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Abstract

Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or
physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted
on a considerable scale, little focus has been given so far toa sound analysis of thequantitativerelationships between breath levels
and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of theend-tidalbreath dynamics
associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs.

Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in
response to variations in ventilation and perfusion. Here,a valid compartmental description of these profiles is developed. By
comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be
attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels ofmixedvenous
blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue
source of isoprene are presented.

Our model is a first step towards new guidelines for the breathgas analysis of isoprene and is expected to aid further investigations
regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.
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1. Introduction

1.1. Breath gas analysis and modeling
Human breath contains a myriad of endogenous volatile or-

ganic compounds (VOCs), appearing in the exhalate as a re-
sult of normal metabolic activity or pathological disorders.
The detection and quantification of these trace gases seems
to fulfill all the demands and desires for non-invasive in-
vestigation and has been put forward as a versatile tool for
medical diagnosis, biomonitoring of disease and physiological
function or assessments of body burden in response to medi-
cation and environmental exposure (Amann and Smith, 2005;
Amann et al., 2007, 2004; Buszewski et al., 2007; Rieder et al.,
2001; Miekisch and Schubert, 2006; Pleil, 2008). With the ad-
vent of powerful new mass spectrometric techniques over the
last 15 years, exhaled breath can nowadays be measured on
a breath-by-breath resolution, therefore rendering breath gas
analysis as an optimal choice for gaining continuous informa-
tion on the metabolic and physiological state of an individual.
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Within the framework sketched above, the success of us-
ing VOC breath concentration profiles for tracking endogenous
processes will hinge on the availability of adequate physical de-
scriptions for the observable exhalation kinetics of the trace gas
under scrutiny. Some major breath constituents have already
been investigated in this form, e.g., during exercise conditions
or exposure scenarios (King et al., 2010b; Mörk and Johanson,
2006; Anderson et al., 2003; Kumagai and Matsunaga, 2000;
Pleil et al., 2005). Nevertheless, VOC modeling remains a
challenging task due to the multifaceted impact of physio-
logical parameters (such as cardiac output or breathing pat-
terns (Cope et al., 2004)) as well as due to the sparse and of-
ten conflicting data regarding potential sources or sinks ofsuch
substances in the human body. This paper will be devoted to
a thorough study of theend-tidalbreath dynamics associated
with isoprene, which ranks among the most notable compounds
studied in the context of breath gas analysis.

1.2. Isoprene: a survey on physiologically relevant facts

Isoprene, also known as 2-methyl-1,3-butadiene (CAS num-
ber 78-79-5), is an unsaturated hydrocarbon with a molar mass
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of 68.11 g/mol and a boiling point of 34◦C. Isoprene is the
most abundant biogenic hydrocarbon emitted by the earth’s
vegetation and it is also the major hydrocarbon that is endoge-
nously produced by mammals (Gelmont et al., 1981). Its pri-
mary source in man has been attributed to the mevalonate path-
way of cholesterol biosynthesis (Deneris et al., 1984). Originat-
ing from acetyl-CoA, mevalonate is transformed into dimethy-
lallyl pyrophosphate (DMPP). Subsequently, isoprene can be
derived from DMPP via an acidic decomposition demon-
strated to occur in the cytosol of hepatocytes from rat liver
in vitro (Deneris et al., 1984). However, whether this final
non-enzymatic pathway prevails in the formation of isoprene
under physiological conditions continues to be a controver-
sial issue. As has been suggested by several authors, an
enzymatic step might catalyze the conversion of DMPP to
isoprene in humans (Stone et al., 1993; Miekisch et al., 2004;
Taucher et al., 1997), similar to the isoprene synthase reaction
seen in the chloroplasts of plants and trees (Silver and Fall,
1995). In this context, possible extrahepatic sites of iso-
prene production remain to be elucidated. Metabolization
of isoprene in mammals primarily rests on epoxidation by
cytochrome P450-dependent mono-oxygenases (Monte et al.,
1985; Watson et al., 2001), whereby significant species differ-
ences can be observed (Filser et al., 1996; Csanády and Filser,
2001; Bogaards et al., 2001). In particular, bioaccumulation in
man has been investigated within the framework of toxicologi-
cal inhalation studies (Filser et al., 1996).

Due to its volatility and low affinity for blood (as reflected
by a small blood:gas partition coefficient of λb:air = 0.75
at body temperature (Filser et al., 1996; Karl et al., 2001)),
isoprene is highly abundant in human breath and accounts
for up to 70% of total hydrocarbon removal via exhala-
tion (Gelmont et al., 1981). Furthermore, it can relatively eas-
ily be quantified using a variety of methodologically distinct
analytical techniques (Kushch et al., 2008; Ligor et al., 2008;
Miekisch and Schubert, 2006; Turner et al., 2006; King et al.,
2010a). Apart from being a convenient choice in terms of mea-
surability, breath isoprene has received widespread attention in
the literature due to the fact that it may serve as a sensitive, non-
invasive indicator for assaying several metabolic effects in the
human body (see (Salerno-Kennedy and Cashman, 2005) for an
extensive review).

Most notably, being a by-product of cholesterol biosyn-
thesis as outlined above, breath isoprene has been put for-
ward as an additional diagnostic parameter in the care of
patients suffering from lipid metabolism disorders such as
hypercholesterolemia. The fact that cholesterol-lowering drugs
reduce isoprene output confirms the in vivo relevance of
this (Stone et al., 1993; Karl et al., 2001). Moreover, inter-
esting relationships between the mevalonate pathway and
cell proliferation as well as DNA replication have been dis-
covered (Salerno-Kennedy and Cashman, 2005; Rieder et al.,
2001; Fritz, 2009; Brown and Goldstein, 1980). Further evi-
dence points toward a strong linkage of breath isoprene lev-
els to different physiological states, thus promoting its general
use in biomonitoring, e.g., during sleep or in an intraoperative
setting (Amann et al., 2005; Cailleux et al., 1993; Pabst et al.,

2007). Despite this huge potential, isoprene breath tests have
not yet reached the level of routine clinical methods and arestill
under development. This is partly due to the fact that drawing
reproducible breath samples remains an intricate task thatre-
quires further standardization. Furthermore, the decisive mech-
anisms driving systemic and pulmonary gas exchange are still
poorly understood.

Isoprene concentrations in exhaled human breath exhibit a
large variability. In children and adolescents, isoprene ex-
cretion in breath appears to increase with age (Taucher et al.,
1997; Smith et al., 2010) (with undetectable or very low lev-
els in the breath of neonates (Nelson et al., 1998)), until reach-
ing a gender- and age-invariant end-tidal nominal value of
about 100 ppb (approx. 4 nmol/l at standard ambient pressure
and temperature) characteristic for adults under resting condi-
tions (Kushch et al., 2008). Apart from the factors indicated in
the previous paragraph, a number of additional clinical condi-
tions and external influences have been reported to affect iso-
prene output, including renal dialysis (Capodicasa et al., 1999,
2007; Lirk et al., 2003), heart failure (McGrath et al., 2001),
sleep/sedation (Cailleux and Allain, 1989; Amann et al., 2005)
and exercise (Karl et al., 2001; King et al., 2009). However,
the physiological meaning of these changes has not been es-
tablished in sufficient depth.

