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Abstract

Increasingly heterogeneous markets, together with shorter product life cycles, are forcing many companies to simultaneously

compete in the three domains of product, process, and supply chain. Dependencies among decisions across these domains make

this competitive situation very complex. To address this complexity, three-dimensional concurrent engineering (3D-CE) has

been suggested ([Fine, C.H., 1998. Clockspeed—Winning Industry Control in the Age of Temporary Advantage. Perseus Books,

Reading, MA.]). Applying 3D-CE requires an operationalization of one of its core elements: the product architecture. In this

paper, I develop a multi-dimensional framework that enables comprehensive product architecture assessments. The framework

builds on existing product characteristic concepts such as component commonality, product platforms, and product modularity.

The framework’s utility is illustrated with two example products, showing how individual product architecture dimensions link

decisions across different domains. This framework can be used to focus advice for product design on product architecture

dimensions that are critical for a given operational strategy, to assess advantages and limitations of operational strategies in

conjunction with given product architectures, or to develop dynamic capabilities such as planning effective product–operation

strategy combinations.
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1. Introduction

For many manufacturing firms, heightened com-

petition throughout 1980s and 1990s has brought back

into focus the value of considering manufacturing

concerns during product design, and to overlap

formerly sequential design processes. Concurrent

engineering (CE), also called simultaneous engineer-

ing, experienced a steep growth in interest from both

industry and academia (Fleischer and Liker, 1997;

Nevins and Whitney, 1989). Over the last two decades

numerous facets of this approach have been

researched, ranging from design’s impact on ease of

manufacturing and assembly processes (Boothroyd

et al., 2002; Rusinko, 1999; Whitney, 1988), to the

implications for development lead time due to

concurrent development processes (Haddad, 1996;
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Koufteros et al., 2001; Roemer et al., 2000; Terwiesch

et al., 2002).

More recently, the competition has intensified for

many firms through increased demand heterogeneity

and shorter product life cycles. Formerly large mass

markets have fractured into smaller niche markets

demanding higher levels of product variety while

competitors are introducing new products in shorter

intervals. To respond to these pressures, many firms

have put customization of mass produced products at

the center of their attention. This development can be

observed for products ranging from sneakers with the

customer’s own name imprinted on them to custo-

mized beauty products to personalized food where, for

example, each customer picks the ingredients for his

cereal (Mirapaul, 2001). Similarly, the automobile

market shows increasing numbers of niches, as well as

increasing numbers of models in these niches, e.g.,

sports cars (The Economist Intelligence Unit, 2000a,

2000b). Furthermore, in addition to quality, variety,

and price, many products compete today on their level

of availability. Firms, such as computer maker Dell,

have built their entire business model initially not on

superior products but on customization and delivery

speed (Magretta, 1998).

For the idea of concurrent engineering, these

developments imply the need to enlarge its scope and

add supply chain considerations to the tasks to be

concurrently addressed. Fine (1998) named this

expansion ‘‘three-dimensional concurrent engineering

(3D-CE)’’. He argues that all three domains (product,

process, and supply chain) possess an architecture, and

matching these architectures is key to the success of

3D-CE. Others have introduced the term ‘‘concurrent

enterprising’’ to describe the future direction of mass

customization (Jiao et al., 2004). They describe it as

‘‘an approach to achieving an alliance of customers,

products, processes, and logistics by means of

parallelity, integration, standardization, teamwork,

and many others, for delivering an increasing product

variety to satisfy diverse customer needs while

maintaining near mass production efficiency’’ (Jiao

et al., 2004, p. 83). While these ideas are conceptually

very powerful, relatively little is known about how to

actually coordinate the many decisions across the

three domains of product, process, and supply chain.

This paper argues that the product architecture, when

properly defined and articulated, can serve as such a

coordination mechanism. Given that various indivi-

dual product characteristics have been identified as

having consequences – enabling or constraining – for

individual decisions in individual product life cycle

phases, it is argued that a comprehensive product

architecture assessment methodology can serve as the

nexus to link these decisions with each other.

The remainder of the paper is organized as follows.

The next section, starting with a working definition of

product architecture, presents two overviews. The first

discusses how individual product characteristics can

affect various decisions in each of the domains of

product, process, and supply chain; the second

presents three categories of product architecture

modeling and description approaches that exist in

the literature. Building on this foundation, Section

three develops a multi-dimensional product architec-

ture assessment framework for assembled hardware

products, and Section four illustrates the framework’s

coordination role with two example applications.

Section five presents insights on how the framework

can improve managerial decision-making, and con-

cludes with providing avenues for future research.

2. Product architecture: nominal definition and

utility in coordinating product, process, and

supply chain decisions

2.1. Nominal definition of product architecture

Ulrich defines the product architecture as ‘‘the

scheme by which the function of a product is allocated

to physical components’’ (Ulrich, 1995, p. 419). With

complex mechanical and electromechanical products

(automobiles, appliances, etc.), which usually consist

of a substantial number of components, the product

architecture encompasses the information on how

many components the product consist of, how these

components work together, how they are built and

assembled, how they are used, and how they are

disassembled. As such, the product architecture serves

the purpose of defining ‘‘. . . the basic physical

building blocks of the product in terms of what they

do and what their interfaces are to the rest of the

device’’ (Ulrich and Eppinger, 2000, p. 182). To

summarize, the product architecture can be nominally

defined as a comprehensive description of a bundle of
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product characteristics, including number and type of

components, and number and type of interfaces

between those components, and, as such, represents

the fundamental structure of the product.

2.2. Some effects of product architecture

characteristics on product design, process design,

and supply chain design decisions

To move a product from the initial idea to its arrival

at the customer requires many decisions on design and

operation of numerous processes in the three domains

of product, process, and supply chain. These decisions

are of strategic and operational nature, and many of

these decisions are constrained, or enabled, by product

characteristics such as the number and complexity of

components, component commonality, or product

modularity (Fig. 1).

In the product (development) domain, decisions

with rather long-term horizons range from capability

development of design engineers to the selection of

locations for development facilities to the formation of

strategic development alliances. On the project level,

product related decisions comprise questions of

product functionality, product line variety, material

choices, and product styling (Pahl and Beitz, 1996).

