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Abstract 

Regions of the proximal femur with less adaptive protection by mechanical loading 

may be at increased risk of structural failure. Since the size and location of these 
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regions diverge from those defined by the DXA manufacturers the purpose of this 

study was to compare areal bone mineral density (aBMD) of different regions of the 

proximal femur considering impact loads from physical activity (PA). 

The participants were 134 young adults divided into two groups according to the 

impact of PA performed in the last 12 months: high-impact PA (HPA) and low-impact 

PA (LPA). The aBMD of the proximal femur was assessed by DXA at the standard 

femoral neck (FN), intertrochanter, and trochanter, and at specific locations of the 

superolateral femoral neck (SFN) and intertrochanteric regions (ITR). The Bone-

specific Physical Activity Questionnaire was used to estimate the impact load of PA. 

Comparisons between groups were adjusted for body height and body lean mass. 

Interaction analysis between sex and PA groups were conducted with ANCOVA. 

Comparisons of aBMD between bone regions were analyzed separately for men and 

women with repeated measures ANCOVA. In the HPA group, men benefit more than 

women at all bone regions, except the aBMD at ITR. Analyses of repeated measures 

did not reveal any significant interaction effect between bone regions (standard vs. 

specific) and PA groups (low vs. high-impact). In conclusion, aBMD differences due 

to mechanical loading were more pronounced in men than in women; the magnitude 

of the aBMD differences as a result of different levels of PA was similar between 

standard and localized regions. 

 

 

Keywords Bone density, BPAQ, Sex, Physical activity, Proximal femur, Superolateral 

neck  
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Introduction 

Bone fragility is one of the determinants of fractures occurring in the absence of 

trauma or as a result of a low trauma, typically following a fall from standing height or 

less. These fractures are due to a decreased resistance to loading forces, i.e., a 

decrease in bone strength (1, 2). Bone strength describes the whole integrity of the 

bone and involves the bone material properties (organic and inorganic components), 

cellular activity, and bone structural properties (micro- and macroarchitecture) (3). 

However, the inorganic composition, expressed as areal bone mineral density 

(aBMD, g/cm2) and measured using dual-energy X-ray absorptiometry (DXA), is the 

main clinical criteria to evaluate the risk of fragility fractures.  

According to the recommendations of the International Society for Clinical 

Densitometry, the assessment of bone fragility by DXA is conducted in the standard 

regions of the spine, femur, and radius namely in the lumbar spine, in the total 

proximal femur or femoral neck, and, in certain circumstances, in the 33% radial site 

(4). Recent evidence suggests, however, that assessment of bone fragility in other 

regions of the proximal femur may present a greater discrimination of fracture risk 

(5). These other regions are identified through computational anatomy using 

statistical parametric mapping techniques to compare 3D density values (obtained by 

quantitative computed tomography; QCT) between subjects with and without hip 

fractures. This approach allows to identify focal bone loss in ageing as a predictor of 

fracture (6-8) and consequently may contribute to a greater anatomical focus of anti-

fracture interventions such as exercise or physical activity in the most vulnerable 

regions of the proximal femur. 

Li et al. were the first to use this approach to identify proximal femoral tissue 

elements with the highest association with hip fracture (9). The authors showed that 

bone density differences were not uniformly distributed. The greatest differences 

were found in the superomedial quadrant of the femoral head, in the superolateral 

half of the femoral neck, and in the central region of the intertrochanter; bone mineral 

density measured in such regions discriminated hip fracture risk better than bone 

mineral density in standard anatomic regions (9). Using the same approach, other 

regions with bone mineral deficit have been identified in women with hip fracture, 

namely the inferomedial region of the femoral neck (10). However, this region, as 

opposed to the superolateral neck, appears to be relatively well preserved with 

mechanical load associated with the usual activities of daily living. 
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These observations suggest that bone regions of the proximal femur at high risk of 

fracture may correspond to regions that are less mechanically stimulated during 

habitual load bearing. These regions are anatomical sites where tensile forces seem 

to predominate (lateral side) compared to compression forces that act on the medial 

side (11) (Figure 1). However the proximal femur appears to work principally in 

compression and not in bending-induced tension (12) due to the predominant 

physical activity in humans that is gait. These tensile forces are associated with more 

intense activities than gait (13). 

