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HYPERGEOMETRIC PROPERTIES OF GENUS 3 GENERALIZED

LEGENDRE CURVES

HEIDI GOODSON

Abstract. Inspired by a result of Manin, we study the relationship between certain period
integrals and the trace of Frobenius of genus 3 generalized Legendre curves. We show that
both of these properties can be computed in terms of “matching” classical and finite field
hypergeometric functions, a phenomenon that has also been observed in elliptic curves and
many higher dimensional varieties.

1. Introduction

The motivation for this work comes from a particular family of elliptic curves. For λ 6= 0, 1
we define an elliptic curve in the Legendre family by

Eλ : y2 = x(x− 1)(x− λ).

We compute a period integral associated to the Legendre elliptic curve given by integrating
the nowhere vanishing holomorphic 1-form ω = dx

y
over a 1-dimensional cycle containing λ.

This period is a solution to a hypergeometric differential equation and can be expressed as
the classical hypergeometric series

π =

∫ λ

0

dx

y
= 2F1

(
1
2

1
2
1

∣∣∣∣λ
)
. (1.1)

See the exposition in [4] for more details on this.

Koike [14, Section 4] showed that, for all odd primes p and λ ∈ Q \ {0, 1}, the trace
of Frobenius for curves in this family can be expressed in terms of Greene’s finite field
hypergeometric function

aEλ
(p) = −φ(−1)p · 2F1

(
φ φ

ǫ

∣∣∣∣λ
)

p

, (1.2)

where ǫ is the trivial character and φ is a quadratic character modulo p.

Note the similarity between the period and trace of Frobenius expressions: the period is
given by a classical hypergeometric series whose arguments are the fractions with denomi-
nator 2 and the trace of Frobenius is given by a finite field hypergeometric function whose
arguments are characters of order 2. This similarity is to be expected for curves by the
following result of Manin.

Theorem 1.1. [16, Theorem 2] The rows of the Hasse-Witt matrix satisfy every differential
relation which is satisfied by the elements of a basis of the space of differentials of the first
kind (dual to a canonical basis of H1(M,O)) modulo the space of complete differentials.

1

http://arxiv.org/abs/1705.02404v1


HYPERGEOMETRIC PROPERTIES OF GENUS 3 GENERALIZED LEGENDRE CURVES 2

For elliptic curves, the Hasse-Witt matrix has a single entry: the trace of Frobenius. In
Corollary 3.2 of [9], we show that the matching finite field and classical 2F1 hypergeometric
expressions in Equations 1.1 and 1.2 are congruent modulo p for odd primes. This result
would imply merely a congruence between the finite field hypergeometric function expression
and the trace of Frobenius. The fact that Koike showed that we actually have an equality is
very intriguing and leads us to wonder for what other varieties this type of equality holds.

Further examples of a correspondence between arithmetic properties of varieties and finite
field hypergeometric functions have been observed for algebraic curves and for Calabi-Yau
manifolds. For example, Fuselier [8] gave a finite field hypergeometric trace of Frobenius
formula for elliptic curves with j-invariant 1728

t
, where t ∈ Fp \ {0, 1}. Lennon [15] extended

this by giving a hypergeometric trace of Frobenius formula that does not depend on the
Weierstrass model chosen for the elliptic curve. In [1], Ahlgren and Ono gave a formula
for the number of Fp points on a modular Calabi-Yau threefold. We extended this work in
[9, 10] by showing that the number of points on Dwork hypersurfaces over finite fields can
be expressed in terms of Greene’s finite field hypergeometric functions.

In this paper we examine the connection between analytic and arithmetic properties of
algebraic curves. We approach this story from two directions. First, in Sections 3 and 4, we
develop tools that are needed to understand Manin’s statement in Theorem 1.1. Then, in
Section 5, we apply Manin’s theory to the family of genus 3 generalized Legendre curves

C4
λ : y4 = x(x− 1)(x− λ).

In this example, we see Manin’s theory in action since we obtain “matching” hypergeometric
expressions for the analytic and arithmetic data associated to these curves. We begin with
background information in Section 2.

2. Preliminaries

In this section we recall definitions and properties of 2F1 classical and finite field hypergeo-
metric functions. See, for example, [9, 11, 22] for extensions of this work to n+1Fn generalized
hypergeometric functions.

We define the classical hypergeometric series by

2F1

(
a b

c

∣∣∣∣ x
)

=
∞∑

k=0

(a)k(b)k
(c)kk!

xk, (2.1)

where (α)0 = 1 and (α)k = α(α + 1)(α+ 2) . . . (α + k − 1).

This series is a solution to the so-called hypergeometric differential equation

− abF + (c− (a+ b+ 1)x)
d

dx
F + x(1− x)

d2

dx2
F = 0 (2.2)

(see, for example, [22, Section 1.2]).