Organizational decisions include the number and size

of project teams, whether these teams are cross-

functional, methods to steer team group processes, and

tools to plan product development milestones,

sequences, and the degree of overlap (Brown and

Eisenhardt, 1995). Individual product characteristics

have been found to affect many of these decisions. The

number, size, and composition of project teams, for

example, are in most cases not independent of the

number, size, and composition of the product’s

components. It has been found that the organizational

structures of product development units tend to mirror

the product structures of the products they develop

(Gulati and Eppinger, 1996; von Hippel, 1990). This

phenomenon has been identified as beneficial in stable

industries (Sanchez and Mahoney, 1996) and detri-

mental in dynamic industries (Chesbrough and

Kusunoki, 1999; Henderson and Clark, 1990). In

either case, the structure that is initially selected for

the product will affect the task structure of the product

development organization, and the task structure, in

turn, contributes to the organization’s performance

(Eppinger et al., 1994). The underlying reason is that

the task structure determines the interaction and

communication patterns of the development teams.

For example, high levels of product complexity are

usually detrimental to fast product development

because they translate into complex process interac-

tions which in turn increases the number of iterations

in the development process (Ahmadi et al., 2001;

Terwiesch et al., 2002). Reducing product complexity,

for instance by regrouping components into fewer

modules, has been identified as a way to shorten

product development time (Griffin, 1997). For multi-

ple projects, both development cost and time can be

lowered if components can be reused across product

families (Clark and Fujimoto, 1991; Nobeoka and

Cusumano, 1995; Reinertsen, 1997). Similarly, the

extent to which decision makers in product develop-

ment can choose to overlap the development activities

is influenced by the degree to which the relations

between the components hinder or promote the

reduction of process iterations. For example, lowering

the degree of interaction between components has

been found to positively affect development time

(Loch et al., 2003; Thomke, 1997; Yassine et al.,

2003).

Decisions on the strategic level in the process

domain typically affect large-scale production invest-

ments; examples for these decisions are the size of

production capacity, the type of manufacturing

processes, or the locations of production facilities.

On the tactical level, examples of relevant decisions

include the scheduling of production, the organization

of teams, and the planning of maintenance. A major

class of decisions in the process domain is the

selection of number and type of processes that will be

used to manufacture the product. These decisions are

not independent of product architecture characteristics

such as complexity of the individual components,

number of components, extent to which components

can be reused across product families, or degree of

coupling between components. High levels of part

complexity, for example, have been found to require

complex manufacturing processes which result in

relatively higher production costs compared to simpler

parts that require simpler processes (Banker et al.,

1990). For this reason, design for manufacturability

(DFM) calls for part simplification, which allow

process simplification that results in higher yields and
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lower costs. At the same time, part count has been

identified as a major cost driver in assembly (Boer and

Logendran, 1999). The explanation for this effect is

simple: fewer parts require fewer assembly operations,

which saves time and cost. Consequently, design for

assembly (DFA) aims for part count reduction

(Boothroyd et al., 2002). The total cost effect of

product characteristics proposed by DFM and DFA

depends on the specific circumstances. For example,

for cellular network base stations, it has been found

that a reduction of the number of physical modules has

led to a reduction in operation (manufacturing) costs

(Kaski and Heikkila, 2002). If components can be

reused across product families or multiple product

generations (commonality), scale effects can reduce

the cost per unit by distributing the fixed cost portions

across larger volumes. This effect has been identified

for mopeds, custom-phones, and microwave ovens

(Salvador et al., 2002). The magnitude of these

savings, however, needs to be compared to the cost for

potential ‘overdesign’ of the component for some of

the products in the product family. Products whose

production costs are dominated by variable materials

costs, such as automotivewire harnesses, may not gain

much through the use of commonality (Thonemann

and Brandeau, 2000).

Interfaces between components that are only

loosely coupled tend to minimize complexity and

uncertainty within the production process. Hence, the

better the process is known and the more likely it can

be performed successfully, and the lower the total

number of different processes in the production

system is, the lower the expected production costs.

For example, electronic interfaces that consist only of
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a plug and a socket may be easier to assemble error-

free than a complex mechanical rod connection. In

addition, the testability of pre-assembled units, and

their costs, can be affected by the interfaces between

them.

In the supply chain domain, decisions of strategic

nature include number and location of logistics

facilities, contractual relations with suppliers, long-

term sourcing arrangements, and postponement and

mass customization strategies. Examples for opera-

tional decisions relate to service levels, delivery

schedules (e.g., just-in-time), vehicle routing, and

crew planning. Individual product architecture char-

acteristics that have been identified to affect these

decisions are the degree of commonality across

components, the way in which the components

interact with each other, and the type of the interfaces

between the components. For example, the decisions

on number and location of suppliers, on the service

level, and on delivery frequencies are all impacted by

the number and type of components a product consists

of. The use of common components allows inventory

levels to be lowered through risk pooling (Baker et al.,

1986; Collier, 1982; Gerchak et al., 1988). To take

advantage of this effect requires an understanding of

which function of a product will be provided by which

component and the development of an allocation plan.

The goal to increase a supplier’s incentive to deliver

high quality components can be supported by

designing components whose functions can be traced

individually in the end-product (Baiman et al., 2001).

However, the independence of components can also

result in shifts of bargaining power between supply

chain partners and thus change their competitive

positions (Doran, 2003; van Hoek and Weken, 1998).

Depending on the industry, the level of component

independence can also affect a firm’s sourcing

strategy: outsourcing commodity items and keeping

components of strategic relevance in-house (Momme

et al., 2000).

The type of interfaces between components can

affect the extent to which strategies for postponement

and late customization can be realized. Maximizing

the benefits from a postponement strategy may require

a re-sequencing of processes (Feitzinger and Lee,

1997; Lee and Tang, 1998). However, some interface

qualities together with some manufacturing processes

may make an operation reversal impossible. For

example, if a metal welding process is used after paint

is applied to the product, the welding is likely to

destroy the paint.

2.3. Product architecture models and descriptions in

the literature

To analyze the many effects that individual product

architecture characteristics exert on different deci-

sions across the domains of product, process, and

supply chain, a variety of different models and

descriptions have been developed. Without claiming

exhaustive representation, I organize below the

existing models into three categories and present

their advantages and limitations.

The first category can be labeled mathematical

models. These models often simplify the product

architecture in order to be able to focus on the effect of

interest. For example, to explore the advantages and

disadvantages of platform-based product develop-

ment, each product of a product family is assumed to

consist of a common component, i.e. the platform, and

a product-specific component (Krishnan and Gupta,

2001). The core of this model analyzes the effects of

this choice compared to two independent products,

given different degrees of market diversity and non-

platform economies of scale. Similarly, modeling the

quality impact of function traceability, Baiman et al.

