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Modelling wind turbine tower-rotor interaction through an 

aerodynamic damping matrix 

 

 

Abstract 

 

Current wind turbine modelling packages mainly adopt a complex methodology in 

which aerodynamic forces are coupled with the motion of the wind turbine components 

at every time step. This can result in long simulation run times, detrimental for the large 

number of simulations required for fatigue or reliability analyses. This contribution 

presents an efficient wind turbine modelling methodology based on blade element 

momentum theory and a linearization of the aerodynamic forces. This allows the wind-

rotor interaction to be reduced to static forces applied at the tower top, with additional 

terms proportional to the tower velocities expressed as an aerodynamic damping matrix. 

This aerodynamic model was implemented as part of a finite element model of the 

tower and was successfully verified against the fully-coupled modelling package 

FAST. The damping matrix components explain key features of the coupling between 

fore-aft and side-side vibrations of the wind turbine. This coupling causes energy 

transfers between the two directions, complicating aerodynamic damping 

identification. The aerodynamic damping matrix offers novel insights and an efficient 

method to describe the aerodynamic damping of wind turbines.  

 

Key words: aerodynamic damping, operating wind turbine, aerodynamic coupling, 

blade element momentum theory 

1 Introduction 

Efficient and accurate wind turbine modelling tools are necessary for the analysis and 

design of wind turbines. Current mainstream wind turbine modelling software packages 

such as FAST [1] by NREL and HAWC2 [2] by DTU describe the interaction between 

the tower, rotor, nacelle, and foundation of the wind turbine system by coupling 

aerodynamic capabilities with electromechanical and structural models. In FAST for 
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instance, the motions of rigid bodies (e.g. nacelle, hub) and flexible bodies (e.g. tower, 

blades) are coupled during the time integration, and at each time step the unsteady blade 

element momentum (BEM) theory [3] is used to calculate the aerodynamic loads on the 

rotor. Such fully coupled models are usually computationally intensive. In some cases, 

such as fatigue or reliability analyses, a large number of simulations is required, and a 

simplified approach is desirable. As a result, in some studies (e.g. [4][5][6]) the rotor-

nacelle assembly (RNA) has been lumped at the top of the flexible tower and the 

aerodynamic interaction is modelled by applying the rotor thrust at the tower top as a 

point load and using a dashpot or an equivalent Rayleigh damping to represent the 

aerodynamic damping. Such decoupled models make it easier to include more detailed 

soil-structure interaction features (e.g. [4][6]) than many integrated simulation tools 

such as FAST currently allow. Muskulus [7] and Schafhirt and Muskulus [8] used a 

decoupling strategy based on a simplified rotor load model. A simple expression for the 

thrust, based on actuator disc theory was derived in terms of pitch angle and rotor speed 

by fitting a thrust coefficient to a number of fully coupled simulation results. However, 

the damping force in these models relied on damping coefficients obtained by fitting 

the response to that of an integrated simulation. 

Damping is a key variable to accurately predict the dynamic response of mechanical 

systems. The main sources of vibration damping in a wind turbine include aerodynamic 

damping, structural damping, possibly supplemental damping (from devices), and soil 

and hydrodynamic damping in offshore turbines [9]. Aerodynamic damping is the most 

significant source of damping when the turbine is in operation. For structural designers 

it is convenient to characterise the aerodynamic damping using a linear damping ratio 

associated with the first vibrational mode of the tower, as this allows the dynamic 

response of the system to be calculated rapidly, e.g. for fatigue analyses [10]. Specific 

studies of the aerodynamic damping have generated experimental or analytical modal 

damping ratios that capture this source of dissipation [11].  

Aerodynamic damping originates from the interaction between wind and rotor. The 

moving blades experience a drag force from the wind and this force impedes the 

movement of the rotor. This damping effect is implicitly included in fully coupled wind 

turbine modelling packages. Many studies (e.g. [11][12][13]) used these modelling 

packages to observe the changes in the fore-aft (FA) aerodynamic damping when the 

average inflow wind speeds, pitch angles, and rotation speeds are varied within 

relatively small ranges. Tarp-Johansen et al. [14] used HAWCStab to simulate the side-
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side (SS) aerodynamic damping in a 3.5 MW Offshore Wind Turbine (OWT). They 

reported that whether the tower is assumed to be rigid or flexible in the FA direction 

affects the damping in the SS direction. This effect becomes more pronounced when 

the inflow wind speed is above the rated wind speed. However, due to the complexity 

of the system it can be difficult to isolate and quantify the aerodynamic damping from 

the simulation results obtained using such fully coupled software packages as it is 

implicitly included.  

Aerodynamic damping of the tower vibrations in operating wind turbines has been 

measured experimentally in a number of studies, often measuring the total damping in 

the system. For OWTs, the aerodynamic damping values quoted below were obtained 

by subtracting an assumed underlying damping of 2% from the measured total damping 

[15]. For onshore wind turbines, the total damping is a closer approximation of the 

aerodynamic damping [10] as foundation damping is low. Hansen et al. [16] estimated 

the aerodynamic damping in a 2.75 MW operating OWT using two experimental 

methods. From the decay in the OWT free response, the aerodynamic damping ratios 

obtained were about 6% in the FA direction and 0.4% in the SS direction. Operational 

modal analysis (OMA) based on stochastic subspace identification (SSI) was also used 

to extract the damping ratios while the turbine is subjected to wind excitation, resulting 

in an aerodynamic damping ratio of 11% for the FA direction and 6% in the SS 

direction. Ozbek and Rixen [13] directly estimated the aerodynamic damping in an 

operating 2.5 MW onshore turbine using OMA. Photogrammetry and laser vibrometry 

were used to measure the vibration response, and the damping ratios were obtained by 

the least square complex exponential (LSCE) method. Their measured damping values, 

averaging around 5% in the FA direction and 0.5% in the SS direction, were in good 

agreement with results from HAWCS simulations they carried out. Koukoura et al. [17] 

used Enhanced Frequency Domain Decomposition (EFDD) to estimate the  damping in 

an 3.6MW operating OWT and obtained overall damping ratios of 10% and 5% in the 

FA and SS directions respectively. These values are unusually high, probably due to 

the presence of supplemental damping devices, which are mentioned but whose effect 

has not been specified. Weijtjens et al. [18] and Hu et al. [19] both implemented the 

poly least-squares complex frequency-domain (p-LSCF) method to identify the total 

damping in operating 5 MW and 3 MW wind turbines respectively. For different wind 

speeds from 1.5 m/s to 22.7 m/s, Weijtjens et al. obtained values in the range of 1.8% 

to 6.5-7% for the FA direction and 1.8% to 3% in the SS direction, while Hu et al. 
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obtained averaged total damping ratios in the range of 0.5% to 4% for an onshore 

operating wind turbines with rotor rotation speeds between 4 rpm to 15 rpm (direction 

of vibration not specified). Dong et al. [20] and Dai et al. [21] applied similar modified 

SSI methods to identify the frequency and damping in operating turbines, and the 

modification improves classic SSI when the excitation contains harmonic forces. More 

detailed discussion of damping identification in operating wind turbines can be found 

in [22]. 

Aerodynamic damping has also been calculated directly. Salzmann and Tempel [12] 

summarised several theoretical expressions for aerodynamic damping in the FA 

direction for constant-speed turbines, including the methods by Garrad [23] and Kühn 

[24], additionally proposing an analytical model for variable-speed turbines. They 

obtained closed-form expressions that account for the relationship between wind speed 

and the motion of the turbine, based on BEM theory. Valamanesh and Myers [11] 

proposed a semi-analytical solution also based on BEM theory that predicts the 

aerodynamic damping in both FA and SS directions. They compared their prediction to 

results from FAST simulations for a range of settings that cannot be captured easily 

using the BEM derivation, such as the presence of wind shear and shaft tilt. Generally, 

their results agree well with FAST and they found that the assumption of rigid blades 

has the largest impact on the damping values, but only reduces the damping estimates 

by an average of 1% (in relative change). Chen et al. [25] presented a wavelet-based 

approach that can continuously identify the aerodynamic damping for an operating 

wind turbine. Using a lumped-mass model of the wind turbine and BEM theory, 

simulated time series for turbulent wind were analysed in the time-frequency domain 

and the long-time variation of the aerodynamic damping matrix was estimated. Liu et 

al. [26] developed a model to calculate FA aerodynamic damping in a similar form to 

the model proposed by Kühn [24], but a correction factor was introduced, so that the 

aerodynamic damping in a variable-speed wind turbine can be considered. Chen and 

Duffour [22] derived analytical solutions for uncoupled FA and SS aerodynamic 

damping factors using first order Taylor expansion to linearize the aerodynamic loads. 

