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Abstract

Cancer invasion, recognised as one of the hallmarks of cancer, is a complex,
multiscale phenomenon involving many inter-related genetic, biochemical,
cellular and tissue processes at different spatial and temporal scales. Central
to invasion is the ability of cancer cells to alter and degrade extracellular mat-
rix. Combined with abnormal excessive proliferation and migration which is
enabled and enhanced by altered cell-cell and cell-matrix adhesion, the can-
cerous mass can invade the neighbouring tissue. Along with tumour-induced
angiogenesis, invasion is a key component of metastatic spread, ultimately
leading to the formation of secondary tumours in other parts of the host
body.

In this paper we explore the spatio-temporal dynamics of a model of
cancer invasion, where cell-cell and cell-matrix adhesion are accounted for
through non-local interaction terms in a system of partial integro-differential
equations. The change of adhesion properties during cancer growth and
development is investigated here through time-dependent adhesion charac-
teristics within the cell population as well as those between the cells and the
components of the extracellular matrix. Our computational simulation res-
ults demonstrate a range of heterogeneous dynamics which are qualitatively
similar to the invasive growth patterns observed in a number of different
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types of cancer, such as tumour infiltrative growth patterns (INF).

Keywords: Non-local model, Cancer invasion, Heterogeneity

1. Introduction

The development and spread of cancer in the human body is a complex,
multistage process, consisting of interconnected spatio-temporal multiscale
phenomena, ranging from genes and molecules to cells and tissue. Invasion
of the surrounding tissue by cancer cells plays a central role in solid tumour
progression, and is a key stage in the metastatic spread of the disease. It is
defined as one of the “hallmarks of cancer” by Hanahan and Weinberg (2000,
2011).

Cancer invasion itself is a complicated multiscale process, in which cell-
scale dynamics both influence and are influenced by the tissue-scale evolu-
tion of the tumour, or cancerous mass, and the tumour microenvironment.
By combining excessive proliferation with the secretion of a variety of mat-
rix degrading enzymes, as well as altered adhesive properties and migratory
behaviour, cancer cells have the ability to break through tissue compart-
ments (Weinberg, 2006) and are able to invade locally the surrounding tissue.
Coupled with tumour-induced angiogenesis, cancers possess a deadly ability
to metastasise — spreading to secondary locations in the host body, giving
rise to secondary tumours.

Besides enhanced proliferation, malignant tumour progression also in-
volves the secretion of various matrix-degrading enzymes (MDEs) and a
variable cell-cell and cell-matrix adhesion (Gao et al., 2005; Wolf et al.,
2013). Several classes of proteolytic enzymes such as matrix metallopro-
teinases (MMPs) (Parsons et al., 1997) or the urokinase-type plasminogen
activator (uPA) are produced and secreted by the cancer cells, and either
completely degrade or locally change the composition of the extracellular
matrix (ECM) (Andreasen et al., 2000, 1997; Pepper, 2001). The degrada-
tion of the matrix by these proteolytic enzymes creates space which can be
exploited by highly migratory cancer cells, leading to further local expan-
sion of the tumour (Newby, 2006). Whether distributed freely in the ECM
or bound to the cancer cell membrane, once secreted, the different MMPs
degrade at least one component of the ECM enabling further tumour progres-
sion (Somerville et al., 2003; Sternlicht and Werb, 2001; Visse and Nagase,
2003).
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Recognised as playing a key role in all cell migratory dynamics, cell-cell
and cell-matrix adhesion are particularly important during cancer invasion
(Behrens et al., 1989; Byers et al., 1995; Larebeke et al., 1992; Le et al.,
1998; Umbas et al., 1992; Zheng et al., 2005). The past few decades have
witnessed intensive in vivo and in vitro research efforts focused on exploring
the impact of adhesion on the morphology and direction of migratory tumour
cell patterns arising in cancer invasion (Friedl et al., 1995; Kolega, 1981;
Pierce et al., 1978).

Among transmembrane proteins, cadherins have been identified as having
a major contribution to cell adhesion (Weinberg, 2006). These are calcium-
dependent adhesion molecules that interact with intra-cellular proteins, most
notably β-catenin, to form adherence junctions between cells in human tis-
sue (Juliano, 2002). The homeostasis of this important molecular process
is essentially altered during cancer progression, where a reduction in cell-
cell adhesion favours an increase in motility of highly migratory cancer cells
within the invading tumour (Umbas et al., 1992). An important role in
cell-cell adhesion is played by cell-cell signalling mechanisms based on the
interactive dynamics between the calcium-sensing receptor distribution and
Ca2+ ions from the extracellular matrix (Hills et al., 2012; Hofer et al., 2000;
Ko et al., 2001), which is significantly changed during cancer invasion. The
direct correlation between this calcium-based cell signalling mechanism and
the regulation of E-cadherin and β-catenin was first discovered in colon car-
cinoma (Bhagavathula et al., 2007).

Complementing cell-cell adhesion, cell-matrix adhesion plays an equally
important part in individual and collective cancer cell motility during the
growth and development of solid tumours (Zamir and Geiger, 2001). This
process is mediated by a family of cell-surface receptors known as integrins,
whose extracellular domains bind to ECM ligands (Berrier and Yamada,
2007). As well as being in contact with various proteins in the ECM, integ-
rins interact with the various actin cytoskeletal proteins whose intracellular
dynamics enable the cells to acquire a direction to migration by establishing
a leading edge and a trailing edge (Moissoglu and Schwartz, 2006). Further-
more, in addition to regulating the creation of new protrusions at the leading
edge, actin molecules also contribute towards a cell’s contractile properties.
Alongside other traction forces arising from the porosity, confinement, or vis-
coelasticity of the 3D ECM, cancer cells exploit their contractile abilities to
enhance their migration (Mierke et al., 2010; Poincloux et al., 2011). Ad-
ditionally, cancer cells usually facilitate favourable changes in extracellular
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matrix stiffness and exploit the ECM confinement to progress further into
the surrounding tissue (Hung et al., 2013; Pathak and Kumar, 2012; Zaman
et al., 2006).

The interplay between cell-cell and cell-matrix adhesion has been recog-
nised to play an important role in determining patterns of invasive spread
at the tissue level. The invasive growth pattern of a solid tumour can be
examined and pathologically evaluated using the so-called infiltrative growth
pattern (INF) classification. An invasive tumour can be classified histopath-
ologically into three main categories – INFa, INFb and INFc – using the
following definitions from the Japanese Gastric Cancer Association (2011):

• INFa – an invading tumour showing an expansive growth with a distinct
border from the surrounding tissue/stroma;

• INFb – an invading tumour showing an intermediate pattern between
INFa and INFc;

• INFc – an invading tumour showing an infiltrative growth with no
distinct border from the surrounding tissue/stroma.

Figure 1 shows all three types of tumour infiltrative patterns observed in
oesophageal cancer and lung squamous cell carcinoma. As can be observed,
there is progressively more heterogeneity of the patterns observed from INFa
to INFb to INFc, with more mixing of cancer cells with stroma and a more
poorly defined border between the cells and the normal tissue. Recently, the
invasive infiltrative growth patterns of malignant solid tumours have been
considered as potential prognostic factors for stomach, gallbladder, bladder
and oesophageal cancer (Ito et al., 2012; Krüger et al., 2004; Luebke et al.,
2005; Okada et al., 2009). The Japanese classification of oesophageal cancer
notes that the differences between the three categories of the classification
depend on the relative strength of invasion and proliferation in the peripheral
area of cancer nests (groups of cancer cells) (Japan Esophageal Society, 2009).
Cancer nests themselves often display heterogeneous invasive patterns (Ito
et al., 2012; Japanese Gastric Cancer Association, 2011; Masuda et al., 2012;
Ueda et al., 2007). Nonetheless, the classification is still rather basic and
additional insight, such as that which could be provided by mathematical
modelling, would be beneficial.