(2001) distinguish between only two cases: one where

component and functions are in a one-to-one relation-

ship (decoupled) and one where they are not

(coupled). Other models incorporate a larger number

of components and focus on the effects of the

interactions among them on product development by

assigning probabilities for rework due to overlapping

processes (Ahmadi et al., 2001). The optimization

model’s objective then is to minimize the time

consumed by the iterations. In fact, a variety of

optimization models have been developed to optimize

the platform choice, either following a module-based

strategy or a scale-based strategy (Simpson, 2003).

Most of these models view the product family design

problem as optimizing the tradeoff between common-

ality and distinctiveness (Desai et al., 2001; Krishnan

and Gupta, 2001), while some pursue an optimization

of the supply chain by rearranging process sequences

(Garg, 1999). The advantage of these mathematical

models is their computational elegance as well as their
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broad applicability (across industries and across

products). At the same time, however, their generic

nature makes it often difficult to translate the findings

into specific advice for the product architecture

design.

Models in the second category, which I call

conceptual models, are strongly influenced by

research work on product modularity. This category

can be further separated into two subsets. Work in the

first subset is based on the description of product

modularity by Ulrich and Tung (1991). Ulrich and

Tung described five different types of modularity:

component-swapping, component-sharing, fabricate-

to-fit, bus, and sectional. Ulrich later collapsed the first

three types into one and called it slot architecture

(Ulrich, 1995; Ulrich and Eppinger, 2000). Others

have subsequently renamed the fabricate-to-fit as cut-

to-fit and added mix modularity, the latter to include

processed products (Pine, 1993). More recently,

Salvador et al. (2002) added combinatorial modularity

as a specific form of slot modularity. The second

subset in this category focuses more on understanding

the system effects and the characteristics that such a

system exhibits, as opposed to providing detailed

descriptions of the components. Some authors focus

on the effects a modular product can have on the

structure of an industry (Langlois and Robertson,

1992) or on a firm’s organization (Sanchez and

Mahoney, 1996). Others concentrate on a system’s

ability to accept upgrades and re-use (Garud and

Kumaraswamy, 1996), or on the forces that drive a

system towards (e.g., demand heterogeneity) or away

from (e.g., synergistic specificity) higher levels of

modularity (Schilling, 2000). Placing their emphasis

on the nature and role of the interfaces, instead of the

components, Baldwin and Clark (2000) present in

their extensive work the mechanisms by which an

architecture changes. They develop six ‘operators’ to

describe the evolution from one product architecture

to another: splitting a design into modules, substitut-

ing one module for another, augmenting—adding a

new module to the design, excluding a module from

the design, inverting to create new design rules, and

porting a module to another design. While concep-

tually very powerful, the modularity descriptions in

the conceptual category have been difficult to test

empirically. A major reason for this problem is that

modularity definitions come in different flavors. They

range from describing different product architectures

by changing a single parameter of a component, to re-

arranging components into new combinations, to

entirely reassigning functions to different components

(Fixson, 2003). The few empirical studies that exist

measure product modularity indirectly by asking

company employees to assess the degree to which

their customers can individually change the design

(Duray et al., 2000), to estimate the degree to which

products ‘share common modules’ or ‘can be

reassembled in different forms’ (Tu et al., 2004), or

to approximate the degree of independence between

components in the event of a design change to one of

the components (Worren et al., 2002).

The models in the third category fall under

engineering models. These models are typically more

applied than those of the previous two categories.

Most models provide indices to compare product

architectures along the dimensions of interest. For

example, one model presents two indices, one – the

generational variety index – reflecting the amount of

redesign effort required for future product generations,

the other – the coupling index – indicating the

coupling between product components (Martin and

Ishii, 2002). The indices are based on qualitative

assessments of the speed of technology development

and the strength of the linkages between components,

respectively. Others have developed indices to assess

the compatibility of components in a module with

respect to their material (Allen and Carlson-Skalak,

1998; Newcomb et al., 1998), product function

(Huang and Kusiak, 1998), or manufacturing pro-

cesses (Kota et al., 2000). Some of these models

employ variations of a design structure matrix

(Steward, 1981), which lists in its top row and first

column the product’s components. Each cell in the

matrix then represents a functional interaction

between components of the product. Algorithms have

been developed to cluster the components by

rearranging columns and rows, and to assign the

components to modules based on various matching

criteria, e.g., material, functionality, etc. Derivatives

of the design structure matrix list the design tasks that

correspond to the components in the first column and

first row (Browning, 2001). Then the cells in the

matrix reflect precedence relationships, i.e., which

task supplies data to or receives information from

which other tasks. These design structure matrix
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versions have been used to study organizational

behavior in design organizations (Sosa et al., 2003). In

general, engineering models serve their individual

purpose very well; however, they are often difficult to

transfer due to their application specificity.

2.4. Requirements for product architecture measures

for trade-off analyses

The brief reviews of some of the effects of

individual product architecture characteristics on

decisions across the three domains, and of three

classes of product architecture descriptions lead to two

requirements that a product architecture assessment

tool must meet to show the product architecture as a

coordinating mechanism. First, since there are

numerous linkages between product architecture

characteristics and decisions across the three domains,

the tool must be able to discern these different

linkages. To do so it must capture all relevant

dimensions of the product architecture simulta-

neously, but show them separately. For to allow the

identification of an individual product architecture

characteristic as a cause, the tool must be able to

observe its variation while ‘controlling’ for the other

product architecture dimensions. Second, the product

architecture assessment tool must initially keep

description separate from evaluation, because a

particular product architecture characteristic might

positively enable a decision in one domain (e.g.

product development) while having a negative

constraining effect in another domain (e.g., supply

chain). Separate description and evaluation allow for

the detection of the cause–consequence relationships

in these cases.

3. Product architecture—an operational

definition

To develop a product architecture description that

is comprehensive and at the same time operationaliz-

able, I augment the nominal definition proposed in the

previous section with Ulrich’s (1995) distinction

between modular and integral architectures. ‘‘A

modular architecture includes a one-to-one mapping

from functional elements to physical components of

the product, and specifies de-coupled interfaces

between components. An integral architecture

includes a complex (non one-to-one) mapping from

functional elements to physical components and/or

coupled interfaces between components’’ (Ulrich,

1995, p. 422). To demonstrate his typology he uses

two trailers with different architectures (Fig. 2).