The available studies on aerodynamic decoupling and damping mainly concentrate on 

aerodynamic damping in the FA direction and usually do not take into account the 

interaction between FA and SS motions. However, the FA and SS motions are coupled, 

and the wind turbine vibrates in both directions simultaneously. In this paper, we 

investigate the nature of this coupling using a BEM-based analytical derivation of the 
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aerodynamic damping and show that it can be represented through a non-standard 

damping matrix. Petersen et al. [27] also used a similar non-standard damping matrix 

to represent the aerodynamic damping in operating wind turbines, but focussed on blade 

vibrations. The vibration behaviour of the coupled system is complex and significant 

limitations in the conventional description of the aerodynamic damping by one or two 

modal damping ratios (FA and SS) were identified. Energy transfers take place between 

the FA and SS motions and this has to be carefully accounted for the accurate 

characterisation of the tower damping. This paper is structured as follows. Section 2 

describes the vibration problem caused by the coupling between FA and SS motions 

and gives the motivation for this study. Section 3 describes the decoupling methodology 

and the derivation of the damping matrix. Section 4 verifies the results from the 

developed methodology against FAST simulation results and discusses useful limit 

cases. The behaviour of the proposed damping matrix as compared to a conventional 

aerodynamic damping description (decoupled model) is illustrated and discussed for 

the variation of the wind speed. Section 5 concludes the paper. 

2 Problem statement 

The coupling between FA and SS motions is illustrated in this section using simulation 

results from a fully coupled wind turbine model of the NREL reference three-blade 

onshore wind turbine available in FAST [28]. The settings used for these simulations 

are described in Section 4. The main properties of this wind turbine model are listed in 

Table 1. The dynamics of the tower in FAST is modelled as the superposition of the 

first two SS and FA bending modes.  

 

Table 1. Basic Properties of the modified NREL 5MW reference onshore wind 

turbine. 

Rotor Diameter, 𝑅 126m 

Hub Height  87.6m 

Tower Diameter, 𝐷 3.87-6.00m 

Tower Thickness, 𝑡 19-27mm 

Lumped Mass at Top 3.5×105 kg 

Rated Wind Speed 12.1m/s 

Natural Frequency 0.34 Hz 
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Figure 1 shows the simulated tower top FA (a) and SS (b) displacements time histories 

using the FAST software. The responses were obtained for a 1m initial displacement in 

the FA direction of the tower top while the turbine is operational at a steady-state wind 

speed of 20m/s. No initial displacement was given in the SS direction. Two types of 

dynamic response were considered. In one case, the system was free to move both in 

the FA and SS degrees of freedoms (DOFs) (solid lines). For the second case (dashed 

lines), the system was only permitted to move in the FA direction, considering the SS 

DOF as rigid (by switching the corresponding DOF off in FAST). The wind speed, 

rotor rotation speed (12.1rpm) and pitch angles (17.6°) of the blades were kept constant 

at the nominal values during the simulation. 

        

(a) (b) 

Figure 1. Tower top displacements in the FA (a) and SS (b) directions simulated using 

FAST with SS direction free (solid) or kept rigid (dashed). 

 

Figure 1(a) shows that the SS motion influences the FA motion damping, as can be seen 

from the slower FA response decay in the solid curve (SS free) compared to the dashed 

curve (SS rigid). Such an apparent change in damping in the FA direction could have a 

significant effect in fatigue analyses. Figure 1(b) shows that even without any initial 

displacement in the SS direction, a sideway response at the tower top is excited, 

growing initially as energy is transferred from the FA direction, before gradually 

decreasing. This coupling effect is due to the aerodynamic forces on the rotor in the two 

directions. When the tower bends, the rotor plane moves and is no longer perpendicular 

to the incoming wind. This causes unbalanced resultant forces in the SS and vertical 
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directions as well as unbalanced moments, which cause static deflections and 

oscillations. Conversely, the SS motion affects the FA motion and causes the damping 

to undergo an apparent change over time: the FA amplitude does not decay with a 

simple exponential envelope: it reduces at a fast rate initially but then decays at a much 

slower rate after 25s (in the case shown in Figure 1, SS free). This leads to very different 

apparent decay rates and therefore damping values depending on which part of the 

curve is analysed. The details of this coupling depend on the inflow wind speed, pitch 

angle, and rotor speed, and for different combinations of these parameters, the vibration 

response may look slightly different as demonstrated in Section 4. This study was 

motivated by these observations. The intention is to propose an efficient methodology 

allowing the dynamics of the coupled system to be modelled without the requirement 

of unsteady aerodynamic simulations and to better characterize and understand how the 

aerodynamic damping affects the behaviour of wind turbines.  

3 Methodology 

3.1 Description of the model 

Key features of the dynamic response of a wind turbine tower can be captured by 

modelling it as a cantilevered beam with a lumped mass connected to the free end [19]. 

The lumped mass at the top represents the RNA mass and the beam accounts for the 

wind turbine tower as shown in Figure 2. During normal operation, the rotor is 

subjected to the loads from the inflow wind, and the whole wind turbine is excited and 

vibrates. Excluding non-aerodynamic sources of dissipation, the vibration of the tower 

is damped by the wind-structure interaction – mainly the wind-rotor interaction, 

although the wind-tower interaction also has a small contribution. As the tower is 

axisymmetric and the RNA is lumped at the top, motions in the two directions cannot 

be coupled through a stiffness mechanism and our results confirm this. In the model 

presented here, the aerodynamic loads are separated into two parts: the aerodynamic 

load on a rigid tower/rotor and the aerodynamic damping force captured through a 

viscous damping matrix. The details of the tower modelling and the aerodynamic 

damping matrix are given in Sections 3.2 and 3.3. The turbine model is based on the 

modified NREL 5 MW reference onshore wind turbine (Table 1), assuming the tower 
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is clamped at ground level. To simplify the model and limit the number of variables 

necessary to describe the system, the following modelling assumptions were made: 

1. The connections between the tower top (or yaw bearing in FAST), the nacelle, 

and the rotor are considered rigid. This means that the displacement, velocity and 

acceleration of the rotor centre can be described as a combination of the translational 

and rotation of the tower top. Vertical displacements and the rotation about the vertical 

axis were considered negligible compared to lateral motions. 

2. The rotor blades are rigid so blade flapwise and edgewise vibrations are not 

considered. This means that the relative wind speed experienced by each blade element 

is only influenced by the inflow wind speed, the RNA linear/angular velocity and the 

rotation speed of the rotor. The permanent shaft tilt and blade precone angle were set 

to zero. 

3. The RNA velocity is much smaller than the inflow wind speed and the speed of 

the blade elements due to rotor rotation. This allows the aerodynamic forces to be 

linearized using first order Taylor expansion. 

3.2 Finite element modelling of the tower 

 

Figure 2. Schematic of the wind turbine. 

 

The wind turbine was modelled using a bespoke finite element (FE) code written in 

MATLAB. The tower was modelled using 11 Euler-Bernoulli beam elements of equal 

length. Each node can translate and rotate in two perpendicular directions as shown in 
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Figure 2. 𝑥 (FA) and 𝑦 (SS) denote translations while 𝜃𝑥 and 𝜃𝑦 denote rotations about 

the 𝑥 and 𝑦 axes respectively. For a vibrating system, the equations of motion can be 

expressed in matrix form: 

where  𝐌 ,  𝐊  and  𝐂 , are the mass matrix, stiffness matrix, and damping matrix 

respectively, 𝐮(𝑡) is the displacement vector, and 𝐅(𝑡) is the external force vector. The 

lumped mass representing the RNA was added to the relevant terms in the mass matrix 

for the top node of the tower. The moments of inertia of the RNA were set to zero to 

allow for a like-for-like comparison with FAST model output. This will be further 

discussed in Section 4.1. The mass and stiffness matrices can be easily formed for each 

element, using the material and geometric properties of the tower. Structural damping 

could be added as Rayleigh damping to this model, but zero structural damping was 

assumed throughout so that the aerodynamic damping is the only damping source. The 

time integration algorithm used to solve the equation of motions in Equation (1) in the 

time domain is HHT-𝛼 [20] – a generalised version of the widely-used Newmark-β 

method. 