Isoprene can be regarded as the prototype of an exhaled
breath VOC exhibiting pronounced rest-to-work transitions
in response to physical activity (Karl et al., 2001; King et al.,
2009; Turner et al., 2006). We recently demonstrated that end-
tidal isoprene abruptly increases at the onset of moderate work-
load ergometer challenges at 75 W, usually by a factor of
about 3–4 compared with the steady state value during rest.
This phase is followed by a gradual decline and the devel-
opment of a new steady state after about 15 min of pedal-
ing (King et al., 2009), see also Fig.1. Since endogenous iso-
prene synthesis as discussed above has been attributed to path-
ways with much larger time constants, common sense suggests
that the aforementioned rise in isoprene concentration is not due
to an increased production rate in the body, but rather stems
from changes in hemodynamics or changes in pulmonary func-
tion. In this sense, isoprene might also be thought of as a sensi-
tive marker for quantifying fluctuations in blood and respiratory
flow.

With the background material of the previous paragraphs in
mind, we view isoprene as a paradigmatic example for the ana-
lysis of low-soluble, blood-borne VOCs, even though it cannot
cover the whole spectrum of different physico-chemical char-
acteristics. The emphasis of this paper lies on examining the
physiological processes underlying the above-mentioned peak
shaped response ofend-tidalisoprene at the onset of exercise by
developing a mechanistic description of the observable exhala-
tion kinetics in normal healthy volunteers. The physical model
to be presented here aims at yielding further insights into the
flow and distribution route of isoprene in various parts of the
human body. Such a quantitative approach is imperative for as-
sessing the relevance and predictive power of extracted breath
isoprene concentrations with respect to the endogenous situa-
tion and is expected to enhance the fundamental understanding

2



of the physiological role of isoprene in a variety of experimental
scenarios.

2. Experimental basics

2.1. Setup

End-tidal isoprene concentration profiles are obtained by
means of areal-timesetup designed for synchronized measure-
ments of exhaled breath VOCs as well as a number of res-
piratory and hemodynamic parameters. Our instrumentation
has successfully been applied for gathering continuous data
streams of these quantities during ergometer challenges aswell
as in a sleep laboratory setting. These investigations aim at
evaluating the impact of breathing patterns, cardiac output or
blood pressure on the observed breath concentration and per-
mit a thorough study of characteristic changes in isoprene out-
put following variations in ventilation or perfusion. We refer
to (King et al., 2009) for an extensive description of the techni-
cal details as well as for the various protocols under scrutiny.

In brief, the core of the mentioned setup consists of a head
mask spirometer system allowing for the standardized extrac-
tion of arbitrary exhalation segments, which subsequentlyare
directed into a Proton-Transfer-Reaction mass spectrometer
(PTR-MS, Ionicon Analytik GmbH, Innsbruck, Austria) for on-
line analysis. This analytical technique has proven to be a sensi-
tive method for the quantification of volatile molecular species
M down to the ppb (parts per billion) range by taking advantage
of the proton transfer

H3O+ + M → MH+ + H2O

from primary hydronium precursor ions (Lindinger et al.,
1998a,b). Note that this “soft” chemical ionization scheme
is selective to VOCs with proton affinities higher than water
(166.5 kcal/mol), thereby precluding the protonation of the bulk
composition exhaled air, N2, O2 and CO2. Count rates of
the resulting product ionsMH+ or fragments thereof appear-
ing at specified mass-to-charge ratiosm/z can subsequently be
converted to absolute concentrations of the compound under
scrutiny. Specifically, protonated isoprene is detected inPTR-
MS at m/z = 69 and can be measured with breath-by-breath
resolution. For further details regarding quantification and the
underlying PTR-MS settings used the interested reader is re-
ferred to (Schwarz et al., 2009) and (King et al., 2009), respec-
tively. From the viewpoint of quality control, isoprene time pro-
files obtained with the setup described above have recently been
cross-validated by means of manually extracted GC–MS sam-
ples (using solid phase micro-extraction as a pre-concentration
step) (King et al., 2010a). Table1 summarizes the measured
variables relevant for this paper. In general, breath concentra-
tions will always refer to end-tidal levels. An underlying sam-
pling interval of 5 s is set for each parameter.

Variable Symbol Nominal value (units)

Cardiac output Q̇c 6 (l/min) (Mohrman and Heller, 2006)

Alveolar ventilation V̇A 5.2 (l/min) (West, 2005)

Isoprene concentration Cmeas 4 (nmol/l) (Kushch et al., 2008)

Table 1: Summary of measured parameters together with some nominal values
during rest, assuming ambient conditions; breath concentrations refer to end-
tidal levels.

2.2. Recent results and heuristics

This section serves to collect some experimental evidence
supporting the hypothesis of a peripheral tissue source of iso-
prene formation in man, derived from dynamic breath con-
centration measurements under exercise conditions. The ratio-
nale given here mainly builds on our earlier phenomenological
studies in (King et al., 2009) and (King et al., 2010a). Com-
plementary experiments will be indicated where appropriate.
All results are obtained in conformity with the Declarationof
Helsinki and with the necessary approvals by the Ethics Com-
mission of Innsbruck Medical University.

Investigating an ensemble of eight normal healthy volun-
teers,King et al. (2009) recently demonstrated that isoprene
evolution in end-tidal breath exhibits a very reproducibleand
consistent behavior during moderate exercise scenarios. For
perspective, Fig.1 shows typical results corresponding to a bi-
cycle ergometer challenge of onesinglevolunteer under a con-
stant workload of 75 W with several periods of rest.
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Figure 1: Typical smoothed profiles of end-exhaled isopreneconcentrations
and physiological parameters in response to two-legged ergometer exercise at
75 W. Data are taken from (King et al., 2009) and correspond to onesingle
healthy male volunteer (26 years, 72 kg bodyweight). Workload segments are
shaded in grey.

Generally, starting from a steady state value of about
4 nmol/l during rest, isoprene concentrations in end-tidal air
exert a pronounced peak at the onset of exercise (corresponding
to an increase by a factor of up to 4). This phase is followed
by a gradual decline and the development of a new steady
state after approximately 15 min of pedaling. Interestingly, by
repeating this regime, the peak size after intermediate exercise
breaks can be demonstrated to depend on the duration of
the resting phase, despite almost identical profiles of cardiac
output and alveolar ventilation. Full recovery of the initial
height requires about one hour of rest. A valid model for the
description of isoprene concentrations in end-tidal air should
be able to faithfully reproduce this wash-out behavior.