Ulrich acknowledges that his typology describes

ideal types: ‘‘The types shown are idealized; most real

products exhibit some combination of the character-

istics of several types. Products may also exhibit

characteristics of different types depending on

whether one observes the product at the level of the

overall final assembly or at the level of individual

piece parts and subassemblies’’ (Ulrich, 1995, p. 424).

In order to achieve the ultimate goal to assess the

impact of product architecture decisions on decisions

in the domains of product, process, and supply chain,

what is needed then is a method to determine where in

between these extremes – modular and integral – a

particular design is located in the space of possible

function–component mappings, or, at a minimum,

how two or more mappings compare to each other

with respect to their locations in this space. To develop

a framework that allows this type of comparative

analysis, I expand Ulrich’s work in three dimensions.

First, for his ideal cases, Ulrich defines jointly how

functions are allocated to physical components and

whether interfaces are coupled. I will relax this joint

requirement. While both dimensions are necessary for

a complete description of a product architecture, these

two dimensions are, to a large extent, independent

from each other and, consequently, should be treated

independently. Second, both dimensions, function

allocation and interfaces, appear to be themselves

multi-dimensional constructs. Therefore, the frame-

work to be developed needs to be capable of capturing

all aspects of the multiple underlying dimensions.

Third, since the notions of modular or integral are

associated with an allocation of the functionality of the

product, it appears that a label for the entire product is

essentially creating an average assessment of the

product architecture. I argue that this average hides too

much of the information of interest, and that a finer-

grained description is necessary. Below I suggest a

product architecture assessment framework that

satisfies these three expansions of Ulrich’s product

architecture description. The suggested framework

combines the comprehensiveness of the conceptual
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models with the operationalizability of the engineer-

ing models and lays the foundation for mathematical

models to be applied to individual aspects.

3.1. Product architecture assessment—dimension 1:

function–component allocation scheme

To build on the definition that a characteristic

feature of a product architecture is the way in which

functions are allocated to components requires a

mechanism that determines and measures this

dimension reliably. In other words, all three pieces

of the function–component allocation (FCA) scheme

need a rule-based procedure to ensure repeatable

results: (a) what is a function, (b) what is a component,

and (c) how is the allocation scheme established?

3.1.1. A product’s functions

Two aspects require consideration when determin-

ing the functions for product architecture assessment:

(i) what are a product’s functions and (ii) how can they

be determined. What is called function here includes

technical functions as well as attributes as would be

used by marketing. An example of a technical function

is the acceleration of an automobile. For direct

comparisons of product architectures across products

the function should be provided on a similar

performance level.1 Examples for attributes that

escape technical function descriptions are the color

or surface structure of an appliance or the aesthetic

appearance of an automobile. Again, for apple-to-
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1 Determining functionality sometimes raises the question

regarding performance. In some cases the performance is directly

measurable and varies along a continuum (e.g., MB per disc area for

disc drives). Then further inquiry is needed to determine on what

basis to compare products and their architectures. In many other

cases, however, the functionality has already passed a certain

performance threshold. If the functionality then is perceived more

as a binary variable (e.g., there are power windows in a car door or

there are not), rather than on a continuum (e.g., how long does it take

to open and close the window), then the assumption of equal

functionality – at least within a certain range – is a good starting

point to compare products and their architectures.



apple comparisons of two or more product architec-

tures the attributes should be provided on a similar

level.2

The second aspect requires a closer look at the

hierarchy level on which a product’s functions are

selected. Every product’s function can be decomposed

into sub-functions, and these sub-functions can be

decomposed further into lower level sub-functions

(Pahl and Beitz, 1996). Two thoughts are suggested to

guide the function determination process: compar-

ability and applicability. First, since this framework is

developed as a tool to compare products with respect

to their differences in their product architectures (i.e.,

with respect to their different degrees of being

modular or non-modular, the function selection should

consider choosing a level on which the variance in

function–component allocation between the products

becomes visible. In its most simple case, this means

choosing functions that are in full or to the same

degree delivered by the different architecture candi-

dates. Second, the function selection should neither

choose the highest level of the functional hierarchy nor

the lowest in order to be meaningful. The function on

the highest level is necessarily provided by all

components, for otherwise there would not be a

reason for them to be there at all. For example, assume

a hair dryer is the product under investigation. Its main

(and highest level) function is ‘to dry hair’. If ‘to dry

hair’ were selected as a function of interest, the result

would be the allocation of this function to all

components, for no component of the hair drier

would exist in the first place if it were not contributing

to the product’s functionality. On the other hand, if the

function is chosen too low, e.g., ‘hold part A in

position x relative to part B with force f’, then exactly

one and only one component delivers this function,

i.e., the function tends to become idiosyncratic to a

particular design. In other words, if the function

description is too detailed, i.e., on a very low level of

the function hierarchy, it is likely to predetermine its

realization with parts and components. In either of

these extremes the function–component allocation

schemes would be trivial. In contrast, if one begins to

define functions like ‘generate air flow’, ‘heat air

flow’, ‘control heat’, ‘control air flow’, and ‘supply

energy’, then it becomes more meaningful to

investigate how they are mapped to the components.

When in doubt, a level should be chosen that is rather

higher than lower in the functional hierarchy because

the higher a function is located in the functional

hierarchy the closer it is to an actual user need. Users

usually care about that a function or attribute is

provided, but not necessarily how it is provided by

certain technical solutions on lower hierarchy levels.

3.1.2. A product’s components

Similar to the case of product functions, two aspects

drive the product component determination: (i)what is a

component and (ii) how is it determined? To maintain

maximum flexibility of the product architecture assess-

ment framework, component is used here as a pure

placeholder.It isdefinedheresuchthat itcanrepresentall

subsystems,modules, orparts (aboveconnectors suchas

clips and screws). What the components ultimately

represent depends on the second aspect to consider: the

selected hierarchy level of the product.