Other tumours may also show a range of invasive patterns. For example,
Figure 2a shows a phyllodes tumour (similar to a fibroadenoma and which
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Figure 1: Figures showing the three types of tumour infiltrative pattern INFa,
INFb, INFc in hematoxylin-eosin (H & E) stainings of oesophageal cancer
(top row) and lung squamous cell carcinoma (bottom row). In the INFa
figures (left column) the cancer invades downwards with little mixing with
ECM. The middle column figures show an INFb pattern which is an inter-
mediate stage between INFa and INFc. In the INFc figures (right column)
the cancer cells have infiltrated the stroma and are mixed together. In the
INFc figures, small and large cancer nests are clearly visible and distributed
heterogeneously through the stroma. Reproduced from Ito et al. (2012) and
Masuda et al. (2012) with permission.
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(a) (b)

Figure 2: Figures showing (a) a phyllodes tumour; (b) an intermedi-
ate grade ductal carcinoma in situ (DCIS). Images with permission from
www.breastpathology.info

accounts for 2.5% of all fibroepithelial lesions of the breast) and Figure 2b an
example ductal carcinoma in situ (DCIS). In each case in these examples the
interface between the tumour and adjacent normal tissue has a rounded non-
invasive contour which correlates with clinical behaviour. Both of these lesion
types have the potential to progress to invasion with characteristic alterations
of their interfaces – more aggressive phyllodes tumours with a tendency to
local recurrence have a more infiltrative edge, while DCIS can transform into
invasive tumours where one starts to see tongue-like projections extending
into adjacent tissues.

Despite all the experimental advances, both in vivo and in vitro, that have
increased our understanding of cancer growth, metastatic spread of cancer in
the human body continues to be one of the main challenges for the medical
and scientific community.

In addition to biomedical and clinical research into cancer growth spread,
the past two decades have also observed an increase in the efforts of math-
ematical modelling and computational simulation to investigate and under-
stand more fully not only local cancer growth and invasion of tissue (Ander-
son et al., 2009; Byrne and Chaplain, 1997; Byrne et al., 2001; Byrne and
Preziosi, 2004; Chaplain and Lolas, 2005, 2006; Gatenby, 1995; Gatenby and
Gawlinski, 1996; Perumpanani et al., 1996, 1999), but also other important
aspects of cancer development such as angiogenesis (Chaplain et al., 2006;
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Orme and Chaplain, 1996) and metastasis (Anderson et al., 2000). Recently,
these modelling efforts have been expanded to try to develop models which
reflect the multiscale character of cancer invasion (Deisboeck et al., 2011;
Macklin et al., 2009; Ramis-Conde et al., 2008; Trucu et al., 2013). The
central role of cell-cell and cell-matrix adhesion in tumour cell invasion has
received a special attention (Andasari and Chaplain, 2012; Anderson, 2005;
Byrne and Chaplain, 1996; Chaplain et al., 2011; Painter et al., 2010; Ramis-
Conde et al., 2008; Turner and Sherratt, 2002), remaining one of the core
challenges in mathematical modelling.

In this paper we develop an earlier model of Gerisch and Chaplain (2008)
who introduced cell-cell and cell-matrix adhesion into a model of cancer in-
vasion using a non-local term (originally considered in a model of cell sorting
by Armstrong et al. (2006)). The model studied here is a system of partial
integro-differential equations describing the interactions of cancer cells, extra-
cellular matrix and matrix degrading enzymes. In particular we investigate
in some detail the role of cell-cell and cell-matrix adhesion, as well as the
effect of additional new populations of cancer cells arising from mutations.
The structure of the paper is as follows: in the next section we describe our
model and the variables involved; in Sections 3 and 4 we present the results
of our computational simulations; in the final section, we discuss our results
in light of observed infiltrative growth patterns of cancers and give directions
for future work and further development of the model.

2. A Non-Local Model of Cancer Invasion

2.1. Model formulation

Gerisch and Chaplain (2008) proposed and investigated a non-local model
of cancer invasion for a single cancer cell population. Here we extend the
model to explore the effects of varying the cell-cell and cell-matrix adhesion
properties of the cancer cells through time-dependent parameters within the
context of n cancer cell sub-populations c1, c2, . . . cn, which may mutate se-
quentially into each other, ci → ci+1. We now describe the general framework
of the modelling approach.

Let D ⊂ Rp, p ∈ {1, 2, 3}, denote the bounded spatial domain and IT =
(0, T ], 0 < T ∈ R, the time interval under consideration. Time and space are
denoted by t and x, respectively, and have units of [s] and [cm], respectively.
Our model here has three time- and space-dependent variables:
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• the vector-valued cancer cell density, c = (ci) : IT ×D → Rn ,

• the extracellular matrix (ECM) density, v : IT ×D → R , and

• the matrix-degrading enzyme (MDE) concentration, m : IT ×D → R.

The unit of the cell densities is [cells/cm3], that of the ECM density is
[mg/cm3], and that of the MDE concentration is [nM]1. At this point we
wish to make explicit that here ECM density refers to the mass density of
fibrous proteins, in particular collagen, in the ECM. For a compact notation
we also define the combined vector of the cell and ECM densities

u(t, x) := (c(t, x)T, v(t, x))T .

In our model, some processes are limited according to spatial constraints
and therefore we define the volume fraction of occupied space,

ρ(t, x) ≡ ρ(u(t, x)) := ϑvv(t, x) + ϑc

n∑
i=1

ci(t, x) .

Here we postulate that cancer cells at density ci occupy a fraction ϑcci of
physical space and, accordingly, that ECM at density v occupies a fraction
ϑvv of physical space. Note that we assume that the amount of MDE present
is negligible for the volume fraction of occupied space.

In the following we present and explain the model equations governing the
evolution of c, v, and m. We denote by ∇c(t, x) ∈ Rn,p and ∇m(t, x) ∈ R1,p

the Jacobian matrices in (t, x) of the vector field c and of m, respectively.
Furthermore, ∇· denotes the divergence operator which acts row-wise on,
e.g., ∇c(t, x).

The evolution of the cancer cell sub-population densities is driven by cell
random motility, cell-cell and cell-matrix adhesion-mediated directed migra-
tion, proliferation, and mutations between the cancer cell sub-populations.
This can be expressed as

∂c

∂t
= ∇ · [D∇c− diag(c)A(t, x,u(t, ·))] + P(t,u)c + M(t,u)c . (1)

1The molarity or molar concentration of a solution with 1 mole particles per litre is
“1 molar”, denoted 1M=109 nM.
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Here, the diagonal matrix D = diag(D1,1, . . . , D1,n) ∈ Rn,n contains the
random motility coefficients D1,i > 0 of the cancer cell sub-populations. In
this work we assume that these are constants.

Adhesion-mediated directed cancer cell migration is represented in (1)
using the non-local operator

A(t, x,u(t, ·)) :=


A1(t, x,u(t, ·))T
A2(t, x,u(t, ·))T

...
An(t, x,u(t, ·))T

 ∈ Rn,p ,

which maps (t, x) together with the space-dependent function u(t, ·), that is
c(t, ·) and v(t, ·), to an n×pmatrix. Row i in that matrix, i.e. Ai(t, x,u(t, ·))T,
represents the velocity of directed cancer cell migration of sub-population i
which is induced by cell-cell and cell-matrix adhesion properties of cancer
cells and ECM. Here cell-cell adhesion refers to adhesion between cells of sub-
population i itself, self-adhesion, as well as between cells of sub-population i
and sub-population j 6= i, cross-adhesion. The velocity for sub-population i
is defined by the following vector-valued integral, cf. Armstrong et al. (2006)
and Gerisch and Chaplain (2008),

Ai(t, x,u(t, ·)) =
1

R

∫
B(0,R)

n(y) · Ωi(‖y‖2) · gi(t,u(t, x+ y)) dy . (2a)

Here, R > 0 is the sensing radius, B(0, R) ⊂ Rp is the ball of radius R
centred at zero, and for x ∈ D the set x + B(0, R) is the sensing region at
x. Note that for points x ∈ D, which are so close to the boundary of D such
that x + B(0, R) 6⊂ D, the integral in Eq. (2a) is not yet well-defined; we
resolve this issue when discussing the boundary conditions for our model at
the end of this section. For y ∈ B(0, R), the unit vector pointing from x to
x+ y, is denoted by n(y), i.e.