The aforementioned peak shaped behavior of isoprene has
mainly been attributed to its low blood:gas partition coeffi-
cient λb:air = 0.75. According to classical pulmonary inert
gas elimination theory (cf.Appendix A), the low affinity for
blood implies a high sensitivity of the associated breath con-
centrations with respect to changes in ventilation or perfu-
sion. More specifically, the basic Farhi equation (A.3) predicts
that, other factors being equal, increasing/decreasing the alve-
olar ventilation will decrease/increase exhaled breath concen-
trations (due to increased/decreased dilution), whereas the re-
lationship between breath concentrations and cardiac output is
monotonic and reflects dependence on supply. Using similar

reasoning,Karl et al.(2001) proposed a simple quantitative de-
scription of breath isoprene concentration time courses during
exercise, which is now widely accepted as “standard model”.
However, as has already been argued in (King et al., 2009),
their formulation is deficient in several regards. A principal
criticism is that the model of Karl et al. essentially relieson
a markedly delayed rise of alveolar ventilation with respect to
pulmonary blood flow, a premise which clearly contrasts exper-
imental evidence (see, e.g., Fig.1 as well as (Wagner, 1992;
Lumb, 2005)). The onset of the ventilatory response to exercise
is instantaneous and may actually precede the latter (possibly
being part of a learned response), so a delay as required above
is highly unlikely. Consequently, when subjecting this model
to real data streams including measured profiles of pulmonary
blood flow Q̇c and alveolar flowV̇A, it fails to capture the ob-
served isoprene data, see Fig.4.

Further insights into the decisive components affecting
breath isoprene excretion can be gained by comparing its dy-
namic behavior with the profiles of blood-borne VOCs ex-
pected to show similar exhalation kinetics. In this con-
text, it has recently been pointed out that breath con-
centrations of endogenous butane (considered to originate
from protein oxidation and/or bacteria production in the
colon (Kharitonov and Barnes, 2002)) during ergometer ex-
ercise resemble the trend anticipated from Equation (A.3),
while isoprene exhibits an entirely different qualitative re-
sponse (King et al., 2010a). This is certainly counter-intuitive,
as butane is widely comparable with isoprene in terms of var-
ious functional factors expected to affect pulmonary gas ex-
change (including, e.g., blood and tissue solubility as well as
molecular weight).

In light of this discrepancy, it can be conjectured that some
unknown substance-specific (release) mechanism has to be
taken into account for capturing the exhalation dynamics ofiso-
prene. In order to restrict the number of potential tissue sources
for this effect, in a series of auxiliary experiments the ergome-
ter protocol sketched above was modified as follows. Instead
of pedaling with both legs, we orchestrated several one-legged
workload challenges on a standard ergometer, alternating bet-
ween left and right limb for doing the exercise. The heel of the
non-working leg rested on a small chair placed beside the bi-
cycle. Special care was taken to ensure a comfortable seating
position of the volunteer so that any contractive movement of
the resting leg for stabilization purposes could be avoided. The
hand rest of the ergometer was adjusted in such a way that the
test subjects could maintain their torso in an upright position
throughout the measurement period, with both arms stretched.
A constant resistance of 50 W was imposed for the entire ex-
periment and pedaling cadence was maintained at 60 rpm.

In total, five normal healthy volunteers (age 27-34 years,
4 male, 1 female) were recruited and investigated in this way.
No test subject reported any prescribed medication or drug in-
take. No special restrictions regarding pre-experimentalfood
intake were applied, as this variable seems to have a negligi-
ble effect on breath isoprene concentrations (Smith et al., 1999;
Kinoyama et al., 2008). However, volunteers were required to
rest at least 20 minutes prior to analysis due to the significant
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impact of physical activity as discussed in Section1.2. Within
this time informed consent was obtained regarding the exper-
imental protocol. Additional instrumentation and monitoring
closely followed the general procedure reported in (King et al.,
2009). Fig. 2 shows a representative experimental outcome for
onesinglevolunteer.
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Figure 2: Typical smoothed profiles of end-exhaled isopreneconcentrations
and physiological parameters in response to one-legged ergometer exercise at
50 W. Data correspond to onesinglehealthy male volunteer (27 years, 75 kg
bodyweight). Left and right leg exercise segments are shaded in light and dark
grey, respectively.

At the beginning, the qualitative response of end-tidal iso-
prene concentrations closely resembles the situation presented
in Fig. 1 for the two-legged case. After 10 minutes of pedal-
ing with the left leg, followed by a resting period of 4 minutes,
a clear wash-out effect becomes discernible, yielding a signifi-
cantly lower peak height when continuing the exercise with the
same leg. However, if the working limb is now switched to
the right leg (after an intermediate break of 4 minutes as be-
fore), an almost complete recovery of the initial peak size can
be observed (cf. the time frame between 23 and 30 minutes in
Fig. 2). On the contrary, it should be noted that the associated
rise in cardiac output and alveolar ventilation is of comparable
order within all three workload phases. These basic character-
istics could reliably be reproduced within the entire collective
of test subjects. In particular, consistent results are obtained if
the leg switch is from right to left.

Combining the aforementioned findings provides a clear hint
that breath isoprene levels during exercise are linked to local
variations of gas exchange in peripheral tissue groups. In par-

ticular, they open up a new line of supportive evidence for
peripheral production sites of isoprene as indicated in Sec-
tion 1.2. Furthermore, the common viewpoint that the breath
isoprene peaks characteristic for exercise conditions canmainly
be traced back to altered pulmonary gas exchange conditions
(resulting, for instance, from an impairment of cardiac output
and ventilatory drive (Karl et al., 2001)) or local generation in
the respiratory tree (as in the case of NO release in the paranasal
sinuses during humming (Weitzberg and Lundberg, 2002)) has
to be rejected. As will be discussed in the modeling sectionsbe-
low, we attribute the observable wash-out behavior of isoprene
to an increased fractional perfusion of potential storage and pro-
duction sites, leading to higher levels of themixedvenous blood
concentration at the onset of physical activity. While the exact
tissue groups involved in this process remain speculative,possi-
ble origins might include the skeletal locomotor muscles them-
selves but also the walls of the vascular tree, both of which
receive a disproportionately high share of blood flow during
exercise. There are some indications in the literature thatiso-
prene synthesis can play a role at these sites (Miekisch et al.,
2001; Brown and Goldstein, 1980). However, further biochem-
ical investigations will need to clarify whether an appropriate
metabolic pattern exists in these extrahepatic tissues.

3. Isoprene modeling

3.1. Preliminaries and assumptions

For the sake of maintaining a balance between tractabil-
ity and sufficient complexity of the model structure, we shall
adopt the usual compartmental approach in our attempts to de-
scribe the end-tidal isoprene behavior outlined above. This
approach consists in dividing the body into an ensemble of
roughly homogenous tissue control volumes that are intercon-
nected via the arterial and venous network (Reddy et al., 2005;
Leung, 1991; Gerlowski and Jain, 1983; Fiserova-Bergerova,
1983). Previously developed physiologically based descrip-
tions of isoprene pharmacokinetics in man and rodents can be
found in (Filser et al., 1996; NTP, 1999; Melnick and Kohn,
2000; Bogaards et al., 2001). These mainly centered on quan-
tifying body burden in response to severe environmental expo-
sure (driven by concerns about the carcinogenic potential of iso-
prene and/or its metabolites (Melnick et al., 1994; NTP, 1999))
and hence often neglected the relatively small contribution of
endogenous production to overall bioaccumulation. In contrast,
here we will mainly focus on the characteristics of isoprene
formation and distribution within specific body tissues under
normal physiological conditions. Similarly to the models men-
tioned above, two major aspects of isoprene exchange will be
taken into consideration.