Almost all assembled products simultaneously dis-

play some sort of inner hierarchy and are also part of a

larger system and its hierarchy. This phenomenon has

been described as nested hierarchies (Alexander, 1964;

Christensen, 1992; Gulati and Eppinger, 1996; Simon,

1962). Consequently, it is important to determine the

product hierarchy level that corresponds to the level of

functions determined earlier. Mechanisms that can help

in this process are assembly trees or assembly fishbone

diagrams(Fig.3).Thesourceof this informationcanbea

tear-down analysis in which a product is physically

disassembled to understand its structure and parts

(Ulrich and Pearson, 1998), or design drawings and

assembly process descriptions. Working backwards

through theassembly tree, starting fromthe full product,

all components (parts, modules, subassemblies, etc.)

that are assembled directly to the main component are

considered on the relevant level.

3.1.3. Function–component allocation (FCA)

schemes

To increase product variety, firms mostly vary only

some functions or attributes of a product but never all

of them. In fact, the basic idea of concepts such as

mass customization, product platforms, and common-
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ality, is to reuse some parts of a product across a

product family or multiple product generations. What

this implies is that the extent to which a product

architecture is modular, or non-modular, is informa-

tion that is required for each function and attribute

individually. In addition, how exactly a function is

different from the perfectly modular situation, as

exemplified by the one-to-one relationship between

function and component, is important knowledge

because it is the first step to turn the function–

component relationship into a design parameter.

Using the product’s functions and components as

determined in the previous sections, the FCA scheme

can be determined and mapped in three steps. The first

step is to construct a matrix with the product’s

functions in the first column and its components in the

first row, and to determine which component

contributes to which function. In its most simple

way a component’s contribution to a particular

function is indicated in a binary fashion, i.e., yes/no

or 1/0. Alternatively, percentages of a function can be

allocated to components that contribute to this

function. Both approaches have their advantages

and disadvantages. For the integer solution, simplicity

is its virtue. Whether or not a component plays any

role in a function is usually easier to identify than its

proportional contribution. In addition, for a number of

product planning considerations, it is often sufficient

to knowwhich components are involved in providing a

certain function or attribute. On the other hand, for

some functions and characteristics like size or weight,

it may be worthwhile to assess the contribution that is

provided by individual components. Fig. 4 illustrates

the function–component matrices for the two example

trailers using the binary allocation procedure.

Step two in determining the FCA is to calculate two

indices for each function that show how each function

deviates from the perfectly modular situation, repre-

sented by a one-to-one relationship with a component.

Possible deviations are 1–n, n–1, and n–n relationships.

The two suggested indices reflect x and y of this x–y

relationship. The first index identifies the number of

components that jointlyprovidea function.This index is

calculatedforeachfunctioninthecolumn‘Index1’(Fig.

4). The second index assesses the extent towhich this set

of components also contributes to other functions. To

calculate that index, Idevelopeda routine thatchecksfor

every component that was identified in the Index 1

calculation, the number of functions the component is

involved in, and transfers the sum into the last columnof

the FCA matrix (Index 2). For example, three

components of trailer 2 (upper half, lower half, and

spring slot covers) contribute to the function ‘protect

cargo from weather’ (Index 1 = 3 for this function).

Some (or all) of these three components also contribute

to the functions of ‘support cargo loads’ and ‘suspend

trailer structure’ (Index 2 = 1 + 2 = 3 for the function

‘protect cargo from weather’).

In step three, these two indices are used to map

each function onto the function–component allocation

map. The maps are divided into four regions, each

representing a FCA style. Every function can be

located in one of these four regions. Functions that are

located in the lower left region of the map are close to

the ‘ideal’ modular one-to-one relation between

function and component. These functions exhibit a
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modular-like FCA style. If a function is provided by a

larger set of components, which individually are not

involved in other functions, then the function is

located in the lower right region of the FCA map, i.e.,

it exhibits an integral-fragmented FCA style. In

contrast, if one component delivers several functions,

these functions will be located in the upper left region

of the map, i.e., they show integral-consolidated FCA

styles. Finally, only if multiple components provide

multiple functions in such a way that most compo-

nents participate in most functions, then the functions

would be located in of the map’s upper right region.

These functions are of the integral-complex FCA

style. Mapping all functions onto FCA-maps makes

the pattern of FCA styles of the whole product visible.

Fig. 5 shows the FCA maps for the two example

trailers. It shows how different architectures differ

from each other along individual functions. For

example, in the case of trailer 1, all functions can be

found in the lower left corner. All functions exhibit a

perfectly modular function–component allocation

scheme. In contrast, while trailer 2 has non-modular

relations between most functions and components, it

does so tovaryingdegrees.The function ‘transfer load to

the road’, for instance, isonthesamemodularity-levelas

it is for trailer 1. However, the functions ‘minimize air

drag’ and ‘connect to vehicle’ are entirely and jointly

provided by the same component. These functions

exhibit an integral-consolidated style. In contrast, the

function ‘support cargo’ exhibits an integral-complex

style—being provided by several components that are

also involved in providing other functions.

Note that a FCA scheme on one level of the product

and function hierarchies says nothing about FCA

schemes on other hierarchy levels. For instance,

consider a disc drive as part of a personal computer.
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Investigating the role of the disc drive for the FCA

scheme of the computer will produce a different result

than the analysis of the disc drive’s internal FCA

scheme. In sum, FCA schemes have to be defined

anew for each level of the hierarchy, and one product

can have different schemes on different levels.

Similarly, different products can have similar FCA

schemes on some levels while exhibiting quite

different ones on other levels.

3.2. Product architecture assessment—dimension 2:

interface characteristics

A product’s interface characteristics are often

described with terms such as ‘coupled’ or ‘dependent’

(e.g., Baldwin and Clark, 2000; Schilling, 2000).

However, products can exhibit different degrees of

being coupled, depending on the product life cycle

phase. For example, a coupling with respect to a

certain product function may or may not be the same

coupling that determines whether a user can easily

replace the component providing that function.

Consequently, the interface measurement needs to

be conducted on a disaggregated level to allow

investigation of the individual effects. To make the

dimension interface measurable, I group the informa-

tion into three categories: the interfaces’ role for the

product function (‘type’), their role for making,

changing, and unmaking of the product (‘reversi-

bility’), and their role with regard to substitutes

(‘standardization’). In each category, the correspond-

ing interface characteristic is assessed individually.

Like the function–component allocation, the interface

assessment investigates the characteristics of the

interfaces only on the determined hierarchy level.