Several studies have elucidated the importance of weight bearing physical activity 

and exercise in the material and structural properties of the growing skeleton in both 

sexes (14). These studies have not been conducted to elucidate whether the 

observed benefits occur in the most vulnerable regions of the proximal femur, 

particularly in those sites that have to withstand the forces generated from a lateral 

fall, the direction of the fall with the highest probability of fracture of the proximal 

femur (15).  

Other studies exploring regional adaptation of the femoral neck to physical exercise 

have identified heterogeneous adaptation, with adaptation principally occurring at the 

inferior, anterior, and posterior regions but not at the superior region of the femoral 

neck in young adult females athletes from distinct sports (16) or with small 

differences in the superior region in older men who participated in a home-based 

impact exercise intervention (unilateral hopping) during 12 months (17). Given the 

heterogeneity of the effects of physical activity/exercise on the proximal femur, it is 

necessary to identify programs capable of strengthening the regions that most 

predispose to hip fracture (18). 

The identification of vulnerable regions to fracture as well as the evaluation of the 

possibility of the exercise or physical activity to prevent this vulnerability is only 

possible using 3D images obtained by CT technology. However, the estimation of 

fracture risk will probably continue to be performed by DXA due to increased CT 

radiation in routine clinical practice. In this context, the purpose of this study was to 

compare the aBMD of different bone regions of interest in the proximal femur in 

young adults with different impact loads in this area of the skeleton, particularly 

aBMD of standard regions and those proposed by Li et al. (9). As described by 

Wolff’s law (19), the mechanisms that control bone modeling and remodeling should 

help to maintain bone mineral mass in regions that are highly stressed during 
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habitual daily activity. Therefore, it is likely that people with a higher level of intensity 

in day-to-day activities will present greater differences in bone mineral density in the 

bone regions that are most exposed to tension forces, that is, in the localized regions 

proposed by Li et al. (9) compared to the standardized regions defined by DXA. This 

is an exploratory study to analyze the added value of specific regions in the 

evaluations of the proximal femur through DXA. 

 

Figure 1 

Material and Methods 

Participants 

The recruitment of participants was performed by direct contact, mailing, social 

networking, and a web site posting at the University of xxxx. Initially, 143 participants 

were recruited, of which nine participants were excluded because of problems related 

to completing the Bone-specific Physical Activity Questionnaire (BPAQ) (20). Finally, 

134 young adults aged 20 to 35 years were allocated into two groups according to 

the impact of physical activity performed in the last 12 months having a median of 8.3 

as the separation value: high-impact (HPA, n=68) and low-impact (LPA, n=65) 

groups. In the HPA group all participants presented current BPAQ scores between 

10 and 154 while in the LPA group 62 participants had scores ≤1, one participant had 

a score of 3 and 2 participants a score of = 8. Each group was further subdivided 

according to sex. Therefore, four groups were established: 1) women with LPA 

(n=31) and HPA (n=25) and men with LPA (n=33) and HPA (n=45). 

To be included in the study, all participants needed to be healthy, Caucasian, young 

adults (aged 18 to 35 years), not taking any medication affecting bone metabolism, 

and with no hip fracture in the past.  

All the women were eumenorrheic with menstrual cycles between 21 and 35 days. 

Information on reproductive health was acquired through a questionnaire. Informed 

consent was obtained from each participant. The study design, protocol, and consent 

forms were prepared in accordance with the Helsinki Declaration of 1964 (revised in 

Fortaleza, 2013) and were reviewed and approved by the Ethics Committee of the 

xxxxxxxx.  

 

Body size and composition 
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Height was measured using a stadiometer to the nearest 0.1 cm (Seca 770, 

Hamburg, Germany). Then, the participants were weighed using a scale to the 

nearest 0.1 kg (Seca Alpha model 770, Hamburg, Germany); they had been in a 

fasting state for at least 4 h and were weighed without shoes and with minimal 

clothing. Body mass index was calculated as weight in kilograms divided by square 

height in meters. Total body fat mass (kg, %) and lean soft tissue (kg) were 

determined by DXA (QDR Explorer, version 13.3:3 Hologic, Waltham, MA, USA) with 

subjects fasted. All DXA scans were performed by the same technician and strictly 

standard protocols for positioning and analysis defined by the manufacturer were 

followed. 