n(y) :=

{
y/ ‖y‖2 if y 6= 0

0 ∈ Rp otherwise
. (2b)

Furthermore, Ωi(r), with r := ‖y‖2, is the radial dependency function for sub-
population i. It characterizes the relative importance of points at distance r
from x for adhesion-mediated cell migration. This function is non-negative
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and normalised such that

1 =

∫
B(0,R)

Ωi(‖y‖2) dy . (2c)

Specific instances of Ωi are specified later. Finally, the function gi(t,u) is the
i-th component of

g(t,u) ≡ g(t, c, v) = [Scc(t)c + Scv(t)1v] · (1− ρ(u))+ . (2d)

In the above, 1 ∈ Rn is the all-one vector, Scv(t) ∈ Rn,n is the diagonal
matrix containing the non-negative cell-matrix adhesion coefficients of all
cancer cell sub-populations with the ECM, and Scc(t) ∈ Rn,n represents the
symmetric matrix containing the non-negative cell-cell adhesion coefficients.
Note that these matrices may have coefficients depending explicitly on time.
We introduce the additional notation that Sci,cj := (Scc)i,j is the self-adhesion
coefficient of sub-population i if i = j and the cross-adhesion coefficient
between sub-populations i and j if j 6= i. Furthermore (Scv)i,i =: Sci,v. As
usual, the positive part of an expression is denoted by (·)+ := max{0, ·} and
the factor (1−ρ(u))+ models an inhibition of migration due to volume filling
effects, see e.g. Hillen and Painter (2001).

The diagonal matrix P(t,u(t, x)) ∈ Rn,n multiplied by c in (1) models
cancer cell proliferation. With the factor c we make explicit that cells of
sub-population i may proliferate only if they already exist.

Cancer cells mutate and thus change from one cancer cell sub-population
to another one. This gives rise to a model with a total of n cancer cell
sub-populations. The matrix M(t,u(t, x)) ∈ Rn,n multiplied by c in (1),
represents the effect of mutations. As in the case of the proliferation term,
the factor c makes explicit that cells of sub-population i may mutate only if
they already exist. Since mutations of cells of sub-population i correspond
to a loss of cells in that sub-population and mutations of other cells into cells
of sub-population i correspond to a gain of cells in that sub-population, the
diagonal elements of M must be non-positive and the off-diagonal elements
of M must be non-negative. Furthermore, in order to ensure conservation of
cell mass, we require that the column sums of M equal zero, i.e.

n∑
i=1

Mij = 0 , for j = 1, 2, . . . , n.

In this study we consider mutations ci → ci+1, i = 1, 2, . . . , n − 1, only and
thus matrix M is lower bidiagonal. However, in other situations different
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structural conditions may apply and give rise to a lower triangular or even a
full matrix M.

The evolution of the ECM density is governed by MDE-mediated matrix
degradation as well as ECM remodelling. This is expressed as

∂v

∂t
= −γmv + ψ(t,u), (3)

where ψ(t,u) represents the ECM remodelling term, and γ is the rate con-
stant of ECM degradation due to the presence of MDEs. We require that
v = 0 implies that ψ(t,u) ≥ 0 as this will ensure the non-negativity of the
ECM density.

Finally, the evolution of the MDE concentration is determined by mo-
lecular diffusion of the enzymes, by natural decay, and by the secretion of
MDEs by the cancer cell sub-populations into the tumour microenvironment.
Hence we obtain

∂m

∂t
= ∇ · [D3∇m] + αTc− λm . (4)

In the above equation, D3 is the positive MDE diffusion constant, α ∈ Rn

is the non-negative vector of MDE secretion rates by the cancer cell sub-
populations, and λ is the non-negative decay constant.

The system (1)–(4) is supposed to hold for x ∈ D and t ∈ IT and is
complemented with zero-flux boundary conditions for c and m, that is

[D∇c− diag(c)A(t, x,u(t, ·))] · n(x) = 0

∇m · n(x) = 0
for t ∈ IT , x ∈ ∂D , (5)

where n(x) denotes here the unit outer normal vector on ∂D in x ∈ ∂D, and
initial conditions for all equations

c(0, x) = c0(x) , v(0, x) = v0(x) , m(0, x) = m0(x) for x ∈ D . (6)

The zero-flux boundary conditions for the cancer cell sub-populations
imply that cells cannot cross the boundary of the domain D and in par-
ticular cannot sense any adhesive signals outside D. Thus we set function
gi(t,u(t, x + y)) := 0 if x + y 6∈ D; then the integral in Eq. (2a) is well-
defined. Note that in our model, we ignore any special adhesive effects which
may happen at the boundary of D.
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2.2. Non-dimensionalisation of the model and model parameters

We non-dimensionalise system (1)–(6) by introducing the following di-
mensionless quantities

t̃ =
t

τ
, x̃ =

x

L
, c̃(t̃, x̃) =

c(t, x)

c∗
, ṽ(t̃, x̃) =

v(t, x)

v∗
, m̃(t̃, x̃) =

m(t, x)

m∗
.

(7)
Based on a typical cancer cell volume of 1.5× 10−8cm3, see Anderson (2005)
and references cited there, we set

ϑc = 1.5× 10−8cm3/cell

and define below the scaling parameter c∗ as the inverse of ϑc, i.e. as the
maximum cell density such that no overcrowding occurs. In Abreu et al.
(2010) it is stated that the collagen density in engineered provisional scaffolds
should be between 2 and 4 mg/cm3 for in vivo delivery. We take the upper
limit as scaling parameter v∗ for the ECM density. Assuming that ECM at
this density fills up all available physical space, we obtain 1 = ρ(0, v∗) = ϑvv∗
and thus

ϑv :=
1

v∗
.

The scaling parameters τ and L are chosen as in Gerisch and Chaplain (2008)
and, as in loc. cit., the value of the scaling parameter m∗ remains unspecified.
In summary, we obtain

τ = 104s , L = 0.1cm , c∗ =
1

ϑc
≈ 6.7× 107cells/cm3 , v∗ =

1

ϑv
= 4mg/cm3 .

(8)
With the scalings as defined in Eq. (7) we obtain the non-dimensional

system which looks identical to (1)–(6) but each quantity having a tilde; the
appropriate non-dimensional model parameters are given in Table A.1 and
the units as well as the non-dimensionalisation of intermediate quantities
are collected in Table A.2, see Appendix A. The non-dimensionalisation is
mostly standard but for the convenience of the reader we detail the non-
dimensionalisation of the non-local term in Appendix B.

For notational convenience, from now on we suppress the tilde signs on
symbols and always refer to non-dimensional quantities (unless stated other-
wise).
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2.3. Specific choices for simulations in two spatial dimensions

In this study we consider spatially two-dimensional (p = 2) simulations.
The spatial domain D = (−1.5, 1.5)2 and the final simulation time is set to
T = 60.

Remark 1. In all figures with simulation results, expect noted otherwise,
we display in all plots, as in Gerisch and Chaplain (2008), the central part
(−1, 1)2 of D only. In this region the formation of the different patterns can
be seen and in most of the plots the invasion of the cancer cells has not yet
reached the boundary of D at final time T = 60 such that influences of the
boundary conditions on the invasion patterns are negligible.

In the definition of the non-local term, Eq. (2a), we use the radial de-
pendency function, see Gerisch and Chaplain (2008),

Ωi(r) := Ω(r) =
3

πR2

(
1− r

R

)
for i = 1, . . . , n . (9)

This implies that points in the sensing region at x have, with increasing
distance r from x, a decreasing influence on adhesion-driven migration in x.

In our simulations we use the following initial functions in (6). First of
all, only cancer cell sub-population c1 is present initially forming a cancerous
mass centred at the origin

c1,0(x) := exp(−‖x‖22 /ε) , ε := 10−2 , ci,0(x) := 0 , i = 2, . . . , n . (10a)

For the initial ECM density we assume a heterogeneous distribution such
that ρ(u(0, x)) ≤ 1 is satisfied. This is achieved using

(x1, x2) :=
1

3
(x+ 1.5) ∈ [0, 1]2 for x ∈ D , ζ := 6π ,

h(x1, x2) :=
1

2
+

1

2
sin(ζx1/(x2 + 1)) · sin(ζx1x2) · sin(ζ(1− x1)/(x2 + 1))

· sin(ζ(x1 − 1)(x2 − 1)) ,

v0(x) := min

{
h(x1, x2),

1− ϑcc1,0(x)

ϑv

}
.