3.2.1. Interface type

The interfaces’ roles for the product function, i.e.,

their types, are determined by their number and

distribution across the product, their nature, and their

intensity. Obviously, the simple count correlates to

some degree with the number of components the

product consists of (at the hierarchy level under

consideration). If the number of components is n, then

the number of interfaces is at least n–1 and at most

(n(n–1))/2; the former would be a string of compo-

nents, the latter a web of connections where every

component forms an interface with every other

component. This rather simple calculation assumes

that only one connection or interface exists between

two components and abstracts multiple or multi-

directional connections into a yes/no relationship.

The distribution of the interfaces provides addi-

tional information about the product architecture. For

example, if a component interacts with a significant

number of other components (relative to the total

number of components) there are two possible

explanations. First, the component may play a pivotal

role in the product architecture. It could signal a

central component, one that supplies general or central

functionality. This resembles what most researchers

understand as a product platform (Meyer and Lehnerd,

1997; Simpson, 2003). Second, the product architec-

ture under consideration may not be very modular, but

rather fragmented. A product architecture with

fragmented FCA styles is more likely to have many

components that show interactions with many other

components than a product architecture with modular

FCA styles.

Depending on the functionality of the components

participating in the interfaces under consideration, the

interfaces can also vary in their nature and intensity.

The interfaces’ ‘nature’ reflects the physical effects

that occur for the interface to play its intended role.

For example, an interface can transmit mechanical

force, electrical energy, or signals. It can also represent

a non-contact relation, e.g., the gap between fender

and hood of an automobile, or the signal transmission

between a wireless router and a wireless PC card. An

interface’s ‘intensity’ reflects its strength and desir-

ability with respect to its functional role, i.e., its

nature. To some extent this is a measure of the degree

of coupling, albeit for the functional role only. To

assess an interface’s nature and intensity I build on

work by Pimmler and Eppinger (1994), who have

developed a methodology for the analysis of product

design decomposition.3 After decomposing the pro-
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interfaces’ levels of reversibility (see next section).
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duct into components, the interactions between these

components are documented and coded in a matrix.

Four forms of interactions can be considered accord-

ing to Pimmer and Eppinger: (1) a spatial interaction

identifies needs for adjacency or orientation between

two elements, (2) an energy interaction identifies

needs for energy transfer between two elements, (3) an

information interaction identifies needs for informa-

tion or signal exchange between two elements, and (4)

a material interaction identifies needs for materials

exchange between two elements. They further suggest

specifying the importance and desirability, i.e., the

intensity, of the interaction on a five-point scale from

�2 to +2. The identification and scoring of each

interaction for each of the four forms results in a

matrix that has in each interaction field four numbers

between�2 and +2. The upper left corner contains the

number for the spatial-type interaction, the upper right

the number for energy-type interactions, the lower left

corner shows the number for information-type

interactions, and the lower right corner displays the

rating for material-type interactions. The upper

triangles in Fig. 6 show the interface matrices for

the two trailers. Empty cells can be interpreted as

being filled with zeros. Due to their mechanical

characteristics, most of the interfaces for both trailers

are spatial in nature. The only exception is the energy

and signal transmission from the towing vehicle to the

rear lights. Note that despite their very different FCA

schemes, both architectures exhibit a number of

similarities with respect to the type of interfaces.

3.2.2. Interface reversibility

The second interface characteristic that needs to be

analyzed is the interfaces’ ‘reversibility’. The notion

of various product changes over the product life, such

as upgrades, add-ons, adaptation, wear, consumption,

or reuse – which are often assumed as being one of the

major advantages of modular product architectures –

strongly depends on the reversibility of the interface.

The effort to reverse, or disconnect, the interface can

serve as a proxy to determine the reversibility of an

interface. This effort depends on two factors: first, the

difficulty to physically disconnect the interface, and

second, the interface’s position in the overall product

architecture.

Theoretically, every interface can be disconnected.

However, that modular product architectures have

strong interactions within modules and weak ones

between them implies that the weakness of these

relations can be translated into low efforts to reverse

(or disconnect) the interface. The repair of an outer

panel of an automobile door illustrates that the answer

to this question lies on a continuum. Consider a

conventional car door. The steel structure is welded

together before it is painted jointly with the car’s body-

in-white. In a final step, all trim parts are attached to

the door. Now suppose the outer panel is damaged in

an accident. To repair the outer panel all assembled

parts would have to be removed, the damaged door

outer panel would have to be cut, a new outer panel

would have to be welded to the other door panels, the

door would have to be repainted, and the components

would have to be reassembled. Contrast this with a

door architecture, where the outer panel is not part of

the load carrying structure and not welded to it, but

attached with a mechanism that is relatively easy to

disconnect (e.g., screws). Not only can the door outer

panel be replaced without first removing many other

parts, the reversible attachment mechanism also

reduces the level of skills and specialized equipment

required to remove the damaged part and to attach the

new one. Consequently, the overall effort to dis-

connect – or reverse – the interface between the outer

panel and the rest of the door is lower for the

alternative door architecture than for the conventional

door architecture. This example demonstrates that the

level of an interface’s reversibility depends not only on

its own technical specifications (skill and equipment

requirements) but also on its position within the
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Criteria to assess effort level to disconnect interface

Score 1 (low) 2 (medium) 3 (high)

Tool requirements None Generic Special

Time to disconnect (s) <10 10–60 >60

Examples Snap-fit connection Nut–bolt connection Weld bond



overall product, i.e., how deep it is ‘buried’ in the

product. Similar efforts are to be expected for other

product changes during product use, i.e., add-ons,

upgrades, changes during the use phase, and replace-

ment of worn or consumable components.

For the purpose of comparatively measuring the

interfaces’ reversibility, I suggest assigning two values

to each interface. Note that others have suggested

similar measures to assess disassembly efforts for

recycling (e.g., Das et al., 2000). The first value

represents the difficulty involved in disconnecting the

interface. Its score corresponds to the time and tools

required to disconnect the interface (Table 1). The

second value represents the depth in which an

interface is ‘buried’, how many other units have to

be removed before a disconnection of the interface is

possible. This score is specified in fractions of total

number of components (on the hierarchy level under

consideration) (Table 2). Both values should be

assigned with the comparative purpose in mind.

The results for the two example trailers are shown

in the lower triangles of the matrices in Fig. 6. With

respect to the difficulty to reverse most of the

interfaces, the two trailer concepts are very similar.