3.3 Theoretical derivation of the aerodynamic damping matrix 

3.3.1 Formation of basic equations for aerodynamic loads 

As mentioned in Section 3.1, the rotor is assumed to be rigidly connected to the tower 

top. In BEM theory, the calculated aerodynamic loads are related to the relative wind 

speeds experienced by each blade element. Therefore, it is necessary to determine the 

velocity of each blade element caused by the combined translation and rotation of the 

rotor. 

It is assumed that the rotor is facing an inflow wind of steady velocity 𝑉0 pointing in 

the positive direction of the 𝑥 axis, as indicated in Figure 3. The rotor rotates positively 

clockwise around the 𝑥 axis at a speed 𝜔 so that a blade element at distance 𝑟 along the 

blade length moves at a speed 𝑉𝑟 = 𝜔𝑟 perpendicular to the blade and tangential to the 

circular path described by the blade element at r as it rotates. The azimuthal angle 𝛾(𝑡) 

indicates the azimuthal position of the blade. The FA motion of the tower produces a 

tower top linear velocity 𝑥̇ and an angular velocity 𝜃̇𝑦. The SS motion of the tower leads 

to a linear velocity 𝑦̇ and an angular velocity 𝜃̇𝑥. These velocities cause small variations 

 𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅(𝑡), (1) 
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in the relative wind speeds experienced by blade elements. For an arbitrary blade 

element at distance 𝑟 from the hub centre with azimuthal position 𝛾(𝑡), the relative 

wind speed experienced in the normal direction, 𝑉𝑥𝑅𝑒𝑙, can be written as 

and the relative wind speed in tangential direction, 𝑉𝑟𝑅𝑒𝑙, is 

𝑉𝑟𝑅𝑒𝑙 is tangential to the trajectory of the blade element as it rotates around the hub axis, 

perpendicular to the radial direction of a blade in the rotor plane. A positive 𝑉𝑥𝑅𝑒𝑙 is a 

velocity toward the positive direction of the 𝑥 axis, while a positive 𝑉𝑟𝑅𝑒𝑙 is a velocity 

having the opposite sign to the rotor rotation speed. In Equations (2) and (3), 𝑥̇ , 

𝑦̇𝑐𝑜𝑠𝛾(𝑡), 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾(𝑡) and 𝜃̇𝑥𝑟 are caused by the motion of the tower top.  

  

(a) (b) 

Figure 3. Fore-aft (a) and side-side (b) motions. 

 

The angular velocity 𝜃̇𝑦 is assumed to cause the whole rotor to simply rotate around the 

hub, therefore the resultant linear velocities of the blade elements above the hub have 

inverse signs compared to those below the hub. As a result, the relative velocity caused 

by 𝜃̇𝑦 can be calculated as 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾(𝑡).  

The next step is to find the force and moment expressions of a single blade element for 

the relative wind velocities in Equations (2) and (3). The coordinate system used for 

the resultant forces and moments is consistent with the motion coordinates shown in 

 𝑉𝑥𝑅𝑒𝑙 = 𝑉0 − 𝑥̇ − 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾(𝑡), (2) 

 𝑉𝑟𝑅𝑒𝑙 = 𝑉𝑟 − 𝑦̇𝑐𝑜𝑠𝛾(𝑡) + 𝜃̇𝑥𝑟. (3) 
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Figure 2. Assuming that the tower is rigid, the steady-state forces in normal and 

tangential directions applied to one blade element are denoted 𝑑𝑇(𝑉0, 𝑉𝑟)  and 

𝑑𝑆(𝑉0, 𝑉𝑟) respectively. When the tower is flexible, assuming the changes in relative 

wind speed experienced by every blade element are sufficiently small, the aerodynamic 

loads considering the tower top motion can be obtained using a first order Taylor 

expansion of the forces around the steady-state normal and tangential wind velocities. 

Effectively, this linearizes the aerodynamic forces in terms of velocity.  

The force in the normal direction is given by: 

and the force in the tangential direction is given by:  

The moment about the 𝑦 direction is given by:  

and the moment about the 𝑥 direction is given by:  

The total forces and moments applied to the rotor are obtained by summing the 

elemental forces and moments along the three blades. As ∑ 𝑐𝑜𝑠𝛾(𝑡)
𝑁𝑏
1 = 0 for any 𝑡, 

the total force in the 𝑥 (FA) direction is: 

𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

= 𝑑𝑇(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑇)

𝜕𝑉0

(−𝑥̇) +
𝜕(𝑑𝑇)

𝜕𝑉0
(−𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾(𝑡))

+
𝜕(𝑑𝑇)

𝜕𝑉𝑟

(−𝑦̇𝑐𝑜𝑠𝛾(𝑡)) +
𝜕(𝑑𝑇)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟); 

(4) 

𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) 

= 𝑑𝑆(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑆)

𝜕𝑉0

(−𝑥̇) +
𝜕(𝑑𝑆)

𝜕𝑉0
(−𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾(𝑡))

+
𝜕(𝑑𝑆)

𝜕𝑉𝑟

(−𝑦̇𝑐𝑜𝑠𝛾(𝑡)) +
𝜕(𝑑𝑆)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟). 

(5) 

𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)𝑟𝑐𝑜𝑠𝛾(𝑡) 

= 𝑑𝑇(𝑉0, 𝑉𝑟)𝑟𝑐𝑜𝑠𝛾(𝑡) +
𝜕(𝑑𝑇)

𝜕𝑉0

(−𝑥̇)𝑟𝑐𝑜𝑠𝛾(𝑡) +
𝜕(𝑑𝑇)

𝜕𝑉0
(−𝜃̇𝑦𝑟2 𝑐𝑜𝑠2 𝛾(𝑡))

+
𝜕(𝑑𝑇)

𝜕𝑉𝑟

(−𝑦̇𝑟 𝑐𝑜𝑠2 𝛾(𝑡)) +
𝜕(𝑑𝑇)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟

2𝑐𝑜𝑠𝛾(𝑡)); 

(6) 

𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)𝑟 

= 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟 +
𝜕(𝑑𝑆)

𝜕𝑉0

(−𝑥̇)𝑟 +
𝜕(𝑑𝑆)

𝜕𝑉0
(−𝜃̇𝑦𝑟2𝑐𝑜𝑠𝛾(𝑡))

+
𝜕(𝑑𝑆)

𝜕𝑉𝑟

(−𝑦̇𝑟𝑐𝑜𝑠𝛾(𝑡)) +
𝜕(𝑑𝑆)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟

2). 

(7) 
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where 𝑁𝑏 is the number of blades, and 𝑅 is the radius of the blade.  

The total force in the 𝑦 (SS) direction is: 

The negative sign on the left-hand side of the summation operator is due to the fact that 

for a rotor rotating positively, the blade at a position above the hub is subjected to a 

tangential force towards the negative y-direction. This is a consequence of the chosen 

coordinate system. In addition, it can be easily checked that for a three-blade wind 

turbine, ∑ 𝑐𝑜𝑠2 𝛾(𝑡)
𝑁𝑏
1 = 𝑁𝑏/2.  

Eventually, the total moment about the 𝑦 axis is: 

whereas the total moment about the 𝑥 axis is: 

Appendix A provides analytical expressions allowing the partial derivatives in 

Equations (8) to (11) to be calculated in terms of blade characteristics and operating 

conditions. 

3.3.2 Aerodynamic load resultants at the tower top 

Within the set of assumptions made, the rotor aerodynamic load resultants at the hub 

are completely described by Equations (8) to (11), and these loads can be separated into 

two parts: static (constant) components and “damping” components proportional to the 

𝐹𝑥 = ∑∫ 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

1

 

= 𝑁𝑏 ∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

− 𝑥̇𝑁𝑏 ∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

+ 𝜃̇𝑥𝑁𝑏 ∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

, 

(8) 

𝐹𝑦 = −𝑐𝑜𝑠𝛾(𝑡) ∑∫ 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

1

 

= 𝜃̇𝑦

𝑁𝑏

2
∫ 𝑟

𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

+ 𝑦̇
𝑁𝑏

2
∫

𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

. 

(9) 

𝑀𝑦 = ∑∫ 𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙 , 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

1

 

= −𝜃̇𝑦

𝑁𝑏

2
∫ 𝑟2

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

− 𝑦̇
𝑁𝑏

2
∫ 𝑟

𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

, 

(10) 

𝑀𝑥 = ∑∫ 𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙 , 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

1

 

= 𝑁𝑏 ∫ 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟
𝑅

0

− 𝑥̇𝑁𝑏 ∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

+ 𝜃̇𝑥𝑁𝑏 ∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

. 

