venous structures. Katz and colleagues have demonstrated that the optimal timing for 

enhancement of MPM on MRI is between 150 and 300 s following the administration of 

MRI-specific contrast medium [5,7]; in the present study, this group examined whether the 

optimal timing for enhancement of MPM on CT occurs at a time point later than the clinical 

standard.

Ten adult MPM patients planned for pleurectomy were enrolled in a prospective, exploratory 

imaging clinical trial approved by the local institutional review board. Patients with 

maximum pleural tumor thickness less than 1 cm, prior pleurectomy, or prior pleural 

radiation were excluded. All patients underwent contrast-enhanced CT of pleural tumor at 0 

s, 20 s, 40 s, 60 s, 2 min, 4 min, 6 min, 8 min, and 10 min following administration of IV 

contrast medium to create a dynamic series, and tumor tissue attenuation was measured at 

each phase. Using best-fit model curves, predicted maximum attenuation values and the time 

delays at which they occur were estimated using non-linear regression.

Tumor enhancement kinetics of all 10 patients was displayed as maximal tumor tissue 

attenuation as a function of time. Best-fit statistical analysis (Figure 2) revealed an estimated 

optimal time delay in the range of 230-300 s following IV contrast administration. This 

small prospective clinical trial found that maximal MPM CT contrast enhancement occurs at 

a time delay greater than the conventional time delay for CT chest imaging (usually 40-60 

s). Further study of the impact of delayed phase enhancement on radiologic MPM staging 

accuracy and therapy response assessment is warranted, ideally in a multicenter prospective 

clinical trial.

By optimizing mesothelioma tumor enhancement, and hence tissue contrast, improved 

staging accuracy with CT might be achieved. In addition, improved tissue contrast between 

tumor and adjacent structures with similar attenuation (e.g., chest wall and complex pleural 

fluid) may translate into better performance of semi-automated and automated segmentation 

tools that are in use and under development. In addition to optimizing the timing of image 

acquisition following IV contrast, it would also be of interest to explore other technical 

parameters that may impact enhancement on CT including rate of IV contrast delivery and 

contrast dose. By systematically fine-tuning these CT imaging parameters, the best possible 

quality of mesothelioma imaging on CT may be achieved, which has implications both for 

clinical management of patients and for research and development of imaging software 

tools.

Descriptors for clinical staging

Stage is one of the most important prognostic factors in MPM and has gained international 

attention [8–12]. The staging of MPM is unique due to its non-spherical growth patterns 

along the pleural surface, the assessment of T stage based on local invasion rather than 

tumor size, and lymphatic drainage involving unusual locations such as internal mammary, 

cardiophrenic, and intercostal regions. Contrast-enhanced CT remains the most-frequent 
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initial imaging technique for MPM clinical staging [24–26]. In recommendations for the 

Eighth Edition of the TNM Classification for Pleural Mesothelioma Staging, clinical T3 and 

T4 survival curves overlap, the N2 category is merged with the N1 category, the N3 category 

is merged with the N2 category, and measurement of pleural thickness is advocated for its 

prognostic value [9–10]. It is therefore important to improve clinical staging for both disease 

prognosis and treatment choice selection in MPM. Ak and colleagues analyzed novel 

imaging criteria for clinical T and N staging of MPM by contrast-enhanced CT.

The pretreatment CT scans of 210 MPM patients who were diagnosed and treated between 

2010-2016 were retrospectively and blindly reviewed. Patients with distant metastasis 

(n=14) were excluded. The new staging criteria were tested for their association with patient 

survival (calculated from date of diagnosis); these criteria include tumor morphologic 

appearance (homogenous rind, heterogeneous rind, heterogeneous diffuse disease, localized 

tumor, or pleural fluid only), maximum thickness of the tumor, anatomic location of this 

maximum thickness, predominant intrathoracic region of the tumor, invasion of major 

anatomic structures, and pattern of lymph node metastasis (no metastasis, metastasis to 

lymph nodes within the lung cancer lymph node map, metastasis to lymph nodes outside the 

lung cancer map, or metastasis to lymph nodes both within and outside the map). Kaplan-

Meier survival, log-rank, receiver operating characteristic (ROC), and univariate analyses 

were performed.

Average age was 62±11.6 years; 120 (61%) patients were male. Epithelioid, biphasic, and 

sarcomatoid histology was shown in 140 (71%), 36 (18%), and 17 (9%) patients, 

respectively (histological subtype could not be identified in three patients). Patients 

underwent best supportive care (n=26), chemotherapy (n=107), or multimodality treatment 

including surgery (n=63). Mean follow-up was 19.5±15.8 months. Median survival was 14.2 

months (95% CI: 10.6-17.8 months), with a 2-year survival of 31%. The median survival 

times for patients with epithelioid, biphasic, and sarcomatoid histology were 20.1, 10.5, and 

7 months, respectively (significantly different, p<0.001).