 

Bone measures 

The aBMD of the proximal femur was assessed by DXA (QDR Explorer, version 

13.3:3 Hologic, Waltham, MA, USA), by the same technician who also calibrated the 

device following the manufacturer’s guidelines. After recording the aBMD results of 

the standard regions of interest defined by the manufacturer, namely the femoral 

neck, the intertrochanter, and the trochanter (Figure 2A), a manual analysis of each 

hip scan was performed to delimit the regions proposed by Li et al. (9), i.e., the 

superolateral neck and the intertrochanteric region. Although the femoral head was 

also proposed by Li et al. (9) it was not considered in the present study because of 

the overlap with the acetabulum. 

To delimit the superolateral neck region, the inferomedial neck box line was 

displaced up toward the proximal femur axis to reach the midline, and the 

superolateral neck box line was moved to draw a box of 15x15 mm; this box was 

then positioned at the lower part of the femoral head (Fig. 2B). For the 

intertrochanteric region, the superolateral neck box line was moved up to reach the 

midline, and the inferomedial neck box line was moved to form a box with a size of 

15x15 mm; the upper border of this box was placed in the mid-distance between the 

lower border of the neck and the lowest point of the hip axis length (Figure 2C). The 

coefficients of variation in measuring the aBMD of the different regions of interest 

were estimated from two measurements by repositioning and scanning 29 subjects 

and were less than 1.6% (femoral neck: 1.5%; intertrochanter: 1.3%; trochanter: 

1.4%; superolateral neck: 1.6%: intertrochanteric region: 1.4%).  

Figure 2 
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Physical activity 

The BPAQ was developed by Weeks et al. (20) to estimate the mechanical loading 

impact associated with physical activity in healthy young adults. Methodological 

considerations have been previously published (11). Loading intensity, years of 

participation, and frequency were weighted using two approaches according to the 

osteogenic index developed by Turner and Robling (21). To calculate current BPAQ 

(cBPAQ), all activities practiced on a regular basis over the 12 months previous to 

testing were taken into account according to the following algorithm: 

cBPAQ=(R+0.2*R (n-1))*a.  

where R is the effective load stimuli derived from ground reaction forces testing, n is 

the weekly frequency of participation in sports activity, and a is the weighting factor 

for age; given the age of the sample was used a weighting factor of 1.1. 

For the past BPAQ (pBPAQ, birth to 12 months prior to testing), the algorithm was 

estimated as follows: 

pBPAQ=R*y*a 

where y is the number of years of participation in sports activity and a is a weighting 

factor for the age of sport participation (0.25 for ages up to15 years and 0.10 for 

higher ages).  

Finally, total BPAQ (tBPAQ) was calculated as the sum of pBPAQ and cBPAQ. 

Equivalences of mechanical loading intensity were applied to sports that were not 

included in the original database; for instance, handball was considered equivalent to 

basketball, and rhythmic gymnastics was considered comparable to dance (22). The 

conversion of the raw BPAQ data into an individual score that reflects total bone-

relevant sports activity history was done through the BPAQ online calculator 

(www.fithdysign.com/BPAQ/). 

 

Statistical analysis 

All data were analyzed using the Statistical Package for the Social Sciences version 

22.0 for Windows (SPSS Inc., Chicago, IL, USA), and significance was set at P<0.05.  

Mean, standard deviation (SD), and standard error (SE) are given as descriptive 

statistics. Kolmogorov-Smirnov tests were performed showing a normal distribution 

pattern of quantitative variables. Univariate analyses of variance were used to 

examine differences among groups for age, body composition, and physical activity 

variables. Analyses of covariance controlling for body height and lean mass were 
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used to test for main effects and interaction between sex and impact physical activity 

on aBMD of bone regions of interest. Repeated measures ANCOVA controlling also 

for body height and body lean mass were performed to test for interaction between 

bone sites (std-femoral neck vs. Li-superolateral neck region; std-inter-trochanter vs. 

Li-intertrochanteric region) and physical activity groups (low vs. high-impact) on 

aBMD, separately for both sexes.  

 

Results  

Participant descriptive characteristics are provided in Table 1. All groups of 

participants revealed similar age and tBPAQ. HPA men were heavier and taller and 

presented more lean and less fat masses than the other groups (all P<0.05), 

whereas LPA men were also heavier and taller, with more lean and less fat masses 

than LPA women. With the exception of cBPAQ, no differences were found between 

LPA and HPA women regarding age and body composition.  