(11) 
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velocities. Only 𝐹𝑥  and 𝑀𝑥  have a static part equal to 𝑁𝑏 ∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0
 and 

𝑁𝑏 ∫ 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟
𝑅

0
 respectively. These can easily be calculated using the steady BEM 

model in MATLAB or FAST by keeping the tower rigid. They can then be applied as 

external loads at the tower top in a decoupled model. The other terms in 𝐹𝑥, 𝐹𝑦, 𝑀𝑥 and 

𝑀𝑦  appear as damping components since they depend linearly on the tower top 

translational or angular velocities. These damping components can be added to the 

relevant terms for the top node in the damping matrix of the overall system. A separate 

aerodynamic damping matrix 𝐂𝐴𝑒𝑟𝑜 that collects the terms multiplied by the velocity 

vector 𝐮̇ = [𝑥̇ 𝑦̇ 𝜃̇𝑥 𝜃̇𝑦]
𝑇
  for the top node can be defined as: 

𝐂𝐴𝑒𝑟𝑜 can be written more concisely:  

𝐂𝐴𝑒𝑟𝑜 has a number of relevant structural features: 

1) For given inflow wind speed, rotation speed, and pitch angle, the coefficients in 

the damping matrix are constant and can therefore be calculated using a steady 

BEM model before time integration. Therefore, the proposed strategy allows 

the vibration and aerodynamics to be decoupled in the sense that the 

aerodynamic calculation can be done once, for a given range of steady-state 

operating conditions regimes. Changes of the damping matrix due to unsteady 

wind inflow are not considered in the main body of the paper, but the effects of 

this unsteadiness and blade flexibility on observed damping were assessed in 

Appendix B from FAST simulations. Further investigation on how to 

incorporate these for accurate damping and vibration behaviour prediction 

should be conducted. 

 

𝐂𝐴𝑒𝑟𝑜𝐮̇ =

[
 
 
 
 
 
 
 
 
 𝑁𝑏 ∫

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

0 −𝑁𝑏 ∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

0

0 −
𝑁𝑏

2
∫

𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

0 −
𝑁𝑏

2
∫ 𝑟

𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏 ∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

0 −𝑁𝑏 ∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

0

0
𝑁𝑏

2
∫ 𝑟

𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

0
𝑁𝑏

2
∫ 𝑟2

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑥̇
𝑦̇

𝜃̇𝑥

𝜃̇𝑦]
 
 
 
 

. 

 

(12) 

 

𝐂𝐴𝑒𝑟𝑜 =

[
 
 
 
 
𝑐𝑥𝑥 0 𝑐𝑥𝜃𝑥

0

0 𝑐𝑦𝑦 0 𝑐𝑦𝜃𝑦

𝑐𝜃𝑥𝑥 0 𝑐𝜃𝑥𝜃𝑥
0

0 𝑐𝜃𝑦𝑦 0 𝑐𝜃𝑦𝜃𝑦]
 
 
 
 

. 

 

 

 

(13) 

                  



 

15 

 
 

2) From the structure of this damping matrix, it can be seen that the translational 

DOFs in the FA and SS are not coupled. Coupling between FA and SS directions 

only occurs through the off-diagonal terms linking rotational to translational 

DOFs. For example, 𝑐𝑥𝜃𝑥
links the FA translational velocity 𝑥̇ to the rotation 

around the 𝑥-axis 𝜃̇𝑥. 

3) When the tower is assumed as rigid in the SS direction, two diagonal terms 𝑐𝑥𝑥 

and 𝑐𝜃𝑦𝜃𝑦
, contribute to the damping in the FA direction, which means that both 

linear and angular motions contribute to the aerodynamic damping in that 

direction. A similar observation can be made in the SS direction. Coupling 

would not occur if the tower top rotation was not considered. 

4) An important feature of this aerodynamic damping matrix is that although it has 

clear structural patterns, it is not symmetric. This is not uncommon when 

considering damping in rotating machineries [21]. It should be remembered that 

this matrix was derived from the linearization of the aerodynamic forces rather 

than from conventional dashpots located within a standard multiple DOF 

system. 

5) Only the symmetric part of this matrix represents genuine energy dissipation. 

The anti-symmetric part couples the DOFs without contributing to the overall 

damping of the system. Any damping matrix 𝐌 can be decomposed into a 

symmetric part 𝐒 and an antisymmetric part 𝐀 such that 𝐌 = 𝐒 + 𝐀. 

The expressions defining this aerodynamic damping matrix allow a better 

understanding of the nature of the coupling between FA and SS motions and the 

aerodynamic forces. The complete derivation described in this section and Appendix A 

provides a model from which the dynamic response for an operational wind turbine can 

be rapidly calculated. This is particularly useful when calculating the responses of a 

wind turbine using a more detailed foundation model, which cannot be easily coupled 

with an aerodynamic rotor model. In this case, the aerodynamic damping is typically 

defined separately as damping ratios in the FA and SS directions. The aerodynamic 

damping matrix defined here provides another option which more accurately captures 

the interaction between the FA and SS motions. In addition, the damping matrix could 

be used to underpin an experimental methodology to identify the dynamic properties of 

the system from experimental data. In contrast to conventional operational modal 

analysis which gives modal damping factors for a structural system (e.g. [32][17][33]), 
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damping identification in operational wind turbines could aim to quantify the terms of 

the aerodynamic damping matrix (e.g. using a time-frequency analysis such as that 

proposed by Chen et al. [15]). 

4 Results and discussion 

4.1 Model verification and overall behaviour 

4.1.1 FAST model settings for verification 

FAST was used to verify the results from the proposed model. In contrast to the default 

settings in FAST, the centre of mass of the RNA was moved to the tower top and the 

moments of inertia of the RNA relative to the tower top were set to zero. This 

modification was necessary to make the FAST model consistent with the one used here. 

In principle this should not be necessary, but it is not clear how to define different RNA 

moments of inertia in the 𝑥 and 𝑦 directions in FAST, so they were set to zero. FAST 

also requires the tower mode shapes as an input and these were obtained from an 

eigenfrequency analysis of the FE model. For consistency with the derivations 

presented in Section 3, the settings “classic BEM theory with the Prandtl and Glauert’s 

corrections” were chosen in FAST’s AeroDyn module [25]. 

 

Figure 4. Standard relationship between the rotor speed (dashed), pitch angle 

(solid) and inflow wind speed, based on [28]. 

 

To consider the influence of the control system and obtain plausible wind turbine 

responses for varying normal operating conditions, the standard relationships between 

                  



 

17 

 
 

wind speed, rotor speed, and pitch angle were used as shown in Figure 4 [28]. In the 

following FAST simulations, the wind turbine was excited dynamically by giving the 

tower top an initial unit (1 m) displacement in the FA direction on top of its steady-state 

response due to constant and uniform incoming wind field. The rotor speed, pitch angle, 

and inflow wind speed were kept constant during each simulation. 

4.1.2 Verification and general description of the response 

In the proposed model, the static components of the loads were calculated using 

Equations 8-12 and applied as external forces and moments. An initial displacement of 

1m in the FA direction was then given to the tower top node to excite dynamic responses 

comparable to the FAST results. Figure 5 shows the time domain responses generated 

by the proposed model and the corresponding FAST simulation results for two wind 

velocities – one below the rated speed: 10m/s (Figure 5 (a) and (b)) and one above the 

rated speed: 20m/s (Figure 5 (c) and (d)). The agreement between the two models is 

very good and similar agreement was obtained at all other wind speeds. Comparing the 

damped responses from the proposed model to that from FAST, small percentage 

differences in frequency and dynamic amplitude, of up to 1% and 5% respectively, can 

be observed. These small differences can be explained by the simplifying assumptions 

underpinning the proposed model (linearization of forces; no vertical displacement or 

rotation; resultant forces calculated on undeformed geometry, decoupled time 

integration).  

The consistently good agreement obtained confirms that the model adequately captures 

the underlying physics to the same level of accuracy as FAST. This also confirms that 

the coupling between the two directions is indeed caused by the off-diagonal terms of 

the damping matrix and not by stiffness coupling (as there is none in the model).  