(10b)
Finally, we assume that cancer cells have already released some MDE into
their environment and set

m0(x) := 0.5c1,0(x) . (10c)
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Below we will consider simulations where a parameter p changes its value
from an initial value p− to a final value p+ around the time point t∗ and con-
sider two types of transition functions. The first type of transition function
is an immediate switch from p− to p+ at t∗ and is defined by

p(H)(t; p−, p+, t∗) := p− + (p+ − p−)H(t− t∗) . (11)

Here, H(·) denotes the Heaviside step function. The second type is a more
gradual, smooth change from p− to p+ around t∗ and is defined by

p(T )(t; p−, p+, t∗) :=
1

2
(p− + p+)− 1

2
(p− − p+) tanh (C(t− t∗)) . (12)

The constant C > 0 accounts for the width of the “transition” from p− to
p+ and is chosen to be C = 1/3 in all simulations. Figure 3a illustrates
the behaviour of this transition for a decreasing function, i.e. p− > p+, and
Figure 3b for an increasing function, i.e. p− < p+.

0 T

p
−

p
+

t
*

(a)

T0 t
*

p
−

p
+

(b)

Figure 3: Plot of p(T )(t; p−, p+, t∗) with (a): p− > p+, (b): p− < p+, and
t∗ ∈ (0, T ) as indicated. (T = 60, C = 1/3)

Remark 2 (Numerical technique). The simulations of the model equa-
tions were all performed in Matlabr using the mTDR system (taxis-diffu-
sion-reaction) as detailed in Gerisch (2001); Gerisch and Chaplain (2006).
This system uses the the method of lines approach that first discretises the
model equations in space using finite volumes. The approximation of the non-
local terms is done efficiently by using FFT techniques (Gerisch, 2010). The
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spatial discretisation on a uniform grid with grid width h = 1/200 results
in an initial value problem for a large system of ordinary differential equa-
tions, which is then solved by using the ROWMAP time integration scheme
(Weiner et al., 1997), a Fortran subroutine called from Matlabr. For the
time integration we use a relative and absolute tolerance of 10−5.

In the following sections we explore this cancer invasion modelling frame-
work. We focus on one and two cancer cell sub-populations situations, with
both constant and time-dependent adhesion coefficients.

3. The Non-Local Model for a Single Cancer Cell Population

Consider, initially, a single cancer cell population c1 =: c and a model
where the (nondimensionalized) equations (1), (3), and (4) are as follows:

∂c

∂t
= ∇ · [D1,1∇c− cA(t, x,u(t, ·))] + µ1,1(t)c(1− ρ(u)) ,

∂v

∂t
= −γmv + µ2(1− ρ(u))+ ,

∂m

∂t
= ∇ · [D3∇m] + α1c− λm ,

(13)

with the non-local term A as given in (2a), and the function g defined in
(2d) is specified by:

g(t,u) = [Scc(t)c+ Scv(t)v] · (1− ρ(u))+ .

We have further chosen P(t,u) = µ1,1(t)(1 − ρ(u)) yielding a logistic-type
growth law for the cancer cells with competition for space with the ECM,
M(t,u) = 0 since with a single cancer cell sub-population we have no muta-
tions, and ψ(t,u) = µ2(1−ρ(u))+ for the remodelling of ECM. Note that for
µ2 > 0 the ECM remodelling process takes place, independent of the present
cell or matrix density, as long as the locally available space is not entirely
occupied, i.e., as long as 1− ρ(u) > 0. We remark that this is different from
Gerisch and Chaplain (2008) where the remodelling term was µ2(1 − ρ(u));
this however did not guarantee a non-negative ECM density.

The basic parameter set B1 that we use in this section is based on the
one given in Gerisch and Chaplain (2008) and is given by:

D1,1 = 10−4 µ1,1 = 0.1 γ = 10 µ2 = 0 D3 = 10−3

α1 = 0.1 λ = 0.5 R = 0.1 Scc = 0.5 Scv = 0.1 .
(B1)
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The values given in B1 apply whenever no other values for a certain parameter
are specified. Note that Gerisch and Chaplain (2008) used a larger cancer
cell random motility constant (D1 = 10−3) in their simulations. However,
given the difference in size between cancer cells and MDE molecules, it is not
unreasonable to assume that the cancer cell population has a lower diffusion
coefficient than the MDEs. Also, as indicated in (13), the parameters µ1,1,
Scc, and Scv can be time-dependent, and in that case their default constant
values, as given in B1, do not apply.

Gerisch and Chaplain (2008) explored the following simulation scenario.
At time t = 30, two key parameters of the model, the cell-cell adhesion coef-
ficient and the cancer cell proliferation rate, are changed such that invasion
starts taking place, namely

Scc(t) = S(H)
cc (t; 0.5, 0.02, 30) and µ1,1(t) = µ

(H)
1,1 (t; 0, 0.1, 30) .

This means that the cell-cell adhesion coefficient is decreased from its default
value Scc = 0.5 to 0.02, and the cancer cell proliferation rate is increased from
µ1,1 = 0 to its default value 0.1. The corresponding simulation results are
shown in Figure 4. It can be seen that for the initially high cell-cell adhesion
coefficient and the low cell-matrix adhesion coefficient (compared to the val-
ues used later), the cancer cells aggregate from the initial central cancer cell

Figure 4: Simulation results of model (13) with cell-cell adhesion coef-

ficient Scc(t) = S
(H)
cc (t; 0.5, 0.02, 30) and proliferation rate µ1,1(t) =

µ
(H)
1,1 (t; 0, 0.1, 30). See Remark 3 for further details.
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mass into a thin structure. After time t = 30, when the proliferation and
cell-cell adhesion parameters are changed, we observe a structured invasion
of the full spatial domain by the cancer cells.

Remark 3 (presentation of simulation results). The simulation results
in this Section 3, shown in Figures 4 to 9 and each obtained from a simu-
lation of model (13) using parameters according to B1 with modifications as
detailed in each figure caption, present the cancer cell density c in the top
row and the ECM density v in the second row at initial time t = 0 and at
times t = 10, 20, 30, 40, 50, and 60 (from left to right). Figure 4 also presents
the MDE concentration m in the third row. It can be seen that the MDE
concentration profile closely resembles the cancer cell density profile at all
stages. The main difference is that it is slightly more diffused, which is to
be expected given the structure of the MDE equation in (13). This also holds
true for the simulation results shown in the other figures where we, for this
reason, do not present the MDE concentration m.

3.1. Time-Dependent Cell-Cell Adhesion Coefficient

Knowing that, as time evolves, cancer cells tend to alter their adhesive
properties, we consider here first the cell-cell adhesion coefficient to be time-
dependent, i.e., using Eq. (12), we set Scc(t) = S

(T )
cc (t;Scc,−, Scc,+, tcc). As in

the simulation shown in Figure 4, we use the following set of parameters defin-
ing the cell-cell adhesion coefficient, namely (Scc,−, Scc,+, tcc) = (0.5, 0.02, 30).
However, in comparison to that simulation, we now have a smooth transition
between the two parameters Scc,− and Scc,+ instead of a step function. Fur-
thermore, here the cancer cell proliferation rate is not time-dependent but at
µ1 = 0.1, cf. basic parameter set B1, right from the beginning. The results
of this simulations are shown in Figure 5 and they look similar to those in
Figure 4.