Table 1 

Main and interaction effects of sex and physical activity on aBMD of DXA standard 

bone regions and bone regions proposed by Li et al. (9) adjusted for body height and 

body lean mass are depicted in Table 2. The interaction between sex and physical 

activity impact groups was significant for all bone regions (P<0.05), with the 

exception of intertrochanteric region (as described by Li et al. (9). At important 

skeletal sites in the HPA group, men benefit more than women, as illustrated in 

Figure 3. Men showed higher aBMD than women in two out of five skeletal sites. The 

femoral neck at both locations were the variables that showed differences between 

the sexes. In turn these same variables were those that did not show differences 

between the LPA and HPA groups.  

Table 2 

Figure 3 

Analyses of repeated measures controlling for body height and body lean mass were 

performed to test for interaction between bone regions (std-femoral neck vs. Li-

superolateral neck aBMD; std-inter-trochanter vs. Li-intertrochanteric region) and 

physical activity groups (low vs. high-impact) on aBMD, separately for both sexes 

(Figure 4). It was not observed any interaction effect.  

 

Figure 4 
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Discussion 

The aim of this study was to analyze the adaptation of different regions of the 

proximal femur to impact loading from physical activity in young adults. To this end, 

we compared aBMD differences of several (standard and new) bone regions of 

interest in the proximal femur between men and women with different mechanical 

intensity levels of physical activity. All bone regions showed higher aBMD in men and 

women from the HPA groups than their LPA counterparts, and the most pronounced 

differences were between men than between women. In women, specific regions 

revealed greater aBMD differences than the standard regions (10.1 - 11.4% vs. 5.5 - 

6.3% aBMD diff between LPA and HPA groups, respectively), however there were no 

significant combined effects (bone region x physical activity group).  

Li et al. (9) identified critical regions inside the proximal femur through a voxel-by-

voxel statistical comparison (statistical parametric mapping) between patients with 

fractures and controls using 3D images obtained from QCT. The critical regions 

identified by these authors were localized superiorly and internally in the femoral 

head, superiorly in the femoral neck, and inside the intertrochanteric region. Using 

DXA, which is a rapid, safe, and accessible technique for clinicians and researchers 

(23), our results were not able to show that the critical regions (foci of bone loss) 

suggested by Li et al. (9) coincide with the highest aBMD differences associated with 

the mechanical intensity of physical activity. These results do not agree with the initial 

assumption of the present study that the most relevant regions have smaller size 

(localized) and are placed where tensile forces from mechanical loading are greater. 

According to these observations, DXA evaluation of proximal femur regions proposed 

by Li et al. (9) does not seem to be an added value to identify or monitor bone 

weakness/strength, despite the evidence that standard DXA examinations may not 

provide an accurate representation of highly localized adaptations caused by 

mechanical stimulus (24-25). 

The inferomedial neck is another region of the proximal femur that is pointed out as 

critical for the predisposition to fracture, particularly for trochanteric fracture (26). 

Older women with hip fracture seem to present a deficit of cortical BMD not only at 

the upper but also at the lower compartment of the femoral neck, a primary load-

bearing region (10, 26). The inferomedial neck was not included in the present study 

because it was intended to compare the magnitude of aBMD differences between 

adults with different physical activity history relevant to the proximal femur. This 
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specific region appears to show minor differences not only between younger and 

older people (10) but also between more and less active people although aBMD is 

always higher in the inferomedial than in the superolateral neck (22).  

Whether there is a sex-dependent bone response to physical activity is currently an 

open research question. Although animal studies (25) and some studies with tennis 

players (27) suggest that bone tissue is less responsive to loading in females than in 

males because of estrogenic effects (28), human studies in general suggest similar 

skeletal response in both sexes (29), or were unable to elucidate sex differences 

(14). However, have been described a lower response to physical activity in girls than 

in boys at ages where estrogen production is inhibited or is low (30-32). Moreover, 

the effect of physical activity on the proximal femur does not seem to be 

homogeneous throughout all bone regions in girls (33). Cardadeiro et al. (33) 

observed that more active pre- and peripubertal girls had greater aBMD in the 

trochanter and intertrochanter than in the femoral neck regions, whereas more active 

boys did not demonstrate any difference between the proximal femur regions, i.e., all 

regions seemed to benefit equally. However, differences between boys and girls in 

bone mass distribution among the proximal femur regions may be better explained by 

bone geometry and not by differences in responses to sex-specific physical activity 

(14, 34). 