3.1.1. Pulmonary gas exchange
Following a general premise of classical pulmonary inert gas

elimination theory (seeAppendix A), we postulate that uptake
and removal of isoprene takes place exclusively in the alveo-
lar region. In particular, any pre- and post-alveolar absorp-
tion and release mechanisms occurring in the conductive air-
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ways (e.g., due to interactions with the tracheo-bronchiallin-
ing fluid (Anderson et al., 2003; Anderson and Hlastala, 2007;
King et al., 2010b)) are assumed to be negligible, which is
a reasonable requirement for low-soluble VOCs such as iso-
prene (Anderson et al., 2003). The lung function will be taken
into account by considering one single homogenous alveolar
unit characterized by an averaged ventilation–perfusion ratio
close to one during resting conditions. While this approachig-
nores the regional ventilation–perfusion scatter throughout the
lung, it constitutes a convenient simplification that is justified
by the need to keep the parameterization as parsimonious as
possible at this stage of the modeling phase. Delivery and elim-
ination of isoprene within the alveolar tract will be governed
by cardiac outputQ̇c and alveolar ventilatioṅVA , respectively,
thereby neglecting the small intrapulmonary shunt and alveolar
dead space fraction (Lumb, 2005). Owing to its lipophilic char-
acteristics and small molecular size, isoprene can be assumed
to rapidly pass through the alveolar tissue barrier, so thatan in-
stantaneous diffusion equilibrium will be established between
end-capillary blood and the free gas phase. This is likely to
hold true also under moderate, sub-anaerobic exercise condi-
tions (Wagner, 2008). In the absence of chemical bindings with
blood it can thus be deduced that the concentrationCa of iso-
prene inarterial blood leaving the lungs is proportional to the
concentrationCA within the alveoli, viz.,

Ca = λb:airCA . (1)

Here,λb:air denotes the isoprene-specific blood:gas partition co-
efficient as introduced in Section1.2.

3.1.2. Body compartments
The systemic part of the model incorporates two well-mixed

functional units: a richly perfused tissue (rpt) compartment,
lumping together tissue groups with comparable blood:tissue
partition coefficientλb:rpt ≈ 0.4 (viscera, brain, connective mus-
cles, skin), as well as a peripheral tissue compartment, repre-
senting an effective buffer volume that acts as a reservoir for the
storage of isoprene (tentatively skeletal muscles). Both com-
partments are separated into an intracellular space and an ex-
tracellular space (including the vascular blood and the intersti-
tial space), whereby a venous equilibrium is assumed to hold
at these interfaces. The relevant blood:tissue partition coeffi-
cients are summarized in TableC.1. Due to the low fractional
perfusion of adipose tissue, an extra fat compartment was not
considered.

In order to capture the redistribution of systemic perfusion
during bicycle ergometer exercise, fractional blood flowqper ∈

(0, 1) to peripheral tissue is assumed to resemble fractional
blood flow to both legs. The latter increases with cardiac output
and will be modeled as

qper(Q̇c) := qrest
per + (qmax

per − qrest
per)×

(

1− exp (−τ max{0,
Q̇c − Q̇rest

c

Q̇rest
c

})
)

, τ > 0. (2)

Reference values for the indicated variables can be found in
TableC.1. For perspective, in the sequel we setqrest

per = 0.08

and qmax
per = 0.7 (which approximately corresponds to the

fractional perfusion of both legs during bicycle exercise at
75 W (Sullivan et al., 1989)). The constantτ will be estimated
in Section4. Alternatively, the right-hand side expression in (2)
might also be replaced with a piecewise constant function tak-
ing valuesqrest

per andqmax
per during rest and exercise, respectively.

As has been mentioned previously, the tissues contributing
to isoprene formation are not fully established. In view of the
biochemical and experimental results in Sections1.2 and2.2,
respectively, two distinct non-negative production rateskrpt

pr and
kper

pr are incorporated into the model. These values quantify po-
tential hepatic and peripheral sources of endogenous isoprene,
the latter being interpreted as a by-product of the biosynthe-
sis of polyisoprenoid compounds, their degradation, or both.
While isoprene production in general appears to be subject
to diurnal variations (Cailleux and Allain, 1989; Amann et al.,
2005), within the typical experimental time frame considered
here both rates are treated as constant. Analogously, metabo-
lization of isoprene is described by conventional first order ki-
netics and will be captured by introducing two rate constants
krpt

met andkper
met, reflecting cytochrome P450 activity in liver and

extrahepatic tissues, respectively (Filser et al., 1996). Other
ways of isoprene clearance such as excretion via the renal sys-
tem are considered as long-term mechanisms in this context and
will thus be ignored. The specific values for the production and
metabolization rates introduced above will have to be estimated
based on experimental results and may depend on the individual
volunteer investigated. The latter case would be particularly in-
teresting in the light of the fact that isoprene may reflect certain
aspects of endogenous cholesterol synthesis.

3.2. Model equations and a priori analysis

In order to capture the gas exchange and tissue distribution
mechanisms presented in the previous paragraphs, the model
consists of three different compartments. A sketch of the model
structure is given in Fig.3 and will be detailed in the following.
Model equations are derived by taking into account standard
conservation of mass laws for the individual compartments.In
view of the diffusion equilibria postulated in Section3.1, the
compartment capacities are governed by theeffectivevolumes
ṼA := VA + Vc′λb:air, Ṽrpt := Vrpt + Vrpt,bλb:rpt as well asṼper :=
Vper+ Vper,bλb:per. Nominal values for the indicated parameters
are given in TableC.1.
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Figure 3: Sketch of the model structure. The body is divided into three distinct
functional units: alveolar/end-capillary compartment (gas exchange), richly
perfused tissue (metabolism and production) and peripheral tissue (storage,
metabolism and production). Dashed boundaries indicate a diffusion equilib-
rium. Abbreviations connote as in TableC.1.

According to Fig.3, the mass balance equation for the alve-
olar compartment reads

ṼA
dCA

dt
= V̇A(CI −CA) + Q̇c(C v̄−Ca), (3)

with CI denoting the inhaled (ambient) gas concentration, while
for the richly perfused and peripheral tissue compartment we
find that

Ṽrpt
dCrpt

dt
= (1−qper)Q̇c(Ca−λb:rptCrpt)+krpt

pr −krpt
metλb:rptCrpt, (4)

and

Ṽper
dCper

dt
= qperQ̇c(Ca − λb:perCper) + kper

pr − kper
metλb:perCper, (5)

respectively. Here, the associated concentrations in mixed ve-
nous and arterial blood are given by

C v̄ := (1− qper)λb:rptCrpt + qperλb:perCper (6)

and Equation (1), respectively. Moreover, we state that the
measured (end-tidal) isoprene concentration equals the alveo-
lar level, i.e.,

y := Cmeas= CA . (7)

Note that in Equations (1) and (6) it is tacitly assumed that
any transport delays between tissues, heart and lung can be
neglected. A more refined formulation in this regard can be
achieved by considering delay differential equations, see for
instance (Batzel et al., 2007).