3.2. Time-Dependent Cell-Matrix Adhesion Coefficient

In a similar manner to the cell-cell adhesion coefficient Scc, the cell-matrix
adhesion coefficient Scv can be chosen time-dependent, and we set Scv(t) =

S
(T )
cv (t;Scv,−, Scv,+, tcv) using the smooth transition function (12). Since it has

been observed experimentally that the cell-matrix adhesion of cancer cells
increases over time, Scv,− is chosen to be smaller than Scv,+ and we use the
following set of parameters defining the cell-cell adhesion coefficient function
(Scv,−, Scv,+, tcv) = (0.1, 0.3, 30). All remaining parameters, in particular Scc
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Figure 5: Simulation results of model (13) with cell-cell adhesion coefficient

Scc(t) = S
(T )
cc (t; 0.5, 0.02, 30). See Remark 3 for further details.

and µ1,1, are taken to be constants, according to the basic parameter set
B1. The corresponding simulation results are shown in Figure 6 and reveal
that, although the cell-cell adhesion is rather high, an increase in cell-matrix
adhesion drives the cancer cell population towards higher density patches
of extracellular matrix. Since the ECM is chosen to be heterogeneous, the
adhesive strength is stronger where there is more ECM present. Due to
high self-adhesion, the cancer cells tend to remain together, resulting in a
more heterogeneous mixing of cells and ECM reminiscent of an INFb-type
infiltrative pattern. The increased cell-matrix adhesion also results in a more
extensive invasion of the ECM i.e. a greater depth penetrated at the final
time of t = 60.

Figure 6: Simulation results of model (13) with cell-matrix adhesion coeffi-

cient Scv(t) = S
(T )
cv (t; 0.1, 0.3, 30). See Remark 3 for further details.
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The effect of ECM remodelling. In Gerisch and Chaplain (2008) as well as in
all our simulations so far, the ECM remodelling was kept at zero, i.e. µ2 = 0,
in order to retain the initial heterogeneity of the ECM throughout the simu-
lations. In what follows now, we set the ECM remodelling rate to µ2 = 0.05
to study the effect of ECM remodelling on the invasive behaviour. We use
the basic parameter set B1 with the constant cell-cell adhesion coefficient
Scc = 0.5. The cell-matrix adhesion coefficient function is chosen accord-
ing to (12) with the parameters (Scv,−, Scv,+, tcv) = (0.1, 0.3, 10). Note that
tcv = 10 conveys an earlier transition time than the one chosen before. In the
simulation results shown in Figure 7, we observe a well-defined pattern that
the cancer cell population follows in its evolution. Because of the remodelling
of the ECM inside the outer boundary of the evolving cancer cells, i.e. within
the developing tumour mass, the cancer cells invade not only outward into
surrounding tissue but also tend to move back inwards. Furthermore, due to
the disappearance of the heterogeneous, structured ECM due to remodelling,
the invasive cell front is much more uniform.

Figure 7: Simulation results of model (13) with cell-matrix adhesion coeffi-

cient Scv(t) = S
(T )
cv (t; 0.1, 0.3, 30) and ECM remodelling rate µ2 = 0.05. See

Remark 3 for further details.

3.3. Time-dependent Cell-Cell and Cell-Matrix Adhesion Coefficients

Now that we have considered the cell-cell and cell-matrix adhesion coeffi-
cients as time-dependent parameters individually, we move on to change both
of them in time during the course of a single simulation. In the following
example, we again use the basic parameter set B1 and in particular no ECM
remodelling, i.e. µ2 = 0. The cell-cell and cell-matrix adhesion coefficients
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Scc(t) and Scv(t) are functions of time and are obtained from (12) with para-
meters (Scc,−, Scc,+, tcc) = (0.5, 0.1, 30) and (Scv,−, Scv,+, tcv) = (0.1, 0.3, 30),
respectively. The results of this simulation can be seen in Figure 8. We
can immediately observe similarities between the patterns shown here and
the ones in Figure 5, where only Scc is time-dependent, and Figure 6, where
only Scv is time-dependent. The differences between the results shown in
Figure 8 and those in Figure 5 are caused by the additional time-dependent
increase of the cell-matrix adhesion coefficient and higher value of Scc, result-
ing in a faster spread of the cancer cells into the ECM. At the same time, in
comparison to Figure 6, the results in Figure 8 have a more diffuse invading
front of cancer cells, due to the additional time-dependent decreasing cell-cell
adhesion coefficient.

Figure 8: Simulation results of model (13) with cell-cell and cell-

matrix adhesion coefficients as Scc(t) = S
(T )
cc (t; 0.5, 0.1, 30) and Scv(t) =

S
(T )
cv (t; 0.1, 0.3, 30), respectively. See Remark 3 for further details.

The effect of ECM remodelling. We now explore the cancer cell dynamics by
incorporating the remodelling of the ECM in the context of time-dependent
cell-cell and cell-matrix adhesive properties and set the corresponding para-
meter µ2 = 0.05. We consider two different settings of the time-dependent
cell-matrix adhesion parameter with, in both cases, the same time-dependent
cell-cell adhesion parameter (always using the transition function (12)). Fig-
ure 9 shows the corresponding simulation results in two subplots

Figure 9a: Scv(t) = S(T )
cv (t; 0.1, 0.3, 10) , Scc(t) = S(T )

cc (t; 0.5, 0.25, 40) ,

Figure 9b: Scv(t) = S(T )
cv (t; 0.25, 0.5, 10) , Scc(t) = S(T )

cc (t; 0.5, 0.25, 40) .
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(a) Scv(t) = S
(T )
cv (t; 0.1, 0.3, 10) and Scc(t) = S

(T )
cc (t; 0.5, 0.25, 40)

(b) Scv(t) = S
(T )
cv (t; 0.25, 0.5, 10) and Scc(t) = S

(T )
cc (t; 0.5, 0.25, 40)

Figure 9: Simulation results of model (13) with cell-cell and cell-matrix
adhesion coefficients as given in each subplot and ECM remodelling rate
µ2 = 0.05. See Remark 3 for further details.

We observe that, while the main features of the invasive pattern present
in Figure 7 are preserved in the current simulations, the additional time-
dependent decrease of Scc(t) causes a more diffuse and heterogeneous invas-
ive pattern in Figure 9a. Furthermore, as can be observed in Figure 9b,
increasing Scv(t) further compared to the simulation shown in Figure 9a,
leads to an even more pronounced heterogeneous pattern with cancer cells
and ECM inter-mixed throughout the domain. This is reminiscent of the tu-
mour infiltrative growth pattern, INFc, seen in Figure 1 and the DCIS seen
in Figure 2b.

4. The Non-Local Model with Two Cancer Cell Sub-Populations

It is well known that over time cancers become more malignant, with some
of the cancer cells mutating into more aggressive phenotypes. In this section,
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we explore this situation by modelling the overall tumour dynamics where
there are two cancer cell sub-populations, c1 and c2. During the development
of the cancer, we assume that the second sub-population emerging in the
tumour mass arises from mutations in the cells of the first sub-population. In
a different investigation, focused on the uPA system, Andasari et al. (2011)
considered the dynamics of two cancer cell sub-populations in a reaction-
diffusion-taxis model of invasion.

Using the general model formulation (1), (3), and (4), we consider the
following (nondimensionalized) model for the two sub-populations c1 and c2:

∂c1
∂t

= ∇ · [D1,1∇c1 − c1A1(t, x, u(t, ·))] + µ1,1c1(1− ρ(u)) +M1,1(t,u)c1 ,

∂c2
∂t

= ∇ · [D1,2∇c2 − c2A2(t, x, u(t, ·))] + µ1,2c2(1− ρ(u)) +M2,1(t,u)c1 ,

∂v

∂t
= −γmv + µ2(1− ρ(u))+ ,

∂m

∂t
= ∇ · [D3∇m] + α1c1 + α2c2 − λm .

(14)
In the above, as in the case of a single cancer cell population, we have chosen
a logistic-type growth law for each cancer cell sub-population; note however
that the proliferation rates µ1,1 and µ1,2 are constants here. The mutation of
cancer cells from type c1 to type c2 is modelled as in Andasari et al. (2011),
that is, the non-zero elements of the matrix M(t,u(t, x)) are given by

−M1,1(t,u) = M2,1(t,u) = δH(t− t1,2) ·H(v(t, x)− vmin) .

Here, H(·) denotes the Heaviside function, t1,2 is the time point after which
mutations from sub-population 1 to sub-population 2 begin to occur, vmin

is the minimum ECM density that is needed for mutations to take place,
and δ > 0 is the mutation rate. The non-local terms A1 and A2 are as
defined in (2a) with the function g, cf. (2d), fully specified when the 2 × 2
matrices Scc(t) and Scv(t) are given. We note already here that only the
components Sc2,c2 and Sc2,v are considered time-dependent in our simulations
below; all other components of these matrices are constants. The ECM
remodelling process is represented as in the case of a single cell population,
that is ψ(t,u) = µ2(1− ρ(u))+.