Figure 5 shows that the overall response of the coupled system following an initial FA 

displacement is a decaying oscillation in the FA direction whereas in the SS direction 

an oscillation initially grows from zero and then slowly decays. Both oscillations slowly 

converge to their respective non-zero steady-state static displacement values, which 

depend on the operating conditions. The decays are not simply exponential, making the 

use of standard damping estimation techniques problematic. The overall SS behaviour 

looks similar regardless of the wind speed (although the amplitude does depend on it); 

however, the FA response changes with the wind speed: below the rated speed (11 m/s), 
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the decay envelope of the response decreases to almost zero (at around 25s in Figure 

5(a)) before increasing slightly again, whereas above the rated wind speed the envelope 

decreases monotonically. This type of behaviour was observed experimentally by 

Devriendt et al. [35]. As observed in Section 2 (Figure 1(a)), regardless of the wind 

speed, this envelope is never a simple exponential decay. 

  

(a) (b) 

 

  

(c) (d) 

Figure 5. FA (a, c) and SS (b, d) displacement response caused by a 1m initial 

displacement in the FA direction; Comparison between proposed model and FAST for 

steady wind speeds of (a-b) 10m/s, (c-d) 20m/s. 

 

The validity of a number of assumptions was tested, especially the assumption of rigid 

blades for the derivation of the damping matrix. The influence of the flexibility of the 
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blades was studied using FAST simulations with distributed rotor inertia and flapwise 

and edgewise blade bending modes enabled. This is shown in Figure 6 for a mean wind 

speed of 20m/s and a 1m initial displacement in the FA direction at tower top. 

   

(a) (b) 

Figure 6. FA (a) and SS (b) displacement response caused by a 1m initial 

displacement in the FA direction; Comparison between FAST models with a lumped 

mass, flexible blades for steady wind speeds of 20m/s 

 

From this comparison, the natural frequency of the first tower bending modes has 

shifted by 3% between the two models (0.34 Hz for the lumped RNA, 0.33 Hz for the 

flexible blades). This is due to the distribution of the blade masses and the inclusion of 

blade motions. Similar responses in the FA and SS directions can be seen, with slightly 

higher decay rates for the flexible blade model, in line with the conclusions by 

Valamanesh and Myer [11]. The model developed in Section 3 does not consider 

unsteady or non-uniform inflow wind fields, the effect of this in combination with 

flexible blades on the damping estimation is discussed in Appendix B. 

In addition to the flexibility of the blades, the effect of a non-zero static shaft tilt and 

blade precone were also tested using additional FAST simulations, where the shaft tilt 

and the precone were set to -5° and 2.5° respectively. This confirmed that these two 

parameters have negligible influence on the aerodynamic damping. Other simulations 

including wind shear of the incoming wind field and tower shading were also conducted 

to test the influence of 1P and 3P excitation. Results (not shown) confirmed that these 

effects have no significant effect on the aerodynamic damping.  
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4.2 Useful limit cases 

The decoupled FE model described in Section 3 has identical mass and stiffness 

distributions in the FA and SS directions; therefore, the bending modes in both 

directions have identical natural frequencies and mode shapes (at 90o of each other). 

The first three natural frequencies of the tower and RNA mass system are 0.34 Hz, 3.08 

Hz and 9.16 Hz. For a standard wind load, spectral density peaks at around 0.1 Hz so 

that only the first bending modes will be significantly excited. The core behaviour of 

the system is therefore governed by two bending modes with identical natural 

frequencies (ignoring the asymmetry introduced by the RNA), perpendicular mode 

shapes, no stiffness coupling (due to symmetry), and higher damping in the FA 

direction than in the SS direction. A number of limit cases are considered to understand 

the complex behaviour of the system, considering only different parts of the full 

damping matrix derived in Section 3 for the time integration of the present model. To 

this end, it is useful to decompose the aerodynamic damping matrix, 𝐂𝐴𝑒𝑟𝑜 as the sum 

of its symmetric part denoted by 𝐂𝐴𝑒𝑟𝑜
𝑆  and its anti-symmetric part denoted by 𝐂𝐴𝑒𝑟𝑜

𝐴 . 

They are defined as: 

where 𝑐𝑥𝜃𝑥

𝑆 = 𝑐𝜃𝑥𝑥
𝑆 = (𝑐𝑥𝜃𝑥

+ 𝑐𝜃𝑥𝑥)/2 , 𝑐𝑥𝜃𝑥

𝐴 = −𝑐𝜃𝑥𝑥
𝐴 = (𝑐𝑥𝜃𝑥

− 𝑐𝜃𝑥𝑥)/2 , 𝑐𝑦𝜃𝑦

𝑆 =

𝑐𝜃𝑦𝑦
𝑆 = (𝑐𝑦𝜃𝑦

+ 𝑐𝜃𝑦𝑦)/2, 𝑐𝑦𝜃𝑦

𝐴 = −𝑐𝜃𝑦𝑦
𝐴 = (𝑐𝑦𝜃𝑦

− 𝑐𝜃𝑦𝑦)/2. 

• Case 1: If the damping matrix 𝑪𝐴𝑒𝑟𝑜  (Equations (12) and (13)) had zero off-

diagonal terms, the two modes would be completely decoupled, and the system 

would behave like two independent single DOFs with identical natural 

frequencies and different damping levels. An initial FA displacement would 

lead to a relatively sharp decaying FA exponential response but no SS motion. 

A unit SS initial displacement would only produce a similar but more slowly 

decaying SS response, as the SS damping is much smaller than the FA damping 

(shown later in Figure 7). 

• Case 2: The anti-symmetric components of the full damping matrix are 

neglected (set to zero). Then the two directions are coupled through 

conventional off-diagonal damping terms so that an initial FA displacement 

 

𝐂𝐴𝑒𝑟𝑜 = 𝐂𝐴𝑒𝑟𝑜
𝑆 + 𝐂𝐴𝑒𝑟𝑜

𝐴 =

[
 
 
 
 
 
𝑐𝑥𝑥 0 𝑐𝑥𝜃𝑥

𝑆 0

0 𝑐𝑦𝑦 0 𝑐𝑦𝜃𝑦

𝑆

𝑐𝜃𝑥𝑥
𝑆 0 𝑐𝜃𝑥𝜃𝑥

0

0 𝑐𝜃𝑦𝑦
𝑆 0 𝑐𝜃𝑦𝜃𝑦]

 
 
 
 
 

+

[
 
 
 
 
 

0 0 𝑐𝑥𝜃𝑥

𝐴 0

0 0 0 𝑐𝑦𝜃𝑦

𝐴

𝑐𝜃𝑥𝑥
𝐴 0 0 0

0 𝑐𝜃𝑦𝑦
𝐴 0 0 ]

 
 
 
 
 

 (14) 
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leads to a fast decay in the FA direction, but some energy is also transferred to 

the SS direction which initially grows before slowly decaying. This is the 

overall behaviour observed in Section 4.1.2.  

• Case 3: Only the off-diagonal, antisymmetric part of the full damping matrix is 

considered. The two modes are again coupled by the off-diagonal terms and 

exhibit a beating behaviour. The light antisymmetric damping causes the two 

otherwise identical natural frequencies to split slightly. This is apparent as a 

beating phenomenon whereby the oscillation in each direction is modulated in 

amplitude. The modulation is out-of-phase between the two directions, so that 

the energy is constantly transferred back and forth between the FA and the SS 

directions, but there is no overall dissipation.  

As previously observed, the FA oscillation in Figure 5(c) decays monotonically 

whereas in Figure 5(a) the decay envelope of this oscillation decreases to almost zero 

at around 25s before increasing again. This behaviour can be interpreted as the first 

node of an underlying beating behaviour caused by the weak coupling introduced by 

anti-symmetric components of the damping matrix. For higher wind speeds, this 

behaviour disappears. To understand why, it is useful to look at how the coefficients of 

the damping matrix vary with the wind speed. 

4.3 Variation of the aerodynamic damping matrix with wind speed 

The expressions defining the aerodynamic damping matrix allow a detailed 

investigation of how the matrix coefficients change with the wind speed. Several effects 

occur simultaneously and can be observed more clearly by considering the symmetric 

and anti-symmetric parts of the damping matrix separately. The upper and diagonal 

plots in Figure 7 show the symmetric part of the full damping matrix with each subplot 

representing the variation of the corresponding coefficient in the matrix with wind 

speed. The lower left half represents the two anti-symmetric components. Missing 

subplots are zero coefficients. 