Remark 1. For later purposes, we note that a model accom-
modating the experimental situation during exhalation andin-
halation to and from a fixed volume exposure atmosphere can
simply be derived by augmenting Equations (3)–(5) with an ad-
ditional compartment obeying

ṼI
dCI

dt
= V̇A(CA −CI). (8)

This typically describes closed system (rebreathing) setups
such as in (Filser et al., 1996).

Some fundamental model properties are discussed
in Appendix B. In particular, the components of the state
variablec := (CA ,Crpt,Cper)T remain non-negative, bounded
and will approach a globally asymptotically stable equilibrium
ce(u) once the measurable external inputsu := (V̇A , Q̇c,CI)
affecting the system are fixed. This corresponds, e.g., to the
situation encountered during rest or constant workload, see
Fig. 1. Analogous results can be established for the augmented
system incorporating Equation (8), describing the evolution of
the composite state variablec := (CA ,Crpt,Cper,CI)T . In this
case, the corresponding equilibrium for fixed inputs will be
denoted byce(u).

4. Model validation and estimation

4.1. Comparison with ergometer datasets

In this section we calibrate the proposed model based on
the physiological data presented in Fig.1, corresponding to
one single representative volunteer breathing an atmosphere
free of isoprene (i.e., we setCI ≡ 0 in the sequel). It will
turn out that the model appears to be flexible enough to cap-
ture the isoprene profiles in exhaled breath generally observed
during moderate workload ergometer challenges as conducted
in (King et al., 2009). Moreover, our formulation provides a
preliminary basis for estimating some of the unspecified pa-
rametersp j ∈ {k

rpt
pr , k

per
pr , k

rpt
met, k

per
met, τ, Ṽper} from the knowledge

of measured breath concentrationsy. More specifically, our aim
is to (at least partially) determine thesubject-dependentparam-
eter vector

p = (krpt
pr , k

per
pr , k

rpt
met, k

per
met, τ, Ṽper)

as well as the nominal endogenous steady state levelsc0 = c(t0)
by solving the ordinary least squares problem

argmin
p,c0

n
∑

i=0

(

yi −CA(ti)
)2
, (9)

subject to the constraints



















g(u0, p, c0) = 0 (steady state)
p, c0 ≥ 0 (positivity)
ce

4(u0, p) = 25 nmol/l (exposure steady state).
(10)

Here,g is the right-hand side of the ODE system (3)–(5) (see
also (B.1)) andyi = Cmeas,i is the measured end-tidal isoprene
concentration at time instantti (t0 = 0). The solution point
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will be denoted by (p∗, c∗0). For perspective, the last constraint
has been introduced in order to account for additional informa-
tion regarding the biotransformation of isoprene available on
the basis of toxicological inhalation studies (Filser et al., 1996).
As has been demonstrated there for an ensemble of four nor-
mal healthy test subjects, isoprene concentrations in a closed
rebreathing chamber of fixed volume will plateau at a level of
approximately 600 ppb after about 2 hours of quiet tidal breath-
ing at rest, irrespective of the initial amount of isoprene present
in the system. The extracted parameters will be adjusted to au-
tomatically meet this boundary condition, thereby maintaining
consistency with the aforementioned experimental findings.

For simulation purposes the measured physiological func-
tions V̇A and Q̇c were converted to input function handlesu
by applying a local smoothing procedure to the associated
data and interpolating the resulting profiles with splines.
Tissue volumes and partition coefficients are as in TableC.1.
In particular, while the peripheral compartment so far has
been treated as an abstract control volume without particular
reference to any specific tissue group, for identifiability reasons
we now setλb:per = 0.5, which corresponds to the in vitro
blood:tissue partition coefficient for muscle (Filser et al., 1996).
Note, however, that this choice is rather arbitrary, cf. Remark4.

The above minimization problem (9) was solved by imple-
menting a multiple shooting routine (Bock, 1987) in Matlab.
This iterative method can be seen as a generalization of the
standard Gauss–Newton algorithm, designed to avoid diver-
gence issues of the latter due to large residuals. For further
details as well as convergence and stability properties we refer
to (Bock, 1981; Peifer and Timmer, 2007). The necessary
derivatives of the trajectories with respect top and c0 were
computed by simultaneously solving the associated variational
equations (Hairer et al., 1993). Convergence was assumed
to be achieved when the maximum componentwise relative
change between two successive iterations was less than 0.1%.
Fig. 4 summarizes the results of these calculations. Fitted
parameter values and initial conditions are given in Table2.

All estimated quantities for the test subject under scrutiny
take values in a physiologically plausible range. According
to Equations (1) and (6), arterial and mixed venous blood
concentrations at the start of the experiment are estimated
as Ca(0) = 4.5 nmol/l and C v̄(0) = 10.6 nmol/l, respec-
tively, which is in direct agreement with available data from
the literature (cf. TableC.1). Total endogenous production
equals approximately 125 nmol/min, which is comparable to
previous predictions ranging from 2.5 to 5.7 nmol/min/kg
bodyweight (Hartmann and Kessler, 1990; Filser et al., 1996).
Moreover, the estimated value forṼper is close to experimen-
tally measured thigh muscle volumes (see (Tothill and Stewart,
2002) for instance).

For the sake of comparison, in Fig.4 we also show the out-
come of the model by Karl et al. subjected to the time courses of
V̇A andQ̇c as above (assuming the same end-tidal steady state
value of 6 nmol/l at rest). As has been indicated in Section2.2,
the associated predictions result in a poor representationof the

observed data.
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Figure 4: First panel: simulation of end-tidal isoprene behavior during exer-
cise conditions, cf. Fig.1. Second panel: predicted concentrations in mixed
venous blood (C v̄) and venous blood returning from the peripheral (λb:perCper)
and richly perfused tissue groups (λb:rptCrpt). Third panel: predicted profile of
fractional peripheral blood flowqper according to Equation (2).

The local identifiability of the extracted estimates in Table 2
was investigated by checking the non-singularity of the infor-
mation matrixQ := STS, whereS is the sensitivity function
matrix having rows

Si,− :=
(

∂y(ti−1,p∗ ,c∗0)
∂p

∂y(ti−1,p∗ ,c∗0)
∂c0

)

. (11)

More specifically, we adopted the standardnumericalrank cri-
terion

rankQ = max{k; σk > ε‖Q‖∞}, (12)

whereσ1 ≥ σ2 ≥ . . . ≥ 0 are the singular values ofQ and
ε = 10−8 denotes the maximum relative error of the calcu-
lated sensitivities (Golub and Van Loan, 1996). Accordingly,
we find thatQ has full rank, suggesting that all estimated quan-
tities are practically identifiable (Cobelli and DiStefano, 1980).
However, some degree of ill-conditioning is present as can be
concluded from calculating the approximate posterior correla-
tion matrixR defined by

Ri, j := Q−1
i, j

(

Q−1
i,i Q−1

j, j
)− 1

2 ∈ [−1, 1]. (13)

The entryRi, j quantifies the degree of interplay between theith
and jth parameter (initial condition) under scrutiny.