There was a separation of curves according to morphologic appearance of the tumor. Median 

survival times for (1) fluid only and localized tumor combined, (2) heterogeneous diffuse 

disease, and (3) heterogeneous/homogenous rinds were 20.9, 14.6, and 11.2 months, 

respectively. Homogenous and heterogeneous rinds had the worst survival (p=0.031; 95% 

CI: 8.9-13.3 months) (Figure 3a). The average maximum tumor thickness was 21.7±19.8 

mm. The presence of any pleural thickening, regardless of measured thickness, was 

associated with poor survival. Location of the thickest part of tumor was not associated with 

survival. Metastasis to lymph nodes both within and outside the lung cancer lymph node 

map was associated with worse survival: median survival times for metastasis within, 

outside, and both within and outside the lung cancer lymph node map were 17.3, 11.7, and 

5.4 months, respectively (p=0.003; 95% CI: 55.8 months) (Figure 3b).

Rind-type pleural thickening and concurrent lymph node metastasis to nodes both within 

and outside the lung cancer lymph node map were associated with poorer survival and 

should be considered in future MPM staging efforts. Tumor thickness should be evaluated in 

a larger series to determine whether a threshold exists that better correlates with survival. 
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Given the strong dependence of survival on tumor histology, staging should perhaps be 

evaluated separately for epithelioid and other histologic subtypes.

Radiomics for outcomes prediction

Tumor volumetry has been identified as an important prognostic factor for overall survival 

(OS) of MPM patients. Radiomics is a mathematical approach to describing and quantifying 

the shape, intensity, and texture of a tumor on radiologic imaging in a more sophisticated 

and comprehensive way as compared to volumetry alone. Radiomics has proven to be 

prognostic for local tumor control in head and neck cancer and has shown to be prognostic 

for OS after definitive radiotherapy in lung cancer [27–28]. Opitz and colleagues evaluated 

radiomic features in CT images as a prognostic factor for OS in MPM patients.

The primary tumor was delineated in 30 patients with proven MPM in CT images performed 

at the time of primary diagnosis. 1404 radiomic features of shape (n=18), intensity 

(histogram, n=17), texture (relation of an individual pixel to its neighborhood 

(heterogeneity), n=137), and wavelet decomposition (n=1232) were calculated with an in-

house developed software implementation (Z-Rad). Features were pre-selected based on an 

inter-observer robustness study (tumors contoured independently by three observers), and 

stable features were grouped based on average hierarchical clustering. The most prognostic 

feature from among each identified group of correlated features was selected and included in 

multivariable Cox regression for prediction of OS and progression free survival (PFS) 

calculated from date of diagnosis.

Median follow up time was 14.1 months, and median OS was 14.2 months. 505 out of the 

1404 radiomic features were stable, and hierarchical clustering revealed six groups of 

correlated and stable features. Overall, 18 features distributed over five groups of correlated 

features were prognostic in univariate Cox regression (the Bonferroni correction for multiple 

comparisons was applied), and two wavelet features were prognostic for OS in multivariable 

Cox regression (concordance index: 0.74, p=0.002). Both features separated the patients into 

two groups with a significantly different OS (p=0.0006) and a significantly different PFS 

(p=0.003) (Figure 4). For comparison, tumor volume was prognostic in univariate Cox 

regression (p=0.01) but had a smaller concordance index (0.62).

A prognostic model for OS in MPM patients was developed based on CT image 

characteristics. Radiomic biomarkers had a stronger prognostic value compared with tumor 

volume alone. Further studies are ongoing to validate these results in a larger cohort of 

patients.

Deep learning tumor segmentation

Volumetric segmentation of MPM tumor has been a topic of interest for prognostic 

evaluation, tumor response assessment, and tumor staging [12, 29–31]. The automated 

segmentation of MPM tumor, however, is challenging due to the irregular morphology of the 

disease, low contrast of tumor and surrounding soft-tissue structures, and variability in 

tumor extent and presentation. Gudmundsson and colleagues investigated the use of deep 
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convolutional neural networks (CNNs) (“deep learning”) for the segmentation of MPM 

tumor on CT scans.

The U-Net deep CNN architecture presented by Ronneberger et al. [32] was used to segment 

MPM tumor. As a reference standard for CNN training, visible pleural thickening was semi-

automatically contoured on the axial sections of 146 chest CT scans from 87 MPM patients. 