𝑐𝑥𝑥 and 𝑐𝜃𝑦𝜃𝑦
  are the diagonal terms directly contributing to the FA damping. They 

both follow a similar trend as can be expected from their mathematical expression 

(Equation (12)), increasing up to 11m/s wind speed and then plateauing at higher 

speeds. 𝑐𝑦𝑦 and 𝑐𝜃𝑥𝜃𝑥
, the diagonal terms contributing to SS damping, also follow an 

increasing trend (but different from the FA damping coefficients): both are almost 
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constant up to 11m/s wind speed, then increase steadily. The sharp change in behaviour 

at 11m/s is caused by the feathering of the blades which starts at that wind speed. This 

has been confirmed by additional simulation results without feathering (not shown). 

From these graphs it can be observed that blade feathering limits the FA aerodynamic 

damping but causes the SS damping to increase as the wind speed increases. This makes 

sense intuitively, as feathering turns the blades away from the inflow wind but increases 

their exposure in the tangential direction. 

  

Figure 7. Coefficients of symmetric (upper) and antisymmetric (lower) parts of the 

damping matrix in terms of wind speed. 

 

The symmetric off-diagonal term 𝑐𝑦𝜃𝑦

𝑆  is always negative, reasonably constant around 

-120kNs up to 11m/s then decreases with wind speed (increases in magnitude) down to 

-500kNs at 20m/s. This means that the coupling between rotation 𝜃̇𝑦  and the SS 

translation 𝑦  is dissipative and increases in intensity with the wind speed and 

feathering. By contrast the symmetric coefficient 𝑐𝑥𝜃𝑥

𝑆 is always positive, relatively 

constant around 250kNs up to 11m/s, then increases almost linearly to reach around 

1000kNs at 20m/s. Positive values in off-diagonal terms indicate a negative damping 

Symmetric          
part 

Antisymmetric 
part 
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or positive feedback from the rotation speed 𝜃̇𝑥  to the fore-aft translation 𝑥. This is 

unusual in conventional vibratory systems, but a wind turbine is not a closed system as 

the wind inflow constantly feeds energy in. A negative damping term indicates that the 

vibration coupling between the two relevant degrees of freedom transfers energy from 

the inflow wind into vibrational energy. From the values in Figure 7, this positive 

feedback is stronger than the dissipative 𝑐𝑦𝜃𝑦

𝑆  term. This explains why the system 

appears less damped at 20 m/s than at 10 m/s: in Figure 5(c) the FA amplitude is larger 

in than in Figure 5(a). As the FA amplitude is larger, the energy transferred to the SS 

direction is also larger. This positive feedback is presumably also the reason why in 

Figure 1(a), the FA amplitude is larger when both FA and SS directions are free (solid 

line) than when SS is rigid. In the latter case 𝜃𝑥 = 0 so this positive feedback is not 

available. 

Finally, both antisymmetric components decrease by about 50% from a maximum at 

11m/s to 20m/s, therefore reducing the influence of the beating effect. This is indeed 

what is observed, as the point at which the decay envelope of the FA response decreases 

to almost zero before increasing again disappears at wind speeds above 11m/s. 

4.4 Comparison with conventional aerodynamic damping description for wind 

turbines 

The previous observations highlighted that not taking the coupling between the two 

directions into account could lead to erroneous damping identification. This is explored 

further in this section by comparing the damping in simulations considering FA and SS 

coupling (labelled ‘coupled’ below) or with either direction disabled (‘decoupled’).  

4.4.1 Damping ratio estimation from FRFs 

Initially, a harmonic excitation (amplitude 10kN) was applied at the tower top in either 

the FA or SS direction. This force is superimposed onto the wind load so a dynamic 

stiffness matrix cannot be straightforwardly inverted to obtain the frequency response. 

Time series 2000s long were generated at each forcing frequency ranging from 0.2 to 

0.5Hz in 0.01Hz increments, with a smaller increment of 0.001Hz between 0.3 and 

0.38Hz to increase the frequency response function (FRF) resolution near the resonance 

(0.34Hz). The FRFs were estimated by dividing the steady-state amplitude of the 
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response by that of the force. Damping ratios were estimated using the half-power 

bandwidth method [36].  

     

(a) (b) 

    

(c) (d) 

Figure 8. Modulus of the FRFs in the FA (a, c) and SS (b, d) directions for mean wind 

speeds of 10m/s (a, b) and 20 m/s (c, d). 

 

Figure  compares the FRFs obtained from the coupled and decoupled models for mean 

wind speeds at 10 m/s (Figure 8(a) and (b)) and 20m/s (Figure 8(c) and (d)). Figure 8(a) 

and (c) shows the FA response due to a harmonic force in the FA direction, while Figure 

8(b) and (d) shows the SS response to a harmonic force in the SS direction. The 

decoupled responses are essentially those of a single degree of freedom system. For 

both wind speeds, the FA peaks are much wider that the SS peaks, indicating that the 

FA damping is larger (damping ratios of 6.89% for 10 m/s and 6.32% for 20 m/s) than 
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the SS damping ratios (0.19% for 10 m/s and 0.73% for 20 m/s), in line with literature 

[10].  

Comparing the coupled and decoupled responses, it can be seen that the FRFs are very 

close at most frequencies except near resonance. Near the resonance frequency, the FA 

FRF curve for the coupled model at 10 m/s wind speed (Figure 8(a)) has a sharp drop, 

whereas for 20 m/s in Figure 8(c) the otherwise smooth coupled FRF appears to be 

pierced by a much sharper resonance. In the SS direction, the coupled model leads to a 

significantly lower (10 m/s, Figure 8(b)) or higher narrowband peak (20 m/s, Figure 

8(d)), suggesting higher and lower apparent damping due to the interaction between the 

two directions. As the FRFs in the FA direction for the coupled model are markedly 

different from the FRF of a single DOF system, the use of the half-power bandwidth 

method to extract the damping ratios is problematic and leads to spurious results. 

Depending on the direction and magnitude of the sharp spike, either the estimated FA 

damping ratio would be almost identical to that of the decoupled model (e.g. for 10 m/s, 

Figure 8(a)) or dominated by the sharp spike only (e.g. for 20 m/s, Figure 8(c)), leading 

to an over- or underestimation of the differences between decoupled and coupled 

models. Therefore, it is not clear whether single damping ratios are adequate to describe 

the damping for the coupled model, which represents an operating wind turbine.  

4.4.2 Damping ratio estimation from decays 

As an alternative to the frequency domain method, damping ratios were estimated in 

the time domain using a time-frequency technique [26] on the times series obtained 

from a 1m initial displacement applied to the tower top in either FA or SS direction. 

The evaluation procedure is similar to a rotor stop test leading to an initial impulse and 

fitting of the decaying vibration response [35], but the turbine remains in operation 

throughout with a constant pitch angle. As the apparent damping value is dependent on 

the selection of the time window, different damping values can be obtained depending 

on the time window chosen for the extraction. Similar to the frequency domain method, 

the actual damping behaviour is being fitted to the wrong mathematical model, so there 

is no ideal solution to this issue. Nevertheless, the time series were more suitable to 

obtain damping approximations representing reasonably well the observed behaviour. 

For the purpose of consistency, the following procedure was followed to extract 

damping values: the beginning of the time window was kept at 5s, while the end of the 

window was gradually increased from 25s to 55s in 5s increments. Damping values 
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obtained for each time window were averaged to obtain the representative damping 

values plotted here. This procedure effectively puts more weight on the earlier part of 

the time series where the decay is more pronounced. Figure  shows how the FA and SS 

damping ratios vary with wind speed depending on whether the coupling with the other 

direction is considered (solid) or not (dashed).  

     

                                  (a)                          (b) 

Figure 9. FA (a) and SS (b) damping ratios for the first bending modes, estimated 

from decay in time domain. Comparisons between the model considering only one 

DOF (solid) and the coupled two DOFs model (dashed). 