A value of Ri, j near +1 or −1 indicates that it may be
difficult to estimate both parameters separately, as changes in
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the model output caused by perturbing one of these parameters
can nearly be compensated by an appropriate perturbation of
the other (Jacquez and Perry, 1990; Seber and Wild, 2003;
Rodriguez-Fernandez et al., 2006). The highest correlation
is achieved for the pair (krpt

pr , k
rpt
met), with an associated value

of 0.995. This indicates a poor estimability of the above-
mentioned two parameters if only the breath isoprene dynamics
in Fig. 4 are taken into account. However, the constraints
in (10) provide additional information onkrpt

pr and krpt
met that

will prove sufficient for guaranteeing the extraction of reliable
estimates. Alternatively, such identifiability issues might also
be circumvented by designing multi-experimental regimes
guaranteeing a sufficiently large and independent influence of
all parameters under scrutiny (for instance, by complement-
ing ergometer challenges with closed chamber rebreathing
protocols as indicated above). The absolute value of all other
pairwise correlations is below 0.9.

A ranking of the fitted parameters and initial conditions with
respect to their impact on the model output can be obtained by
numerically approximating the squaredL2-norm of thenormal-
izedsensitivities, viz.,

ς(p j) :=

tn
∫

t0

(

∂y(t, p∗, c∗0)

∂p j

p∗j
maxs |y(s)|

)2

dt, (14)

and similarly for the components ofc0. A graphical comparison
of these sensitivity indices is given in Fig.5, revealing a strong
influence ofkper

pr , Cper(0) andṼper on the predicted breath iso-
prene profile. This is intuitively reasonable as these quantities
govern the shape of the observed isoprene peak during exercise.
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Figure 5: SquaredL2-norm of thenormalizedmodel sensitivities (cf. Equa-
tion (14)) with respect to the fitted parameters in Table2.

Contrarily, only minor effects are seen when varying the
(poorly determined) parameterskrpt

pr andkrpt
met. In fact, it should

be pointed out that production and metabolization in the richly
perfused tissue group are not needed for producing a satis-
factory fit of the data given in Fig.4. However, we refrained
from generally eliminating these variables as they play a major
role in isoprene distribution during resting conditions (when
blood flow is directed mainly to the richly perfused tissue
compartment). In particular, they ensure the consistency of the

model with closed chamber rebreathing scenarios as discussed
before. From the ensemble of fixed model parameters, the most
influential quantities (having a sensitivity index value greater
than 0.25 according to Eq. (14)) are the maximum fractional
perfusion to peripheral tissue (ς(qmax

per ) = 0.88), the partition
coefficient between blood and peripheral tissue (ς(λb:per) = 0.6)
and the blood:gas partition coefficient (ς(λb:air) = 0.26). These
variables should be given special attention when applying the
proposed model to a larger study population as they require a
careful assessment with respect to inter-individual variations.

In order to give some insight into the information content
of the extracted parameter values, approximate standard errors
were constructed by employing a variant ofresidual bootstrap-
ping(Dogan, 2007; Huet et al., 2003, Sect. 2.3.5). For an excel-
lent overview of resampling techniques in general the interested
reader is referred to (Shao and Tu, 1995), while a recent com-
parison between standard asymptotic theory and bootstrapping
for uncertainty quantification in inverse problems can be found
in (Banks et al., 2010).

In particular, this method allows for taking into account au-
tocorrelations detected among the model residuals

r i := yi − y(ti , p∗, c∗0), i = 0, . . . , n. (15)

Such autocorrelation patterns can be seen as a gen-
eral feature of dense time course, ventilation-related data
streams (Liang et al., 1996) and neglecting their presence typi-
cally tends to distort variance assessments of least squares es-
timates derived from conventional covariance matrix approxi-
mations (Seber and Wild, 2003; Davidian and Giltinan, 1995).
Adopting the general procedure suggested byDogan(2007),
we first use standard techniques from time series analysis (see,
e.g., (Box et al., 1994)) to model the interdependence between
ther i via an autoregressive process of order two, viz.,

r i = αr i−1 + βr i−2 + r̃ i . (16)

Plots of the resulting ˜r i versus time clearly exhibit random
patterns, thereby suggesting that the former can be treated
as independent and homoscedastic realizations of the under-
lying error process. Furthermore, a Ljung–Box portmanteau
test (Ljung and Box, 1978) confirmed the lack of statistically
significant autocorrelations. We can hence conclude that the
error terms ˜r i are interchangeable.

Consequently, a single bootstrap datasetyb :=
(

yb
0, . . . , y

b
n
)

may be generated by the following procedure: we drawn − 1
samples from a uniform discrete distribution over the set
{r̃ i ; i = 0, . . . , n}. The results are combined to yield a vector
(

r̃b
2, . . . , r̃

b
n
)

, from which yb is obtained via Equations (16)
and (15) (we setrb

i := r i for i = 0, 1). This resampled dataset
is then plugged into the minimization procedure (9) to arrive
at new estimates

(

p∗,b,c∗,b0

)

. Repeating the above stepB times
generates a population ofB fits for each component ofp and
c0, reflecting the sensitivity of these estimates with respectto
the given data. Approximate standard errors might then be
computed from the empirical variances associated with these
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populations. Here, we useB = 100.

The variation coefficients in Table2 suggest that under the
constraints imposed in (10) all unknown parameters and ini-
tial conditions might be determined from the individual breath
concentration data in Fig.1 with reasonable accuracy. While
this confirms that inference on endogenous isoprene kinetics
by virtue of exhaled breath measurements is potentially feasi-
ble, it must be emphasized that the extracted values are clearly
model-dependent. In particular, additional modeling efforts in-
vestigating a more refined compartmentalization and descrip-
tion of perfusion patterns as in Equation (2) will be imperative
before such estimates can become practically relevant. More-
over, further experimental evidence needs to be gathered with
respect to (fixed) physiological parameters that are known to
drastically affect the model output. Sensitivity and identifiabil-
ity methodologies as indicated above can guide these tasks (see
also (Brun et al., 2002; Cintrón-Arias et al., 2009; Hengl et al.,
2007)). In this sense, the preceding analysis should merely be
seen as a preliminary proof of concept, that primarily aims at
proposing a novel qualitative description of the normal physio-
logical flow of isoprene rather than at drawing further quantita-
tive conclusions with respect to the indicated estimates.

Variable Symbol Fitted value (units) CV

Production rpt krpt
pr 20.8 (nmol/min) 16

Production periphery kper
pr 104.5 (nmol/min) 3

Metabolism rate rpt krpt
met 3.6 (l/min) 8

Metabolism rate periphery kper
met 0.96 (l/min) 7

Constant Eq. (2) τ 2.1 12

Tissue volume periphery Ṽper 9.2 (l) 8

Initial concentration alveoli CA (0) 6 (nmol/l) 3

Initial concentration rpt Crpt(0) 12.5 (nmol/l) 6

Initial concentration periphery Cper(0) 150 (nmol/l) 5

Table 2: Decisive model parameters resulting from the fit in Fig. 4. The corre-
sponding variation coefficients (CV, in %) were obtained by calculating boot-
strap standard errors from the repeated fits ofB = 100 resampled datasets.