Deep CNNs were trained separately for the left and right hemithorax on the two-class 

problem of differentiating between pleural thickening and normal thoracic tissue. A total of 

4259 and 6192 axial CT sections containing segmented tumor were used to train the left- 

and right-hemithorax CNNs, respectively.

The average binary cross-entropy and Dice similarity coefficient (DSC) between deep CNN-

predicted and reference tumor segmentations were used as measures of segmentation 

performance during training. DSC is an overlap metric that lies between 0 (indicating no 

overlap between the segmentations being compared) and 1 (indicating complete overlap). 

Distinct validation sets of eight patients were randomly selected to evaluate overfitting of the 

CNNs to the training set in each hemithorax; the networks were applied to the validation sets 

after each iteration over the training sets. After 50 iterations over the training sets, the deep 

CNNs to be applied to the test set were selected as the ones that minimized the average 

binary cross-entropy and maximized the average DSC on the validation set of each 

hemithorax.

The trained CNNs were tested on 63 axial CT sections from 17 MPM patients not included 

in the training or validation sets, with reference tumor segmentations on all sections 

provided by three radiologists. These images were part of a previously published 

segmentation method of MPM tumor on CT scans and allowed for a direct comparison with 

that method (hereafter referred to as the “2011 Method”) [33]. The two-sided Wilcoxon 

signed-rank test was used to test the null hypothesis that the DSC distributions for the 

present deep CNN-based method and the 2011 Method were identical over the test set when 

compared with observer reference segmentations (α = 0.05).

The median DSC (range) when comparing deep CNN-predicted tumor segmentations with 

observer reference segmentations on the test set were 0.776 (0.314-0.938), 0.688 

(0.251-0.931), and 0.800 (0.308-0.952) for Observers A, B, and C, respectively. The median 

DSC (range) when comparing tumor segmentations obtained from the 2011 Method with 

observer reference segmentations on the same test set were 0.718 (0-0.938), 0.604 (0-0.902), 

and 0.709 (0-0.926) for Observers A, B, and C, respectively. The greater overlap with 

observer reference segmentations for the deep CNN-based method was significant for all 

observers (p < 0.001). Figure 5 presents, for the reference segmentation of each observer for 

each case in the test set, the DSC value of the present deep CNN-based method plotted 

against the corresponding DSC value of the 2011 Method.

A deep CNN was successfully implemented for the automated segmentation of MPM tumor 

on CT scans. The output of the deep CNN-based method showed significantly higher 

overlap with three sets of observer reference segmentations when compared with a 

previously published MPM segmentation method. Future work will focus on improving the 
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accuracy and robustness of this method by training on a larger set of annotated CT scans and 

extending the network through the use of three-dimensional convolutional filters.

Tumor volume from MRI

MPM exhibits an unusual, rind-like growth pattern, and primary tumor (T-) staging is 

currently based on the extent of pleural surface involvement and extra-pleural invasion, 

which makes staging more difficult than in other tumors such as lung cancer, where 

unidimensional tumor measurements are utilized [9, 34]. Previous attempts to address this 

problem using volumetric analyses (generally on CT) have been limited by time-consuming 

and complex methods [12, 31, 35–36]. MRI offers higher contrast resolution than CT and is 

therefore potentially better suited to volumetric analyses [37–38]. In this study, Blythe and 

colleagues sought to determine an optimal MRI volumetric method for correlation with 

biomarkers drawn in the recently completed DIAPHRAGM study (ISRCTN10079972) [39], 

in which 639 patients with suspected pleural malignancy were recruited across 23 centers in 

the United Kingdom between December 2013 and December 2016. Patients recruited in 

Glasgow centers for whom a pleural biopsy (thoracoscopic or image-guided) was clinically 

indicated were eligible for the MRI sub-study; standard MRI exclusion criteria applied.

A total of 31 patients with MPM underwent gadobutrol-enhanced 3-Tesla MRI prior to 

pleural biopsy or any significant pleural intervention. Patients were scanned isotropically in 

the coronal plane during a short breath hold. Volumetric analyses were performed using 

Myrian® software (Intrasense, France). Manual delineation of visible parietal pleura was 

performed on selected slices from the 4.5-minute post-contrast scan, and shape-based 

interpolation was used to propagate these delineations throughout the image series to create 

the “contour mask.” Tumor volume then was measured within this mask by region-growing-

based segmentation using four different thresholding methods based on signal intensity (SI) 

limits derived from earlier perfusion MRI studies. Each method was evaluated in terms of 

analysis time, intra-observer variability, visual assessment of accurate tumor coverage, and 

measured error (%) relative to a phantom containing a known volume of fluid.