 

The behaviour of the decoupled system in the FA direction (Figure (a)) appears 

remarkably similar to the coefficients 𝑐𝑥𝑥 𝑎𝑛𝑑 𝑐𝜃𝑦𝜃𝑦
 in Figure 7 and similarly the SS 

damping ratio of the decoupled system (Figure (b)) follows closely the evolution of 

coefficients 𝑐𝑥𝑥 𝑎𝑛𝑑 𝑐𝜃𝑦𝜃𝑦
 with the wind speed in Figure 7. This is understandable, as 

the diagonal terms of the matrix represent the damping without any coupling, so they 

are closely linked to a system where coupling is disabled. It can be seen from Figure  

that the coupling between FA and SS directions has a significant influence on the 

damping in both FA and SS directions. Not considering the energy exchange between 

the two directions can lead to a large difference in the apparent damping. Considering 

again the wind speed of 10 m/s (below the rated wind speed), it can be seen that the 

sharp dip observed at the resonance frequency in the FA direction (FRF, Figure 8(a)) 

correlates with a reduced damping ratio as measured from the time series decay, while 

the decrease of the sharp peak in the FRF of the SS direction (Figure 8(b)) corresponds 

to increased apparent damping in the time domain. For a wind speed of 20 m/s, an 
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increased, sharp peak was visible in the FRFs for both directions, corresponding to a 

significant reduction of more than 50% for the damping ratios calculated in the time 

domain when the coupling between FA and SS directions is considered. It must 

however be noted that the damping ratios calculated from the time decay in Figure 9 

must be treated with caution, as the mathematically assumed exponential decay for 

certain wind speeds does not match the observed time behaviour of the system. An 

example of this is the apparent peak in the FA damping ratio for the coupled system 

around 13 m/s, which is due to the vibration amplitude initially decreasing very rapidly 

with time and then increasing again (similar to Figure 5(a)).   

Experimental measurements of tower damping ratios during operation for variation of 

the wind speed (similar to Figure 9) were presented in ([16][17][18][38]). The data is 

usually characterised by a large amount of scatter and without modelling the actual 

system it is difficult to make detailed comparisons, but broadly speaking the damping 

values published are in line with those in Figure 9. Fontecha et al. [39] compared 

simulation results from OpenFAST with the models proposed in [11] and [24] for their 

scaled experimental prototype turbine. Overall, the trend of FA damping ratios with 

wind speed follows a consistent pattern: an increase up to the rated wind speed followed 

by a plateau around 8%, similar to the decoupled system behaviour in Figure 9(a). In 

the SS direction, the general trend shows only a slight increase from about 0.5% up to 

2% damping ratio with wind speed, similar to the coupled system behaviour in Figure 

9(b).  

It should be noted that based on our analytical derivations, the physics of the 

aerodynamic damping can be linearized and reduced to a damping matrix. However, 

this is not the Rayleigh damping usually assumed in experimental or operational modal 

analysis such as in ([16][17][18][38]), and thus cannot be captured in terms of modal 

damping ratios, making comparisons difficult. Simulations incorporating the blade 

flexibility and turbulent inflow wind fields in FAST showed a similar behaviour for the 

damping ratios with differences of up to about 1.35% in line with previous results for 

rigid blades [11], as detailed in Appendix B. Future modelling should aim to include 

the influence of blade flexibility on the overall vibration damping and more advanced 

characterization of damping to take account of the strong and unusual influence of the 

aerodynamic damping coupling between FA and SS directions.  
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5 Conclusions 

This paper proposes a novel two-stage methodology that uses BEM theory to derive 

analytical expressions for the aerodynamic forces resultant on the rotor for steady-state 

operating wind turbines. In the first stage, the aerodynamic damping matrix is 

calculated, and in the second stage the aerodynamic damping matrix can be assigned to 

a FE model and its responses obtained by time integration. From these results an 

efficient model was developed to predict the dynamic response of the tower/RNA 

system. The proposed two-stage modelling strategy based on analytical derivations 

could be particularly well suited for fatigue and reliability analyses. 

The aerodynamic forces experienced by the moving rotor are linearized and reduced to 

a set of resultants comprised of static terms and damping terms expressed through an 

aerodynamic damping matrix for constant wind speed. Both stages were implemented 

in MATLAB and the dynamic response was predicted using a FE model of the tower 

and RNA system. This model was systematically verified against an equivalent FAST 

model, and good agreement was obtained, confirming that the proposed model can 

successfully and efficiently capture the coupling effects between the FA and SS 

motions. The developed model does not consider the flexibility of the rotor blades and 

turbulent wind fields to allow for the model equations to be analytically derived. 

Considering aeroelasticity and turbulence can lead to a difference in damping ratios in 

line with literature, but does not change the strong and unusual influence of the 

aerodynamic damping coupling between FA and SS directions.   

The closed-form expressions for the damping matrix coefficients give insight into the 

links between aerodynamics and the vibration response of the tower. It was shown that 

the key features of this response are explained by a number of characteristics of the 

problem: 

• Due to the rotational symmetry of the tower, the two fundamental bending 

modes have similar natural frequencies which facilitates energy transfers 

between the two directions, 

• Some off-diagonal coefficients of the damping matrix represent positive 

feedback amplifying the vibration amplitude at certain wind speeds, 

• The non-symmetry of the damping matrix causes a non-dissipative coupling, 

apparent as a beating behaviour for certain conditions. 

It was found that the apparent aerodynamic damping can be significantly influenced 
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by the coupling between fore-aft and side-side motions in a wind turbine, which in turn 

may affect the accuracy of widely-used single damping ratio techniques to describe the 

aerodynamic damping characteristics of wind turbines. The derived aerodynamic 

damping matrix could form the basis for novel damping identification techniques better 

suited for wind turbine systems.  
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Appendix A 

Derivation for partial derivatives used in Section 3 

This appendix gives the expressions necessary to calculate the partial derivatives 

defining the aerodynamic damping matrix in terms of known aerodynamic quantities 

such as inflow wind speed, blade profile, fluid properties and operational conditions. 

All notations used here are from the classic steady BEM theory [3]. These partial 

derivatives are 
𝜕(𝑑𝑇)

𝜕𝑉𝑥
, 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
, 

𝜕(𝑑𝑆)

𝜕𝑉𝑥
 and 

𝜕(𝑑𝑆)

𝜕𝑉𝑟
. The derivation based on the variables 𝑉0 

and 𝑉𝑟 is given. According to BEM theory, the thrust on an element at radius 𝑟 can be 

written as    

where 𝜌  is the air density, 𝑎  and 𝑎′  are the axial and tangential induction factors 

respectively, 𝑐  is the chord length, 𝐶𝑛  is the normal force coefficient and 𝑑𝑟  is the 

increment length for this element. The tangential force can be expressed by 

where 𝐶𝑡 is the tangential force coefficient. Assuming 𝑑𝑇 and 𝑑𝑆 are functions of 𝑉0 

and 𝑉𝑟, other intermediate variables such as 𝑎, 𝑎′, 𝐶𝑛, 𝐶𝑡 and 𝜙 can also be treated as 

functions with regard to 𝑉0 and 𝑉𝑟. 𝜙 is the sum of the attack angle, pitch and twist 

angles. According to classic BEM theory, the relationships between these variables are 

where 𝜎 indicates the solidity, 

and 

where 𝐶𝑙 and 𝐶𝑑 is the lift and drag coefficients respectively, 

and 

 
𝑑𝑇 =

1

2
𝜌 [𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)

2
] 𝐶𝑛𝑐𝑑𝑟, 

(A. 1) 

 
𝑑𝑆 =

1

2
𝜌 [𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)

2
] 𝐶𝑡𝑐𝑑𝑟, (A. 2) 

 
𝑎 =

1

4 𝑠𝑖𝑛2 𝜙
𝜎𝐶𝑛

+ 1
, 

(A. 3) 

 
𝑎′ =

1

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1
; 

( A. 4) 

 𝐶𝑛 = 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙, ( A. 5) 

 𝐶𝑡 = 𝐶𝑙𝑠𝑖𝑛𝜙 − 𝐶𝑑𝑐𝑜𝑠𝜙; ( A. 6) 

 
𝑡𝑎𝑛𝜙 =

𝑉0(1 − 𝑎)

𝑉𝑟(1 + 𝑎′)
 𝑜𝑟 𝑐𝑜𝑡𝜙 =

𝑉𝑟(1 + 𝑎′)

𝑉0(1 − 𝑎)
. ( A. 7) 
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Firstly, from Equation (A. 1), 
𝜕(𝑑𝑇)

𝜕𝑉0
 can be written as 

where 𝑉𝑅𝑒𝑙
2 = 𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)

2
; 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
 can be written as 

Similarly, from Equation (A. 2), 

and 

The expression for the terms in Equations ( A. 8) to ( A. 11) can be expressed as follows: 

where 
𝜕𝑎

𝜕𝑉0
=

𝑑𝑎

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉0
 and 

𝜕𝑎′

𝜕𝑉0
=

𝑑𝑎′

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉0
; 

Then 

where 
𝜕𝑎

𝜕𝑉𝑟
=

𝑑𝑎

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉𝑟
 and 

𝜕𝑎′

𝜕𝑉𝑟
=

𝑑𝑎′

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉𝑟
. 