In this section we use the basic parameter set B2, which is an extension
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of the basic parameter set B1 used in Section 3 and is given by:

Parameter values defined in basic parameter set B1 together with

D1,2 = 10−4 , µ1,2 = 0.25 , α2 = 0.1 , Scc =

(
0.5 0
0 0.3

)
,

δ = 0.3 , t1,2 = 10 , vmin = 0.3 , Scv =

(
0.1 0
0 0.5

)
.

(B2)

The values given in B2 apply whenever no other values for a certain parameter
are specified.

The results of the simulation using the basic parameter set B2 are shown
in Figure 10. Sub-population c1 is shown in black, while sub-population c2
is shown in red. In the first row of the figure, both sub-population densities
are superimposed, i.e. plotted on top of each other, meaning that one can
only see the density of the dominant species at each point. The second and
third row show the individual cancer cell sub-populations densities c1 and
c2, respectively, and the fourth row shows the ECM density. We see that
after time t = t1,2 = 10, the second sub-population c2 emerges in the tumour
mass. Due to the lower self-adhesion and the higher cell-matrix adhesion
coefficients, as compared to those of cell type c1, the mutated cancer cell sub-
population spreads much faster into the surrounding tissue than the primary
sub-population. The patterns of both sub-populations at t = 50, 60 (top row)
bear a striking resemblance to the phyllodes tumour (fibroadenoma) seen in
Figure 2a.

Remark 4 (presentation of simulation results). The simulation results
in this Section 4, shown in Figures 10 to 17 and each obtained from a simu-
lation of model (14) using parameters according to B2 with modifications as
detailed in each figure caption, present the superimposed cancer cell densities
c1 and c2 in the top row and the ECM density v in the bottom row at initial
time t = 0 and at times t = 10, 20, 30, 40, 50, and 60 (from left to right). In
the superimposed cell densities the black and red colour scale refer to c1 and
c2, respectively. Since c1, c2, and v are represented in the same range [0, 1],
the black colour bar refers to c1 and v and the red colour bar to c2. Only Fig-
ure 10 shows in the additional two central rows the individual cell densities
c1 and c2 as well. For the same reason as in Section 3, see Remark 3, the
MDE concentration m is not shown in any of these figures.
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Figure 10: Simulation results of model (14) with parameter set B2. See
Remark 4 for further details.

The effect of ECM remodelling and the influence of the cross-adhesion coef-
ficient. We now consider again the effect that ECM remodelling has on the
cancer cell dynamics. Figure 11 shows the results obtained using the basic
parameter set B2, but where instead of using the default value zero for the
ECM remodelling rate, we set this rate to µ2 = 0.05. Despite the fact that we
have time-independent adhesive properties in this simulation, the two can-
cer cell sub-populations alongside the continuously remodelling ECM form
together a strongly heterogeneous pattern. Once again this is reminiscent
of the tumour infiltrative growth pattern INFc. Since, as in the simulations
shown in Figure 10, the cell-cell cross-adhesion parameter Sc1,c2 = 0, the two
sub-populations do not mix.

We continue our investigation by now increasing the cross-adhesion coef-
ficient Sc1,c2 from its default value zero and observe that the two cancer cell
sub-populations get generally closer to each other, as illustrated by the res-
ults shown in Figures 12a - 12c. The dominant features in the distributions
of the two cancer cell sub-populations complement each other within close
proximity. As explored by Gerisch and Painter (2010) for two species (no
ECM), mixing may occur here as well for high cross-adhesion values.
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Figure 11: Simulation results of model (14) with ECM remodelling rate
µ2 = 0.05. See Remark 4 for further details.

If we consider a higher cell-matrix adhesion value for the first cancer cell
sub-population, we observe a faster spread of both cancer cell sub-populations
and an increased number of cancer/ECM nests inside the tumour. Figure 13
shows the result for the same set of parameters as for Figure 12a except that
the cell-matrix adhesion coefficient of the first sub-population is increased to
Sc1,v = 0.3. If we further increase the cross-adhesion parameter, as was done
in Figures 11 and 12, the results follow the same principle from separation
towards mixing of cancer cell sub-populations (not shown). Once again the
invasive pattern developed at later times shows a striking similarity to the
DCIS in Figure 2b.

Time-dependent adhesive properties for sub-population c2. Following the in-
vestigations in Section 3, we now alter the cell-cell and cell-matrix adhes-
ive properties in our model in a time-dependent manner, using the func-
tion defined in (12), and examine their influence on the cancer cell popula-
tion dynamics. Section 4.1 considers the case where the cell-matrix adhe-
sion coefficient of the second cancer cell subpopulation is time-dependent,
Sc2,v(t) = S

(T )
c2,v(t;Sc2,v,−, Sc2,v,+, tc2,v), and Section 4.2 the case where in ad-

dition the self-adhesion coefficient of that subpopulation is time-dependent,
Sc2,c2(t) = S

(T )
c2,c2(t;Sc2,c2,−, Sc2,c2,+, tc2,c2). All other adhesion coefficients, in

particular those of sub-population c1, are taken as constants. In both sec-
tions we also explore the effect of ECM remodelling on the dynamics and
in Section 4.1 also the effect of a non-zero cross-adhesion coefficient between
the cell sub-populations.
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(a) Sc1,c2 = 0.075

(b) Sc1,c2 = 0.15

(c) Sc1,c2 = 0.3

Figure 12: Simulation results of model (14) with ECM remodelling rate
µ2 = 0.05 and positive cross-adhesion coefficient Sc1,c2 as indicated in the
subplots. See Remark 4 for further details.
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Figure 13: Simulation results of model (14) with ECM remodelling rate
µ2 = 0.05, cross-adhesion coefficient Sc1,c2 = 0.075, and cell-matrix adhesion
coefficient Sc1,v = 0.3. See Remark 4 for further details.

4.1. Time-dependent Cell-Matrix Adhesion Coefficient

In Section 3.2, while maintaining a constant cell-cell adhesion and assum-
ing no ECM remodelling, the cell-matrix adhesion coefficient was increased
with time. We perform here corresponding simulations for the model with
two cancer cell sub-populations. The adhesion coefficients are chosen as fol-
lows

Scc =

(
0.5 Sc1,c2
Sc1,c2 0.5

)
, Scv =

(
0.1 0
0 Sc2,v(t)

)
,

Sc2,v(t) = S(T )
c2,v

(t; 0.1, 0.3, 30) .

(15)

Figure 14a shows the results for the case without cross-adhesion, Sc1,c2 = 0,
and Figure 14b for the case with non-zero cross-adhesion, Sc1,c2 = 0.5. We
observe that in the absence of cross-adhesion, the with time increasing cell-
matrix adhesion enables the second cancer sub-population c2 to dominate and
invade extensively. The ECM is largely degraded throughout the domain.
However, in the case of non-zero cross-adhesion, while the extent of the
invasive boundary of the cancer cells is similar, the structure of the cancer
cell pattern is quite different. In this case, there is a more filamentous and
connected structure with the ECM less degraded overall. This is similar to
the results in Figure 6 where the parameter values are comparable i.e. the
same cell-cell adhesion value of 0.5 and the same time-dependent increasing
cell-matrix adhesion function Scv(t) = S

(T )
cv (t; 0.1, 0.3, 30).