Moreover, we again stress the fact that the fitting procedure
above has been carried out for one single representative
volunteer only, inasmuch as our major goal was to demonstrate
the principal explanatory power of the proposed model for
capturing the presented breath isoprene behavior. The popu-
lation spread of the fitted parameters within the larger study
cohort investigated byKing et al. (2009) might be assessed
by a Bayesian (see (Mörk et al., 2009) for instance) or mixed
effects approach (Kuhn and Lavielle, 2005), which, however
would be beyond the scope of this paper.

Remark 2. For the sake of completeness, we briefly note that a
formal description of the experimental situation during the one-
legged ergometer trials as in Section2.2 can be obtained by
simply augmenting the model with a copy of Equation (5). For
symmetry reasons, each of these two peripheral compartments

(interpreted as left and right leg) might then be assigned 50%
of the volumeṼper, nominal fractional blood flowqper, produc-
tion kper

pr and metabolization ratekper
met as given in Table2 and

TableC.1 (note that the initial steady state concentrations re-
main unchanged). Consequently, by alternately distributing in-
creased fractional perfusion during the individual exercise seg-
ments to either one of these compartments, a good qualitative
agreement with the data shown in Fig.2 can be achieved.

4.2. Physiological interpretation
The second panel in Fig.4 clearly reveals the physiological

mechanism underlying the peak shaped dynamics of breath
isoprene concentrations in response to constant load exercise.
During rest, the peripheral compartment is characterized
by high isoprene concentrations resulting from extrahepatic
production according tokper

pr . However, due to the minute
fractional blood flow qrest

per to these tissues,mixed venous
concentrations are mainly governed by the lower values in
venous blood from the rpt group. As soon as fractional
perfusion in the periphery increases as a result of exercise
hyperemia, mixed venous concentrations become dominated
by peripheral venous return. The isoprene peak visible in
mixed venous blood and breath is an immediate consequence
of this transition. Subsequently, a depletion of the peripheral
tissue compartment and hence a decline in mixed venous blood
concentration can be observed. As a matter of fact, ifV̇work

A
and Q̇work

c are maintained at a roughly fixed level reflecting
some constant workload, the compartmental concentrations
will approach a new steady statece(uwork), which is attained
after about 15 minutes of pedaling, cf. Section2.2. When the
workload is stopped, perfusion will be redistributed according
to the compartmental shares at rest and the peripheral isoprene
buffer will be replenished. If exercise is continued before this
process is completed, the corresponding isoprene peak willbe
lower than at the start of the first exercise segment, despitea
similar response of ventilation and perfusion. This clarifies the
wash-out behavior discernible in repeated workload segments.
In the special situation of Fig.4, starting from the final state
at t = 20 min (using the fitted parameter values in Table2
and applying the physiological inputsu0 corresponding to
resting conditions) the time required until all compartmental
concentrations are within 1% of their initial levelc0,i can be
simulated as approximately 58 min. This is consistent with
experimental observations (King et al., 2009).

In other words, according to the preceding rationale the
major part of breath isoprene variability during ergometer
challenges can be attributed to varying fractional contributions
of distinct compartmental levels to the mixed venous blood
concentrationC v̄. The aforementioned reasoning compares
favorably with the fact, that peripheral venous blood concen-
trations (median 30 nmol/l; range 15-70 nmol/l (Cailleux et al.,
1992)) appear to be significantly higher than mixed venous
ones (median 9 nmol/l; range 0.5-24 nmol/l (Miekisch et al.,
2001)). In particular, note that with the present model the ob-
served isoprene dynamics can be explained assumingconstant
endogenous production rates, which agrees with the intuitive
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perception of isoprene synthesis as a slowly varying process. In
this sense, the aforementioned putative mechanism optimally
respects a wide spectrum of fundamental phenomenological
as well as physiological boundary conditions. From a prac-
tical point of view, the intimate ties between compartmental
hemodynamics and endogenous isoprene flow put forward
by the previous analysis might render breath isoprene as a
promising new parameter for studying vascular control and the
redistribution of blood flow during exercise.

Remark 3. A word is in order regarding the necessity of in-
troducing a hypothetical production ratekper

pr for ensuring the
formation of a systemic isoprene pool. To this end, consideran
arbitrary non-producing and non-metabolizing body compart-
ment which may essentially be characterized by a mass balance
equation of the form (5), with kper

pr andkper
met set to zero (the in-

dex “per” is kept merely for notational convenience). As steady
state conditions can be assumed to hold during rest (see Sec-
tion 2.2), the initial venous concentrationCper(0)λb:per of iso-
prene associated with this compartment will be equal to the in-
coming arterial concentrationCa(0) of the compound. Adopt-
ing the above notation we thus find that

Cper(0)λb:per= Ca(0) ≤ C v̄(0). (17)

The last inequality is a consequence of the algebraic steadystate
relation associated with the alveolar compartment (cf. Equa-
tion (A.3), which is a standard mass balance equation for gas
exchange in the lung). Hence, when switching to an increased
fractional perfusion of such body compartments as a result of
exercise, themixedvenous return will become enriched with
blood having isoprene concentrations close to the previousar-
terial level during rest. In other words,C v̄ will fall rather
than rise. Using this simple but general rationale it is clear
why previous models of isoprene pharmacokinetics such as
in (Filser et al., 1996) fail to reproduce the peak-shaped behav-
ior of breath isoprene during exercise, even if differential blood
flow is taken into account.

Regarding further model validation, the experimental out-
come associated with the one-legged ergometer regimes pre-
sented in Section2.2appears to furnish the fact that any quan-
titative formulation neglecting a peripheral release mechanism
of isoprene will be an inappropriate physiological description
of the prevailing isoprene dynamics during exercise. However,
further biochemical and physiological studies will have tobe
conducted in order to pinpoint the exact origin of this effect.
Apart from the line of argumentation presented above, alterna-
tive isoprene sources might comprise

(a) an exercise-induced, time-varying production in contract-
ing muscle (possibly due to rapid switches in cellular
metabolism)

(b) a change of diffusion capacities in peripheral tissue (re-
flected, for instance, by an abrupt increase ofλb:per, cf.
Equation (6)).

However, note that while (a) is not consistent with our current
understanding of the isoprene synthetic pathway and does not
provide a natural explanation for the distinct peak heightsob-
served in repeated workload regimes, (b) appears questionable
due to the fact that such a transition is likely to influence both
isoprene and butane kinetics in a similar way. This contra-
dicts experimental evidence (see the discussion in Section2.2
and (King et al., 2010a)).

Remark 4. It should be mentioned that a more precise specifi-
cation of the peripheral tissue compartment on the basis of esti-
mated volumes and partition coefficients could not be achieved.
For instance, choosingλb:per = 1/82 (which is the proposed
blood:tissue partition coefficient for fat (Filser et al., 1996)) and
settingṼper = 0.23 l as well asCper(0) = 6147 nmol/l in Table2
yields a fit of similar quality as in Fig.4. With these modifica-
tions in mind, contrary to the previous interpretation as muscle
tissue, the peripheral compartment might hence also be viewed
as a small isoprene buffer volume characterized by a high lipid
content (such as for instance the endothelial layer lining the
vascular walls). This lack of joint estimability ofλb:per andṼper

within the present experimental setting is also reflected bya
high degree of collinearity between the associated sensitivities
∂y/∂λb:per and∂y/∂Ṽper, respectively.