Mean patient age was 76±7 years; 28 patients (90%) were male. MPM histologic subtypes 

were epithelioid (68%, n=21), biphasic (13%, n=4), sarcomatoid (16%, n=5), and 

mesothelioma not otherwise specified (NOS) (3%, n=l). The optimal segmentation method 

was based on a contour mask SI +/− 99 (arbitrary units) (Figure 6). Using this method, mean 

analysis time was 16 minutes, intra- and inter-observer intra-class correlation coefficients 

(ICC) were 0 799 (95% Cl: 0.528 – 0.922) and 0.931 (95% Cl: 0.816 – 0.975), and error 

relative to the phantom was −3.6%. Patients with higher tumor volumes (≥300 ml) had 

significantly poorer median OS (Figure 6). The observed difference in median OS with 

tumor volume increased when analysis was confined to patients with epithelioid histology 

(21/31) and further increased when epithelioid cases with nodal or metastatic disease were 

excluded (18/31) (Figure 6). Across all 31 cases, increasing tumor volume, by tertile, was 

associated with decreasing median OS (≤250 ml, 250-400 ml, ≥400 ml; log-rank for trend 

p=0.023). Tumor volume was independently associated with OS in a multivariable Cox 

proportional hazards model (HR: 2.114 (1.046-4.270), p=0.037).

Armato et al. Page 9

Lung Cancer. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this pilot study, a novel MRI perfusion-tuned method for volumetric tumor segmentation 

in MPM appeared accurate and reproducible. High tumor volume was associated with 

reduced survival. Further studies, including validation against resected tumor volumes after 

extended pleurectomy/decortication, are planned.

Conclusion

The topics presented at the 2018 iMig meeting are the focus of continued research effort and 

clinical investigation. The role of preclinical imaging using PET and MRI to provide 

quantifiable functional and anatomic data is expanding and serves as a valuable tool to 

improve understanding of tumor growth, efficacy of new therapies, and clinical trial design. 

Research in CT to improve the identification of tumor from surrounding anatomical 

structure by optimizing contrast delay along with an exploration of CT-based tumor 

morphology and nodal distribution as prognostic markers and as potential new descriptors of 

clinical staging were presented. Image analysis through advanced computational techniques 

using radiomics as a potential biomarker for prognosis and using deep convolutional neural 

networks for automated segmentation of tumor has opened a promising new frontier for 

mesothelioma research in CT. The correlation of tumor volume with survival and techniques 

to improve the accuracy of volume measurements using CT or MR remain topics of interest 

for investigators. The biennial international conference of iMig provides a forum for 

imaging scientists with interest in mesothelioma to share their research work. Further 

advances in these and other promising aspects of imaging are expected to be presented at 

iMig 2020 in Brisbane, Queensland, Australia.
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Highlights

• Preclinical mesothelioma models are used to inform clinical therapeutic 

strategies.

• Contrast administration time delay impacts enhancement of mesothelioma 

tumor on CT.

• Segmented mesothelioma tumor volume from MRI is associated with patient 

survival.

• Deep learning shows promise for mesothelioma tumor segmentation in CT.

• CT-based radiomics is related to the prognosis of mesothelioma patient 

survival.
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Figure 1. 
FDG-PET maximum intensity projection image of a MexTAg genetically modified mouse. 

The multiple small foci of FDG activity in the abdomen represent peritoneal mesothelioma. 

(Image courtesy of C. Robinson; acknowledgement to ACRF Cancer Imaging Facility, Perth, 

Australia.)
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Figure 2. 
Best-fit analysis of time-enhancement curves for MPM. At a time delay range of 230-300 s 

(double arrow), >95% of maximal tumor enhancement is achieved for all 10 patients.
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Figure 3. 
(a) Kaplan-Meier survival curves for types of pleural thickening. (b) Kaplan-Meier survival 

curves for lymph node metastasis.
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Figure 4. 
(a) Overall survival curves and (b) progression-free survival curves for patientsseparated 

based on the features with the largest concordance index in univariate Cox regression.
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Figure 5. 
DSC values for the deep CNN-based method and the 2011 Method when compared with 

observer reference segmentations (across all observers) on the test set of 63 axial CT 

sections. The line of equality is shown as a dashed line.
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Figure 6. 
Semi-automated, perfusion-tuned mesothelioma tumor segmentation at 3T contrast-

enhanced MRI. A “contour mask” is generated throughout the image series (left panels). 

Tumor regions are grown within this mask volume (in red, middle panels) based on pre-

defined signal intensity limits. Patient survival is shown dichotomized by MRI tumor 

volume at 300 cm3 and by tertile (right panels).
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