The effect of ECM remodelling. In Gerisch and Chaplain (2008), the ECM
remodelling was kept zero in order to retain the initial heterogeneity of the ex-

27



(a) Sc1,c2 = 0

(b) Sc1,c2 = 0.5

Figure 14: Simulation results of model (14) with adhesion coefficients ac-
cording to (15) and Sc1,c2 as indicated in the two subplots. See Remark 4 for
further details.

tracellular matrix. Again, as in Section 3.2, we now set the ECM remodelling
rate to µ2 = 0.05 to see how this influences the dynamics of cancer invasion.
The adhesion coefficients are again chosen as in (15). Figure 15a shows the
results for the case without cross-adhesion, Sc1,c2 = 0, and Figure 15b for
the case with non-zero cross-adhesion, Sc1,c2 = 0.5. In contrast to the results
shown in Figure 15a, where the second sub-population spreads in a more
diffuse manner, the results shown in Figure 15b indicate that the presence of
non-zero cross-adhesion causes the second sub-population to aggregate and
intermingle with the first sub-population. Additionally, we observe that in
contrast to simulations without ECM remodelling, see Figure 14, the ECM
remodelling as present in the simulations shown in Figure 15 tends to local-
ise and limit the overall spread of the cancer cell sub-populations. This can
be attributed to the limiting of processes like adhesion-driven migration and
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(a) Sc1,c2 = 0

(b) Sc1,c2 = 0.5

Figure 15: Simulation results of model (14) as in Figure 14 but with ECM
remodelling rate µ2 = 0.05. See Remark 4 for further details.

proliferation according to spatial constraints in our modelling framework.

4.2. Time-dependent Cell-Cell and Cell-Matrix Adhesion Coefficients

In Section 3.3, the cell-cell adhesion coefficient was decreased and the cell-
matrix adhesion coefficient was increased with time while assuming no ECM
remodelling. We perform here similar simulations for the model with two
cancer cell sub-populations. The adhesion coefficients are chosen as follows

Scc =

(
0.5 0
0 Sc2,c2(t)

)
, Scv =

(
0.1 0
0 Sc2,v(t)

)
, (16a)

Sc2,c2(t) = S(T )
c2,c2

(t; 0.5, 0.1, 30) , Sc2,v(t) = S(T )
c2,v

(t; 0.1, 0.3, 30) . (16b)

Note that we have no cross-adhesion here. The simulation results are shown
in Figure 16 and reveal the effect on the invasion by decreasing the cell-cell
adhesion coefficient Sc2,c2(t). We see from the figure that the change triggers
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Figure 16: Simulation results of model (14) with adhesion coefficients ac-
cording to (16). See Remark 4 for further details.

aggregation leading to the formation of infiltrative patterns in the second
cell sub-population, with a significant increase in spreading of the patterns
belonging to the second cell sub-population relative to the first one. Compar-
able to Figure 8, the overall cancer population develops a similar invading
pattern, with a more migratory character observed for the infiltrative fea-
tures of sub-population c2. The patterns at t = 50, 60 (top row) once again
resemble the phyllodes tumour (fibroadenoma) seen in Figure 2a.

The effect of ECM remodelling. In order to investigate the influence of ECM
remodelling on the dynamics of cancer invasion, we increase the correspond-
ing parameter to µ2 = 0.05. While maintaining the structure of the adhesion
coefficients given in (16a), we now use the following for Sc2,c2(t) and Sc2,v(t),
namely:

Sc2,c2(t) = S(T )
c2,c2

(t; 0.5, 0.25, 40) and Sc2,v(t) = S(T )
c2,v

(t; 0.1, 0.3, 20) (17a)

for the plots in Figure 17a, and

Sc2,c2(t) = S(T )
c2,c2

(t; 0.5, 0.25, 40) and Sc2,v(t) = S(T )
c2,v

(t; 0.25, 0.5, 20) (17b)

for the plots in Figure 17b.
In Figure 17 we can observe that the remodelling of the ECM results in

a significant reduction in the spread and depth of invasion of each of the two
cancer cell sub-populations in comparison with Figure 16. This aspect was
also noticed in Section 4.1. As observed also in the results shown in Figure 9,
we remark again that the net increase in cell-matrix adhesion levels for the
dynamics shown in Figure 17b versus the levels used for Figure 17a results
in a stronger pattern formation.
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(a)

(b)

Figure 17: Simulation results of model (14) as in Figure 16 but with ECM
remodelling rate µ2 = 0.05 and Sc2,c2(t) and Sc2,v(t) according to (17a) in
subplot (a) and to (17b) in subplot (b). See Remark 4 for further details.

5. Discussion and Conclusions

In this paper we have presented a model of cancer invasion which exam-
ines in some detail the effect of both cell-cell and cell-matrix adhesion on the
growth and development of a cancerous tissue. By considering both one and
two sub-populations of cancer cells, this investigation further develops pre-
vious modelling work which considered only a single cancer cell population
with constant adhesion properties (Gerisch and Chaplain, 2008). In line with
observed tumour infiltrative patterns (Ito et al., 2012; Masuda et al., 2012),
and also other tumours such as ductal carcinoma in situ and fibroadenoma,
the computational simulation results of the model showed a range of het-
erogeneous invasion patterns as a consequence of several possible changing
cell-cell and cell-matrix adhesion scenarios.

Dynamic changes in the adhesion coefficients (cell-cell or cell-matrix) may
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induce significant qualitative differences in the evolution of malignant tu-
mours. Our simulations reveal the impact that the changes in these coeffi-
cients, considered in different scenarios, have on the heterogeneous pattern of
cancer progression and invasion. In agreement with experimental evidence,
our simulations show that an increase in the cell-matrix adhesion parameter
Scv results in an increased motility of the cancer cells.

We have found that differences in the initial conditions also influence the
spatio-temporal evolution of the invading cancer. For instance, using the
same model and parameters as in Section 3.2 but with the following different
initial condition for the ECM density

v(0, x) = max{0, 1− c(0, x)− h(x)} ,
h(x) = 0.1 sin(2π(x1 + x2))

2 cos(3πx2)
2 − 0.1 cos(π(x2 + 2x1))

2)

− 0.3 cos(x1 − x2)2 ,
(18)

simulation results as shown in Figure 18a are obtained. These are clearly
different from the corresponding results shown in Figure 6.

A time-dependent cell-matrix adhesion parameter Scv(t) may lead to the
evolution of a different invasion pattern than those obtained for the case when
Scv is kept constant. For example, if we replace the time-dependent cell-
matrix coefficient by the constant Scv = 0.3, i.e. using the upper value of the
time-dependent case, we obtain the results shown in Figure 18b. This change
leads to a different and, expectedly, more invasive behaviour compared to the
one shown in Figure 18a. Finally in Figure 18c we see the invasive pattern
obtained when the cancer cell diffusion coefficient is increased by a factor of
10 to a value of 10−3. As expected, compared with Figure 18a, the cancer
cell density has invaded the ECM to a greater extent, and the structure of
the cancer cell density throughout is different. This shows that cancer cell
random motility, as well as adhesion, is also an important factor in invasion.

In both the one and two cancer cell sub-population cases, changes in the
time-dependent cell-cell and cell-matrix adhesion parameters influence the
invasion patterns observed in our simulations. Infiltrative patterns of cancer
cells are more distinct for higher cell-matrix and cell-cell adhesion parameter
values. At the same time, a weak cell-cell adhesion leads to a diffusive spread
of the corresponding cancer cell sub-populations.

In accordance with experimental evidence, our simulations with two can-
cer cell sub-populations show that the mutated cancer cell sub-population
tends to exhibit always a more aggressive spread and displays a more de-
veloped pattern formation than the original sub-population. The variation of
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(a) Simulation results as in Fig. 6 but with initial ECM density (18).

(b) Simulation results as in Fig. 6 but with initial ECM density (18) and Scv = 0.3

(c) Simulation results as in Fig. 6 but with initial ECM density (18) and cancer
cell diffusion coefficient D1,1 = 10−3.

Figure 18: Plots showing the effect of a different initial ECM distribution on
the cancer invasion pattern.
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infiltrative complexity and spread of these invasion patterns depends strongly
on the changes in the adhesion properties of the cancer cells.