For both product architectures, the difficulty can be

considered to be relatively low, primarily because of

the use of mechanical fasteners (only bed and hitch of

trailer 1 are assumed to be welded together). Due to

the relatively small number of components, none of

the designs exhibit significant ‘depth’ in which some

of the interfaces could be ‘buried’. Note, however, that

a component like the Upper Half of trailer 2 has an

above average number of interfaces. If this component

needed to be replaced, it would require disconnecting

all relevant interfaces.

3.2.3. Interface standardization

The third interface category is concerned with the

interfaces’ roles regarding component substitutes and

product families. This interface characteristic

deserves particular consideration, because it is critical

if one pursues product variety through component and

interface standardization. A common idea about

modular product architectures is the relative ease

with which an inter-module interface is supposed to

allow an exchange of sub-units. This ‘ease’ has two

components. The first is the interface’s reversibility

(which was covered in the previous section), and the

second is the degree to which there are alternatives for

an exchange. The latter one is the subject of this

section.

As discussed in the section on existing models,

some researchers have used different types of

component interchange to categorize different types

of modularity. Component swapping, component

sharing, fabricate-to-fit, bus, and sectional are often

used characterizations (e.g., Kusiak, 1999; Pine, 1993;

Ulrich and Tung, 1991). However, the extent to which

an interface allows this interchangeability of compo-

nents is a matter of the unit-of-analysis choice. For

example, component swapping modularity and com-

ponent sharing modularity do not describe the

interface itself, but rather the alternatives that exist

on either side of the interface. If one component is

defined as the one remaining in the system (often the

larger one) and the interface allows the exchange of

the other one, then the term component swapping is

used. On the other hand, if the larger one is exchanged

(i.e., the reference switches to the smaller one) the

term component sharing is used. Consider the

interface between a lamp and a light bulb. If the light

bulb is exchanged (say, with onewith a different color)

and the same lamp kept, it is called component

swapping. If the same light bulb is used in a different

lamp, however, it is called component sharing. Note

that the technical characteristics of the interface can be

identical in both cases. Thus, the use of these terms

depends on which component is chosen as the

reference system.

If the chosen reference system offers similar

interfaces in various locations, the term bus mod-

ularity has been applied. Examples are electrical

systems, shelving systems with rails and the bus

systems used in computers. If the standardization is

taken one step further, it allows the connection of

every unit with every other unit. This is what is meant

by sectional modularity. One example would be
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Score Fraction of total product components

that needs to be removed prior to the

interface disconnection (%)

1 (low) <10

2 (medium) 10–33

3 (high) >33



LEGO blocks, others include piping fittings or

sectional sofas.

These examples illustrate two insights. First, they

support the separate determination of function–

component allocation and interface characteristics

that this framework introduces, because identical

interfaces can be found in different function–

component allocation schemes, and a single func-

tion–component allocation scheme can exhibit multi-

ple, different interface types. The features discussed in

this section are characteristics of particular interfaces

rather than the product architecture as a whole.

Second, the extent to which an interface can be

considered standardized from each component’s

perspective is key to assessing its role in a product

family.

To identify the interfaces’ role with respect to

component interchangeability, I suggest a mapping

tool that describes an interface from the perspectives

of both components ‘involved’ in the interface

(Fig. 7). One extreme, the lower left corner, indicates

interfaces where there are very few alternatives to

replace or substitute either one of the components

(e.g., at a space station). The other extreme, the upper

right corner, locates interfaces where multiple

replacements or substitution options exist for both

components (e.g., LEGO blocks). The map’s center

locates interfaces like the lamp/light bulb combina-

tion. A case of an interface where there are many

alternatives for one component but very few for the

other (upper left corner or lower right corner) can be

imagined as a separate electrical system with a unique

voltage (e.g., on a boat or at a remote house). The level

of interface standardization increases from the lower

left to the upper right corner of the map.

Fig. 7 shows the interfaces for the major functions

of the two trailer examples. Each icon characterizes

the alternatives on each side of an interface, separately

one per function. Not knowing the product families

that could surround these example trailers, it is

assumed that the functions of trailer 1 exhibit a higher

level of reusability across a product family than those

of trailer 2. The reason for this is that it is more likely

for those components that carry the functions to find

use in other designs for trailer 1 than it is for trailer 2,

the latter showing a higher level of idiosyncrasy.

However, the level of standardization is not homo-

genous across either product architecture. For exam-

ple, while the component for trailer 2’s function

‘support cargo loads’ is very unique, the components

providing the function ‘minimize air drag’ can be

viewed as also being usable for a similar but slightly

different trailer, and the component corresponding to

the function ‘transfer loads to road’ is exactly as

standardized as the one of trailer 1.

3.3. Pulling it all together: product architecture

maps

Together with the function–component allocation

data, the interface information completes the descrip-

tion of the product architecture. Consequently, adding

the information for all three interface dimensions to

the function–component allocation map results in the

product architecture map. These product architecture

maps show in their x–y plane how the functions are

allocated to the components. Independent from that,

and independent of each other, the different interface

dimensions are shown along the vertical axis (z).

These product architecture maps serve as a graphic

representation of the complete product architecture

description. They allow quick visual references of

similarities and differences of the analyzed product

architectures. Fig. 8 shows the maps for the two

trailers. Note that for these pictorial representations,

the measures for each of the three interface

characteristics have been aggregated per function, if

necessary.

The suggested product architecture assessment

framework can serve as the nexus for creating the

linkages between decisions in the domains of product,

process, and supply chain. The next section provides

an illustration of how the framework can be used to

identify (a) the linkages themselves and (b) how to use

this knowledge for trade-off analyses.

4. Illustration

To demonstrate how the product architecture

coordinates decisions across product, process, and

supply chain domains, a car door is introduced as an

example product. The vast majority of today’s car

doors are constructed as a shell-shaped structure,

welded together from stamped steel components

(product architecture A in Fig. 9).
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The stamping manufacturing process requires

expensive dedicated tooling (stamping dies). One

possibility to reduce unit costs is to spread these fixed

costs over larger production volumes. This is the

underlying idea of strategies to use product platforms

or common components. To be able to use a

component across multiple products, however,

requires that this component provides the functionality

satisfactorily for each product of the product family. In

the product architecture assessment framework, the

function–component allocation style for a reused, i.e.,

common, component should ensure that the compo-
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Fig. 8. Product architecture maps.

Fig. 7. Interface standardization.



nent provides the function under consideration as

completely as possible, and is involved in additional

functions as little as possible. Modular-like or

integral-consolidated FCA styles are best for this

purpose.