Focusing on sex and physical activity interactions, the current study revealed that in 

general, men benefit more than women from physical activity with high-impact 

loading. While in the LPA groups no differences of aBMD were observed in any bone 

region between men and women, in the HPA groups these differences were 

evidenced between sexes. Despite the fact that men presented similar scores to 

women in the cBPAQ, it seems the male skeleton is more responsive to mechanical 

loading or, for the same amount of high-impact physical activity, the mechanical load 

is greater in men than in women probably because of a greater muscle mass in 

action. The bone was subjected to greater loads in the HPA than in the LPA group as 

the bones in the former group are associated with higher production of muscle forces 

(peak vertical ground reaction forces x rates of force application) (20), particularly 

when knee and hip extension occurs (13, 24). However, the study did not capture a 

more localized response arising from high-impact physical activity to strengthen the 

proximal femur to reduce hip fragility, particularly at the superolateral aspect of the 

femoral neck, a relatively unstimulated region by routine mechanical load (9, 35-38). 
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The present study has some limitations. As with all cross-sectional studies, this work 

does not permit the inference of causal relationships. Categorization of the 

participants by mechanical loading intensity was based on a physical activity 

questionnaire that generates scores according to load magnitude and loading rate 

(BPAQ) (20). Despite not being an objective evaluation, this approach allowed us to 

collect information from an extended period (12 months and lifetime), which 

otherwise would not be possible. Correlations adjusted for body height and lean 

mass between the bone variables and physical activity were superior with the cBPAQ 

(r = 0.205-0.344 in women, r = 0.345-0.499 in men) than with the tBPAQ (r = 0.197-

0.267 in women, r=0.060-0.095 in men) particularly in males (data not shown), and 

therefore, the division of participants by groups was performed according to the 

cBPAQ. Greater associations of bone variables with cBPAQ than with tBPAQ may be 

due to differences between the patterns of bone-relevant physical activity in 

adulthood and youth and differences in maturation between sexes not equated in the 

formula of the tBPAQ (20). Higher activity according to the exposure to the 

mechanical load without taking into account either the type or direction of force may 

however not be sufficient to capture potential differences between specific bone 

regions induced by specific mechanical stimuli (18). Yet, the score obtained by each 

participant in physical activity, is representative not only of the various types of 

physical activities practiced throughout life (tBPAQ) or in the last 12 months (cBPAQ) 

but also of the duration of participation in each of the physical activities, and the 

phase of the life cycle in which physical activities were practiced. In this sense, the 

score expresses the osteogenic potential of physical activity history according to the 

mentioned parameters.  

Another limitation of the study was the definition of the size and location of the 

regions identified in 3D (QCT) in 2D images (DXA) and, consequently, the 

correspondence between bone regions of interest obtained by the two types of 

equipment. In this study, the new DXA regions of interest were delimited using box 

lines and sizes of the DXA analysis software and with reference to anatomical 

markers. The use of anatomical markers (proximal femur axis, lower part of femoral 

head, lower border of the neck and lowest point of hip axis length) ensured a 

standardized location for the new DXA regions of interest in all participants. The size 

of these regions (15x15 mm) may, however, represent a variable portion of bone, 

overestimating the aBMD in those with larger bones. This methodological limitation 
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happens for all aBMDs assessed by DXA and usually is corrected having body height 

as covariate, as was done in this study. The absence of an interaction between bone 

regions x physical activity groups may also be due to the lack of sensitivity of DXA to 

assess bone density. The assessment of aBMD by DXA does not translate into a real 

bone density because it is a technology that projects in 2D a 3D bone structure. 

Unlike DXA, QCT measures bone density using 3D and thus is a more accurate 

method. 

In conclusion, the aBMD differences due to mechanical loading were more 

pronounced in men than in women; the magnitude of the aBMD differences as a 

result of different levels of physical activity was similar between the superolateral 

femoral neck and intertrochanteric regions identified by Li et al. (9) and the standard 

regions defined by the DXA manufacturers.  
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Figure 1. Orientation of the trabecular structure (compressive and tensile trabecular 

groups and greater trochanter group) in accordance with mechanical loading (body 

weight) applied to the proximal femur, adapted from Geraldes et al. (13). 