The evolution of a range of tumour infiltrative patterns as a result of
variations of adhesive parameters can be investigated by considering time-
dependent perturbations of some given adhesive properties. To this end, we
consider a scenario where the cell-cell and cell-matrix adhesion parameters
of the first cancer cell sub-population are kept constant, whereas for the
second sub-population the self-adhesion and cell-matrix adhesion properties
are perturbed by a time-dependent function σ(t). Thus, following (2d), these
perturbed adhesion parameters can be formalised as follows:

Scc =

(
0.5 Sc1,c2
Sc1,c2 Sc2,c2(t)− ε · σ(t)

)
, Scv =

(
0.3 0
0 Sc2,v(t) + ε · σ(t)

)
, (19)

where the time-dependent cell-cell and cell-matrix adhesion coefficients Sc2,c2(t)
and Sc2,v(t) are given, using (12), by

Sc2,c2(t) = S(T )
c2,c2

(t; 0.5, 0.3, 40) and Sc2,v(t) = S(T )
c2,v

(t; 0.3, 0.5, 20) . (20)

The cross-adhesion coefficient is constant and chosen to be either Sc1,c2 = 0
or Sc1,c2 = 0.15. The perturbation function is given by

σ(t) =
0.3t

T

with T = 60 being the final simulation time, see Section 2.3. In this ex-
ploratory experiment, the perturbation parameter ε is chosen from the set
{1, 1/2, 1/4, 1/8, 1/16}.

Figure 19 shows the simulation results at the final time T = 60 for differ-
ent choices of Sc1,c2 and ε. For both choices of Sc1,c2 , we observe a consistent
transition from a strong pattern formation for small ε to a rather diffusive
spread of the mutated cancer cell population for large values of ε.

This experiment also paves the way for a theoretical assessment of the
connection between changes in cell-cell and cell-matrix adhesion properties
and the effect on the spatio-temporal distribution of the cancerous mass.
While the understanding of tumour infiltrative growth patterns observed in
malignant tumour progression remains a difficult challenge, our investigations
have shown that adhesive properties of the cells and matrix play a central
part. Malignant tumours (e.g. breast ductal carcinoma) are classified from
low grade to intermediate to high grade. Future work will investigate if the
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(a) Sc1,c2 = 0

(b) Sc1,c2 = 0.15

Figure 19: Plots showing the cancer cell densities (black: c1, red: c2) and
ECM (blue) at t = 60 obtained from simulations of model (14) using the para-
meters as defined in (19) and (20) for different constant cross-adhesion values
Sc1,c2 and perturbation parameter ε as indicated. All other parameters are
chosen as in B2. In each sub-plot, first row: both sub-populations and ECM
superimposed, second row: sub-population c1, third row: sub-population c2.
Note that the whole spatial domain D = (−1.5, 1.5)2 is displayed here.
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grade of a cancer can be related to changes in the adhesion parameters in our
model. Mathematical investigations regarding pattern stability and perturb-
ation analysis alongside the calibration of this modelling will provide further
insights into the evolution of these invasion patterns, thus advancing the
overall histo-pathological assessment of cancer invasion in a more objective
manner.

Appendix A. Parameter Tables

p unit p̃ conditions

ϑc cm3/cell ϑcc∗ ϑc > 0

ϑv cm3/mg ϑvv∗ ϑv > 0

D1,i cm2/s D1,i
τ

L2
D1,i > 0

R cm R
1

L
R > 0

γ 1/(nM s) γτm∗ γ ≥ 0

D3 cm2/s D3
τ

L2
D3 > 0

α (nM/s)/(cells/cm3) α
τc∗
m∗

α ≥ 0

λ 1/s λτ λ ≥ 0

Table A.1: Parameters p of the model (1)–(6) with their unit and their
non-dimensionalised counterparts p̃.
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Appendix B. Non-dimensionalisation of the non-local term

Let t ∈ I, x ∈ D, andR > 0 and consider the non-local termAi(t, x,u(t, ·)),
see (2a), which we repeat here for convenience:

Ai(t, x,u(t, ·)) =
1

R

∫
B(0,R)

n(y) · Ωi(‖y‖2) · gi(t,u(t, x+ y)) dy .

Before we non-dimensionalise that term, let us first take a look at the
units of the inidvidual terms. Recall that Ωi is normalised, cf. (2c), that is

1 =

∫
B(0,R)

Ωi(‖y‖2) dy .

Consequently, the unit of Ωi is [1/cmp] . Since Ai is a velocity, [cm/s], and
n(y) is dimensionless, it follows that the unit of gi must be [cm2/s]. This can
be understood by recalling, cf. Armstrong et al. (2006), that the expression
for Ai is derived according to Stokes law and thus gi corresponds to the
product of 1/(6πµ), with the dynamic viscosity µ in [N s/cm2], and a force
in [N]. Now, consider the specific form (2d) of the function g, i.e.

g(t,u) ≡ g(t, c, v) = [Scc(t)c + Scv(t)1v] · (1− ρ(u))+ .

The factor (1− ρ(u))+ is dimensionless. Thus the elements of matrix Scc(t)
have unit [cm2/(s(cells/cm3))] and those of Scv(t) have unit [cm2/(s(mg/cm3))].2

Below we make use of the following dimensionless quantities, see also (7),

t̃ :=
t

τ
, x̃ :=

x

L
, ỹ :=

y

L
, R̃ :=

R

L
, r̃ ≡ ‖ỹ‖2 :=

r

L
=
‖y‖2
L

,

ϑ̃c := ϑcc∗ , ϑ̃v := ϑvv∗ , S̃cc(t̃) :=
τc∗
L2

Scc(τ t̃) , S̃cv(t̃) :=
τv∗
L2

Scv(τ t̃) ,

ũ(t̃, x̃) :=

(
c(t̃τ, x̃L)

c∗
,
v(t̃τ, x̃L)

v∗

)
.

First observe that, for y ∈ B(0, R) we have ỹ ∈ B(0, R̃). Now, for a given
function f : B(0, R) → R holds, under some mild assumptions on f , the
following formula (change of variables in the integral)∫

B(0,R)

f(y) dy = Lp
∫
B(0,R̃)

f(Lỹ) dỹ .

2These units appear odd on first sight but splitting off the 1/(6πµ)-factor from gi, we
see that the, then modified, elements of Scc(t) and Scv(t) are forces per unit cell or ECM
density, respectively.
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1. For y ∈ B(0, R) we have n(y) = n(ỹ).

2. We define the dimensionless function Ω̃i(r̃) by

Ω̃i(r̃) := LpΩi(‖Lỹ‖2) = LpΩi(‖y‖2) = LpΩi(r) .

Then Ω̃i is also non-negative and it is normalised over B(0, R̃) as Ωi is
normalised over B(0, R) because

1 =

∫
B(0,R)

Ωi(‖y‖2) dy = Lp
∫
B(0,R̃)

Ωi(‖Lỹ‖2) dỹ =

∫
B(0,R̃)

Ω̃i(‖ỹ‖2) dỹ .

3. We obtain

ρ(u(t, x)) = ϑ̃vṽ(t̃, x̃) + ϑ̃c

n∑
i=1

c̃(t̃, x̃) =: ρ̃(ũ(t̃, x̃)) .

4. We define the dimensionless function g̃(t̃, ũ(t̃, x̃)) by

g̃(t̃, ũ(t̃, x̃)) :=
[
S̃cc(t̃)c̃(t̃, x̃) + S̃cv(t̃)1ṽ(t̃, x̃)

]
·
(
1− ρ̃(ũ(t̃, x̃))

)+
=

τ

L2
g(τ t̃,u(τ t̃, Lx̃)) .

Now, putting everything together we arrive at the dimensionless form of
the velocity Ãi(t̃, x̃, ũ(t̃, ·))

τ

L
Ai(t, x,u(t, ·)) =

τ

LR

∫
B(0,R)

n(y) · Ωi(‖y‖2) · gi(t,u(t, x+ y)) dy

=
Lpτ

LR

∫
B(0,R̃)

n(Lỹ) · Ωi(‖Lỹ‖2) · gi(t,u(t, x+ Lỹ)) dỹ

=
1

R̃

∫
B(0,R̃)

n(ỹ) · Ω̃i(‖ỹ‖2) ·
τ

L2
gi(τ t̃,u(τ t̃, Lx̃+ Lỹ)) dỹ

=
1

R̃

∫
B(0,R̃)

n(ỹ) · Ω̃i(‖ỹ‖2) · g̃i(t̃, ũ(t̃, x̃+ ỹ)) dỹ

=: Ãi(t̃, x̃, ũ(t̃, ·)) .
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