𝑑𝑎

𝑑𝜙
 and 

𝑑𝑎′

𝑑𝜙
 can be determined from Equations (A. 3) and ( A. 4): 

and 

The expressions for 
𝜕𝜙

𝜕𝑉0
 and 

𝜕𝜙

𝜕𝑉𝑟
 can be found from Equation ( A. 7) using the following 

two equations: 

 𝜕(𝑑𝑇)

𝜕𝑉0
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛

𝜕𝑉0
], ( A. 8) 

 𝜕(𝑑𝑇)

𝜕𝑉𝑟
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛

𝜕𝑉𝑟
]. ( A. 9) 

 𝜕(𝑑𝑆)

𝜕𝑉0
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡

𝜕𝑉0
] ; ( A. 10) 

 𝜕(𝑑𝑆)

𝜕𝑉𝑟
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡

𝜕𝑉𝑟
]. ( A. 11) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
= 2𝑉0(1 − 𝑎)2 − 𝑉0

2 ∙ 2(1 − 𝑎)
𝜕𝑎

𝜕𝑉0
+ 𝑉𝑟

2 ∙ 2(1 + 𝑎′)
𝜕𝑎′

𝜕𝑉0
 ( A. 12) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
= −𝑉0

2 ∙ 2(1 − 𝑎)
𝜕𝑎

𝜕𝑉𝑟
+ 2𝑉𝑟(1 + 𝑎′)

2
+ 𝑉𝑟

2 ∙ 2(1 + 𝑎′)
𝜕𝑎′

𝜕𝑉𝑟
 ( A. 13) 

 
𝑑𝑎

𝑑𝜙
=

−4(𝑠𝑖𝑛2𝜙𝐶𝑛 −
𝑑𝐶𝑛

𝑑𝜙
𝑠𝑖𝑛2𝜙)

𝜎𝐶𝑛
2 (

4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1)
2   , ( A. 14) 

 
𝑑𝑎′

𝑑𝜙
=

−4(𝑐𝑜𝑠2𝜙𝐶𝑡 −
𝑑𝐶𝑡

𝑑𝜙
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙)

𝜎𝐶𝑡
2 (

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1)
2 . ( A. 15) 
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and 

where 
𝑑(

1+𝑎′

1−𝑎
)

𝑑𝜙
=

𝑑𝑎′

𝑑𝜙
(1−𝑎)+

𝑑𝑎

𝑑𝜙
(1+𝑎′)

(1−𝑎)2
 and 

𝑑(
1−𝑎

1+𝑎′
)

𝑑𝜙
=

−
𝑑𝑎

𝑑𝜙
(1+𝑎′)−

𝑑𝑎′

𝑑𝜙
(1−𝑎)

(1+𝑎′)
2 . 

For 
𝜕𝐶𝑛

𝜕𝑉0
 , 

𝜕𝐶𝑛

𝜕𝑉𝑟
, 

𝜕𝐶𝑡

𝜕𝑉0
 and 

𝜕𝐶𝑡

𝜕𝑉𝑟
, the following four equations can be used: 

 

 

 

𝑑𝐶𝑛

𝑑𝜙
 and 

𝑑𝐶𝑡

𝑑𝜙
 can be simply derived from Equations( A. 5) and ( A. 6): 

and 

This provides all the terms required to determine damping derivatives.   

 

𝜕𝜙

𝜕𝑉0

[
 
 
 
 𝑑 (

1 + 𝑎′

1 − 𝑎
)

𝑑𝜙
𝑡𝑎𝑛𝜙 +

1

𝑐𝑜𝑠2 𝜙
∙
1 + 𝑎′

1 − 𝑎

]
 
 
 
 

=
1

𝑉𝑟
 ( A. 16) 

 
𝜕𝜙

𝜕𝑉𝑟
[
𝑑 (

1 − 𝑎
1 + 𝑎′

)

𝑑𝜙
𝑐𝑜𝑡𝜙 −

1

𝑠𝑖𝑛2 𝜙
∙

1 − 𝑎

1 + 𝑎′
] =

1

𝑉0
. ( A. 17) 

 𝜕𝐶𝑛

𝜕𝑉0
=

𝑑𝐶𝑛

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
; ( A. 18) 

 𝜕𝐶𝑛

𝜕𝑉𝑟
=

𝑑𝐶𝑛

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
; ( A. 19) 

 𝜕𝐶𝑡

𝜕𝑉0
=

𝑑𝐶𝑡

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
; ( A. 20) 

 𝜕𝐶𝑡

𝜕𝑉𝑟
=

𝑑𝐶𝑡

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
. ( A. 21) 

 𝑑𝐶𝑛

𝑑𝜙
=

𝜕𝐶𝑙

𝜕𝜙
𝑐𝑜𝑠𝜙 +

𝜕𝐶𝑑

𝜕𝜙
𝑠𝑖𝑛𝜙 + 𝐶𝑑𝑐𝑜𝑠𝜙 − 𝐶𝑙𝑠𝑖𝑛𝜙, ( A. 22) 

 𝑑𝐶𝑡

𝑑𝜙
=

𝜕𝐶𝑙

𝜕𝜙
𝑠𝑖𝑛𝜙 −

𝜕𝐶𝑑

𝜕𝜙
𝑐𝑜𝑠𝜙 + 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙. ( A. 23) 
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Appendix B  

Influence of non-uniform, turbulent wind field and blade flexibility 

  

(a) (b) 

Figure B.1. FA (a) and SS (b) damping ratios for the first bending modes, estimated 

from decay in time domain. Comparisons between the model considering only one 

DOF (dashed) and the coupled two DOFs model (solid) for the different models (rigid 

blades, uniform wind; flexible blades, uniform wind; flexible blades, turbulent wind). 

 

Rotor blade flexibility and turbulent inflow wind fields were not considered in the 

proposed model to allow for simpler analytical derivation. Their influence on apparent 

damping was investigated using simulations including these effects in the FAST model 

and compared to the developed model considering only rigid blades and uniform wind 

fields. As shown in Figure 6 in section 4.1.2, including the blade flexibility in the FAST 

model for a uniform inflow wind field leads to a slight shift of about 3% of the tower 

resonance frequency, but only small changes in the damping visible from the time 

signal decay. Using the same methodology as in Section 4.4.2, the influence on the 

damping ratios was quantified and is shown in Figure B.1. For the decoupled systems, 

almost no discernible difference was found in either direction, as the system responds 

with an exponential decay (as expected from a single degree of freedom system) and 

the change in resonance frequency does not lead to a change in the decay envelope. For 

the coupled system, some differences in the estimated damping ratios are visible in the 

FA direction below the rated wind speed (Figure B.1 (a)), where consideration of the 

blade flexibility leads to approximately constant damping values up to 12 m/s wind 

speed. For higher wind speeds in the FA direction, the general dependence of the 
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damping ratios follows a similar trend, but with differences of up to 0.21% damping 

ratio. In the SS direction, the damping ratios follow a similar pattern, but again 

differences of up to 0.06% damping ratio were found due to the inclusion of the realistic 

blade flexibility.   

Quantification of the damping ratios for non-uniform inflow wind fields in the time 

domain is more complex, as the turbulence leads to a continuous energy input and thus 

excitation of tower vibrations. Simulations were run in FAST for an initial 1m 

displacement and for the same conditions without the initial displacement. Subtracting 

the respective responses to eliminate the turbulence excitation, the damping ratios were 

quantified as described in section 4.4.2 and averaged over 10 different seeds for the 

turbulent wind field for each case. For the decoupled system, the consideration of 

turbulence leads to a similar behaviour of damping ratios on wind speed, but 

consistently higher damping ratios of up to 1.35% in the FA direction and lower values 

of up to 0.12% in the SS direction, due to the interaction of the flexible blades with the 

turbulent wind field. For the coupled system, again the dependence of damping ratios 

for all three cases follows a similar trend, with differences of up to 0.86% in the FA 

direction and 0.06% in the SS direction. This is in line with the results of Valamanesh 

and Myers [11], who found that the assumption of rigid blades leads to variations of 

damping estimates by approximately 1%. Therefore, we conclude that the main 

influence on the damping considering coupled or decoupled tower vibrations for an 

operating wind turbine can be reasonably well captured by the aerodynamic damping 

matrix derived assuming rigid blades. However, the influence of blade flexibility and 

turbulent wind fields on the overall tower damping should be considered for detailed 

predictions including the coupling between FA and SS directions, as it can change the 

apparent damping ratios by up to 0.86%. 
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