 

 

 

Figure 2. Bone regions of interest: (A) DXA standard regions: 1, femoral neck; 2, 

trochanter; 3, intertrochanter; (B-C) regions proposed by Li el al (9): B, superolateral 

femoral neck; C intertrochanteric region. 
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Figure 3. Interaction effects of sex and impact physical activity on aBMD of DXA 

standard bone regions and bone regions proposed by Li et al. (9) adjusted for body 

height and body lean mass. 
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Figure 4. Interaction effects of bone region and impact physical activity on aBMD 

adjusted for body height and body lean mass. 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 19 

 

 

 

Table 1. Descriptive characteristics of the participants (Mean±SD). 

  Low PA High PA P-Values 

Age (yrs) 

   Females 24.0±3.6 23.0±3.6 1.000 

Males 24.0±3.1 22.1±4.8 0.174 

P-value F vs. M 1.000 1.000   

Body mass (Kg)       

Females 58.3±8.4 62.1±9.7 1.000 

Males 70.4±8.2 77.0±14.7 0.058 

P-value F vs. M <0.001 <0.001   

Body height (cm)       

Females 162.2±5.3 165.4±6.6 0.328 

Males 174.1±6.6 177.9±5.9 0.046 

P-value F vs. M <0.001 <0.001   

BMI (Kg/m²)       

Females 22.2±3.3 22.6±2.6 1.000 

Males 23.2±2.5 24.3±4.0 <0.001 
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P-value F vs. M 0.460 <0.001   

Body Fat Mass (Kg)        

Females 16.2±6.0 15.9±5.7 1.000 

Males 12.3±6.4 10.7±6.0 1.000 

P-value F vs. M 0.060 0.005   

Body Fat Mass (%)        

Females 27.4±6.6 25.3±6.2 1.000 

Males 17.2±6.9 13.4±4.5 0.038 

P-value F vs. M <0.001 <0.001   

Lean Soft Tissue (Kg)      

Females 39.8±4.9 43.5±6.0 0.317 

Males 55.1±6.3 66.4±9.1 <0.001 

P-value F vs. M <0.001 <0.001   

Current BPAQ       

Females 0.1±0.2 19.9±10.9 <0.001 

Males 0.7±1.9 17.8±7.9 <0.001 

P-value F vs. M 1.000 0.158   

Total BPAQ       

Females 13.9±24.0 25.7±18.8 0.481 

Males 15.2±38.1 20.4±10.1 1.000 

P-value F vs. M 1.000 1.000   

PA, physical activity; BMI, body mass index; BPAQ, bone-specific physical 

activity questionnaire 

 

 

Table 2. Main and interaction effects of sex and physical activity on aBMD (g/cm2) of 

DXA standard bone regions and bone regions proposed by Li et al. (9) adjusted for 

body height and body lean mass (Mean±SE). 

 

 

 Sex  Physical Activity  Sex 

x PA 

 Females Males p Low 

impact  

High 

impact 

p p 

Std-Trochanter 

BMD 

0.826±0.02

2 

0.862±0.01

7 

0.28

8 

0.779±0.01

6 

0.910±0.01

5 

<0.00

1 

0.02

1 
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Std- FN BMD 1.001±0.02

6 

1.012±0.02

0 

0.00

1 

0.941±0.01

9 

1.072±0.01

8 

0.164 0.02

1 

Std-Inter-

trochanter 

BMD 

1.257±0.02

5 

1.292±0.02

0 

0.34

5 

1.207±0.01

8 

1.342±0.01

7 

<0.00

1 

0.03

7 

Li-

Superolateral 

FN BMD 

1.063±0.04

0 

1.113±0.03

1 

0.00

6 

1.014±0.02

9 

1.163±0.02

7 

0.100 0.01

1 

Li-

Intertrochanter

ic BMD 

1.009±0.05

0 

1.071±0.02

8 

0.23

7 

0.951±0.02

6 

1.128±0.02

4 

<0.00

1 

0.13

6 

PA. physical activity; Std. standard; BMD. bone mineral density; FN. femoral neck 

 

 

 