For the case of the car door, suppose the function

‘structure’ has been identified as a candidate to be

common across a product family or multiple product

generations. In case of product architecture A, the

function ‘structure’ is located in the region of integral-

complex FCA styles. In contrast, product architecture

B exhibits for the function ‘structure’ a FCA style

more towards the left of the FCA plane (Fig. 10). Note

that product architecture B is otherwise almost

identical to product architecture A. It employs the

same material (steel) and the same manufacturing

technologies (stamping, welding) for its construction

as product architecture A, while exhibiting the same

interface characteristics (Fig. 9). Note also that both

door designs are based on real car doors. They are

comparable in functionality and performance. For the

conventional design numerous crash tests have

demonstrated its safety performance. Doors with the

design of product architecture B have not been mass

produced yet, but crash tests with prototypes have

demonstrated that it is comparable (if not superior)

with regards to its safety performance (Townsend et

al., 2001).

To illustrate how the product architecture, in this

case the FCA style of the function ‘structure’, links

decisions across domains, consider the implications of

the use of common components in production for

engineering analysis in product design. Using com-

mon components across product families (in this

example, one could envision that the inner structure of

the door, the cruciform, is used for similar related

vehicle programs) requires the engineering analysis of

this component to be extended to incorporate all

possible applications for its multiple uses across the

product family. In other words the number of

constraints for designing this component has now

been increased, making the design process more

complicated. In a case of a car door structure for a

sports car of a North American auto maker, this effect

has caused a delay of several months with respect to

the completion of the design work. Fig. 11 illustrates

how the decisions for common parts in production on

one hand and higher levels of complexity in product

development on the other are linked through the

product architecture.
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The door architecture B also illustrates a second

case of decision coordination across domains via the

product architecture. A postponement (or late custo-

mization) strategy in a supply chain requires moving

the point at which a product becomes unique as much

as possible towards the end of the supply chain, i.e.,

towards the customer. Suppose the car door is now

offered in multiple colors. Color is represented by the

function (or attribute) ‘aesthetic appearance’. This

function is provided by the door outer panel. Ideally,

one would want to keep the outer panel and the rest of

the door separate to ensure pooling effects for the

common components. The welding manufacturing

process, however, has to be applied prior to painting

for it otherwise destroys the paint. If, however, a

different joining technology between the color

providing component and the rest of the product is

used, e.g., a mechanical fastener, then the process

sequence could be reversed and the differentiation

point could be moved towards the customer. The

change from a welded connection to one using

mechanical fasteners is captured by the product

architecture characteristic ‘interface reversibility’ of

the function ‘aesthetic appearance’ (Fig. 12). While

this change in interface reversibility makes the

reversal of operational sequences for the supply chain

possible, it also signals a change in the assembly

processes used in the manufacturing process domain.

Fig. 13 illustrates the coordinating role of the product

architecture for this example.

The situations in both of these example cases

require coordinating the decisions across the domains.

Trade-off analyses that compare, for example, the cost

savings through component commonality with longer

product development times or that compare risk

pooling in the supply chain with the additional cost for

a more expensive joining mechanism can help to

identify solutions that are optimal across the entire

supply chain. The product architecture serves as the

connection point for these trade-off analyses, and the
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Fig. 10. Product architecture change in the FCA scheme.



product architecture assessment methodology pre-

sents a structure to which cost models and similar tools

can be connected (Fixson, 2004).

5. Conclusion and future research

Many of today’s companies are operating in market

environments in which customer populations are

becoming more heterogeneous and product life cycles

are steadily shortening. Higher levels of demand

variety and less time to get it right increase the weight

of decisions made early in the product development

process on the success or failure of a product. Ideally,

one would want to make the consequences of these

early design decisions on all steps in the value chain

visible. A central element for such an approach is a

comprehensive operationalization of the product

architecture concept. In this paper I provide such an

operationalization by developing a multi-dimensional

descriptive product architecture framework. This

framework integrates insights from literature streams

on new product development, operations manage-

ment, and supply chain management. This framework

can serve multiple purposes in management and

research.

Managers can apply the product architecture

framework in three ways. First, they can use it as a

guideline to focus on design decisions critical for the

product and company under consideration. For a

planned product and operation strategy, it can help to

identify those architectural characteristics that need to
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be focused on during early product design to best serve

that strategy. The second way in which the product

architecture framework can help constitutes the

reverse situation. It can help to explore the advantages

and limitations of various operational strategies for

given product architectures. For example, in conjunc-

tion with other evaluation tools (e.g., cost analyses),

the framework can help to make the price visible that

is to be paid for selected operational strategies while

using certain product architectures. Third, the frame-

work can help to improve a company’s strategy

planning capabilities over time. Using the framework

in one or both of the ways described above will help to

develop a deeper understanding about the ways in

which product architecture choices are linked to many

decisions across the domains of product, process and

supply chain. With help of scenarios the possibilities

and limits of different product architectures could be

explored.

While the product architecture framework pro-

duces promising results in the research realm, the

work is in its early stages, and more research remains

to be done. Three major avenues for future research

can be identified. First, more data points could help

test the product architecture framework, both con-

cerning the detected differences in product architec-

ture and concerning their linkages across the domains

of product, process, and supply chain. Such studies

could compare products within and across industries,

or tie them to performance measures of interest, i.e.,

cost, revenues, time, quality, etc.

Second, as the examples have illustrated, some

architectural features are beneficial for some process’s

performance but can create penalties for the perfor-

mance of another, e.g., inventory savings vs. addi-

tional manufacturing costs. It is very likely that some

of the cross-domain effects involve more than two

decisions. Moving towards a more holistic view of the

entire value chain will require trade-off models

capable of dealing with higher levels of complexity.

Third, the framework could be applied to study

product architecture change over time. Successive

generations of a product could be described and

measured to investigate whether there are patterns in

which product architectures evolve. It has been

claimed that many products are becoming increasingly

modular. I conjecture that the real picture is more

complicated. There are multiple forces working

simultaneously (improvements in product technology

and manufacturing processes, ratio of provided to
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requested product performance, increasing intercon-

nection between formerly distinct products, etc.) and

the resulting direction of the product architecture

appears not necessarily to be always more modular.

The framework presented in this paper could help to

uncover some of the ways in which product

architectures change over time.
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