5. Conclusion

This paper is devoted to the development of a first mech-
anistic description of isoprene evolution in different tissue
compartments of the human body by simulating the behavior of
breath isoprene output during several short-term exercisepro-
tocols. In Section2.2 various lines of supportive experimental
evidence for an extrahepatic tissue source of isoprene have
been presented. These findings have led us to a simple kinetic
model that is expected to aid further investigations regarding
the exhalation, storage, transport and biotransformationpro-
cesses associated with this important compound.

The emphasis of this work has been laid on deriving a sound
mathematical formulation flexible enough to cover a wide
spectrum of possible isoprene behavior in end-tidal breath,
while simultaneously maintaining consistency with earlier
experimental findings as well as physiological plausibility
of the involved parameters. Depending on the specific field
of application, necessary model refinements might include
the incorporation of a multi-compartment lung for mapping
ventilation–perfusion mismatch or changes in diffusion ca-
pacity, as well as a less coarse partition of the systemic tissue
groups, similar as in (Filser et al., 1996; Melnick and Kohn,
2000). The statistical significance of these generalizations
might then be assessed, e.g., by employing residual-based
comparison techniques for nested models as described
in (Banks and Tran, 2009; Banks and Fitzpatrick, 1990).
However, at the current stage of research and given the limited
data on the dynamic behavior of breath isoprene throughout
a broader spectrum of experimental scenarios, it is preferable
to maintain a compartmentalization and parameterization as
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parsimonious as possible.

On-line determinations of dynamic VOC concentration pro-
files in exhaled breath combined with adequate kinetic model-
ing is a promising field of research, still in its infancy. From a
methodological point of view, this work demonstrates that such
dynamic patterns reflect fundamental physiological changes
and can potentially be used for exploring the fate of volatile
species in the human body. Generally, it should also be empha-
sized that a reliable quantification of relevant substance-specific
characteristics of endogenous trace gases (such as production
and metabolism) from breath data might yield novel diagnos-
tic or therapeutic indicators that are complementary to those
gained by employing more invasive methods. In this sense, we
hope that the present contribution will help to consolidatethe
potential role of breath gas analysis in biomonitoring and will
also stimulate future efforts to establish mathematical modeling
as a core technique in VOC research.
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Appendix A. Classical inert gas elimination theory

Adopting the nomenclature in TableC.1, the basic equation
for modeling pulmonary exchange of blood-borne inert gases
using one single lung compartment is a mass balance equation
of the form (see, e.g., (Batzel et al., 2007))

VA
dCA

dt
= V̇A(CI −CA) + Q̇c(Cv̄ −Ca), (A.1)

whereCX denotes the trace gas concentration in a regionX av-
eraged over a period∆t, i.e.,

CX(t) = 1/∆t

t+∆t/2
∫

t−∆t/2

ĈX(s)ds. (A.2)

From Equation (A.1), by assuming steady state conditions
dCA/dt = 0 as well asCI = 0 (i.e., no trace gas is inspired)
and by substituting Henry’s lawCa = λb:air CA we derive the
familiar equation due toFarhi(1967),

Cmeas= CA =
Cv̄

λb:air +
V̇A

Q̇c

. (A.3)

Here, the quotienṫVA/Q̇c is called ventilation–perfusion ratio,
whereasλb:air denotes the substance-specific and temperature-
dependent blood:gas partition coefficient.

Appendix B. Some fundamental model properties

Here we shall briefly recall some general properties of the
proposed model that necessarily must be satisfied in any valid
description of concentration dynamics. Firstly, note thatEqua-
tions (3)–(5) can be written as a time-varying, linear inhomo-
geneous system

ċ = A(u, p)c + b(u, p) =: g(u, p, c) (B.1)

in the state variablec := (CA ,Crpt,Cper)T , which is dependent
on a constant parameter vectorp as well as on a vectoru :=
(V̇A , Q̇c,CI) lumping together all measurable external inputs.

Non-negativity of the trajectories associated with (B.1) for
non-negative initial conditions easily follows from the fact that
the system is cooperative. Moreover, by considering the dy-
namics of the total amount of isoprenem :=

∑

i Ṽici ≥ 0, viz.,

ṁ= kper
pr + krpt

pr − kper
metλb:perCper− krpt

metλb:rptCrpt+

V̇A(CI −CA), (B.2)

it can readily be verified that the trajectories are bounded from
above if eitherV̇A > 0 or if at least one of the two metabolic
rateskrpt

met or kper
met is strictly positive. Furthermore, it can be

proven that under physiological steady state conditions, i.e., for
constantu, the time-invariant matrixA will be Hurwitz if

det(A) = V̇Aϑ1 + krpt
metϑ2 + kper

metϑ3 + krpt
metk

per
metϑ4 , 0, ϑi < 0,

cf. (King et al., 2010b, Prop. 2). Hence, except for the degener-
ate casėVA = krpt

met = kper
met = 0 (which, as can be seen from (B.2),

necessarily results in divergent trajectories if one of thetwo pro-
duction rates is strictly positive) the compartmental concentra-
tions can be guaranteed to approach a globally asymptotically
stable equilibriumce(u) := −A−1b once the inputsu affecting
the system are fixed.
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Appendix C. Nomenclature

Parameter Symbol Nominal value (units)

Concentrations

alveoli CA 4 (nmol/l)a

end-capillary Cc′

arterial Ca 5.7 (nmol/l)b

mixed-venous C v̄ 9 (nmol/l)b

richly perfused tissue (rpt) Crpt

peripheral tissue Cper

inhaled (ambient) CI 0 (nmol/l)

Compartment volumes

alveoli VA 4.1 (l)c

end-capillary Vc′ 0.15 (l)d

richly perfused (rpt) Vrpt 13.25 (l)e

blood rpt Vrpt,b 1.97 (l)e

peripheral tissue Vper

blood peripheral tissue Vper,b

ambient ṼI

Fractional blood flows

periphery (both legs) qper

maximal qmax
per 0.7f

nominal (rest) qrest
per 0.08g, 0.14h

constant Eq. (2) τ

Partition coefficients

blood:air λb:air 0.75i, j

blood:rpt λb:rpt 0.4j

blood:peripheral tissue λb:per 0.5 (muscle)j ; 0.012 (fat)j

Rate constants

hepatic metabolic rate krpt
met

extrahepatic metabolic rate kper
met

production rpt krpt
pr

production peripheral tissue kper
pr

Table C.1: Basic model parameters and reference values for normal sub-
jects during rest;a(Kushch et al., 2008); bmechanically ventilated patients
in (Miekisch et al., 2001); c(Mörk and Johanson, 2006); d(Hughes and Morell,
2001); ecomprising viscera, brain and connective muscles according to Ta-
ble 8.2 in (Ottesen et al., 2004); f corresponding to 450 kpm/min or ap-
prox. 75 W according to Fig. 6 in (Sullivan et al., 1989); g(Johnson, 2007);
hobtained byqrest

per = 2 (single leg blood flow/cardiac output) according to Ta-
ble 1 in (Sullivan et al., 1989); i (Karl et al., 2001); j (Filser et al., 1996).
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