Unless either a or b is a negative integer, classical hypergeometric series have an infinite
number of terms. In some cases, for example when considering congruences or supercongru-
ences, we may only need to consider a finite number of these terms. For a positive integer,
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m, we define the hypergeometric series truncated at m to be

2F1

(
a b

c

∣∣∣∣ x
)

tr(m)

=
m−1∑

k=0

(a)k(b)k
k!(c)k

xk. (2.3)

In his 1987 paper [11], Greene introduced a finite field, character sum analogue of classical
hypergeometric series. Let Fq be the finite field with q elements, where q is a power of an odd

prime p. If χ is a multiplicative character of F̂×
q , extend it to all of Fq by setting χ(0) = 0.

For any two characters A,B of F̂×
q we define the normalized Jacobi sum by

(
A

B

)
:=

B(−1)

q

∑

x∈Fq

A(x)B(1− x) =
B(−1)

q
J(A,B), (2.4)

where J(A,B) =
∑

x∈Fq
A(x)B(1− x) is the usual Jacobi sum.

For any positive integer n and characters A, B, C in F̂×
q , Greene defined the finite field

hypergeometric function 2F1 over Fq by

2F1

(
A B

C

∣∣∣∣ x
)

q

=
q

q − 1

∑

χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x). (2.5)

An alternate definition, which is in fact Greene’s original definition, is given by

2F1

(
A B

C

∣∣∣∣ x
)

q

= ǫ(x)
BC(−1)

q

∑

y

B(y)BC(1− y)A(1− xy). (2.6)

Greene’s finite field hypergeometric functions were defined independently of those by Katz
[12] and McCarthy [18], though relations between them have been demonstrated in [18].

Greene shows that defining finite field hypergeometric functions in this way leads to many
transformation properties that mirror those of classical series. For example, classical 2F1

hypergeometric series satisfy the following identity [22, p. 48]

2F1

(
−m b

c

∣∣∣∣ x
)

=
(b)m
(c)m

(−x)m2F1

(
−m 1− c−m

1− b−m

∣∣∣∣
1

x

)

The analogous statement for finite field hypergeometric functions is as follows

Theorem 2.1. [11, Theorem 4.2, ii] For characters A,B,C of Fq and x ∈ F×
q ,

2F1

(
A B

C

∣∣∣∣ x
)

q

= ABC(−1)A(x)2F1

(
A AC

AB

∣∣∣∣
1

x

)

q

Note that these identities can be generalized to n+1Fn classical and finite field hypergeo-
metric functions for n > 1. See Section 4 of [11] for other transformation and summation
theorems.

In addition to having analogous transformation properties, “matching” classical and finite
field hypergeometric functions have also been shown to be congruent modulo p in many
cases. The following theorem will be referenced in our discussion in Section 5.3.
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Theorem 2.2. [9, Theorem 3.1] Let m and d be integers with 1 ≤ m < d. If p ≡ 1 (mod d)

and T is a generator for the character group F̂×
p then, for x 6= 0,

2F1

(
m
d

d−m
d
1

∣∣∣∣ x
)

tr(p)

≡ −p 2F1

(
Tmt T

mt

ǫ

∣∣∣∣ x
)

p

(mod p),

where t = p−1
d
.

This builds on supercongruence results of Mortenson [19, 20] by considering hypergeomet-
ric functions evaluated away from 1, though this result holds mod p instead of p2. Further
congruences and supercongruences between classical and finite field hypergeometric functions
can be found in [5, 9].

3. Using the Lefschetz Number

The Lefschetz number associated to a map from a manifold to itself essentially keeps track
of the number of fixed points of the map. Let f : M → M be a differentiable map on the
compact differentiable manifoldM such that the graph of f meets the diagonal transversely.
Then the Lefschetz number L(f) can be computed in two ways:

L(f) =
∑

p∈M

σp(f) =

∞∑

n=0

(−1)ntr[f ∗ : Hn(M,C) → Hn(M,C)], (3.1)

where

σp(f) =

{
0 : f(p) 6= p

±1 : (graph f) meets diagonal with positive/negative orientation.

When the map f is the Frobenius map on a curve, then L(f) measures the number of
points on the curve over a finite field Fq. In this field we have (x, y) = (xq, yq), so that any
point on the curve will be a fixed point of the map.

We will rewrite both expressions for the Lefschetz number in order to show the relation-
ship between the period associated to a curve and its point count. We follow the work of
Clemens [4, Chapter 2].

We start by rewriting
∑

p∈M σp(f). Let Jp(f) be the Jacobian of f at the point p. The

transversality of f at p implies that (identity − f) has maximal rank at p. This is the rank
of I−Jp(f) at the point p, which is a matrix that gives us information about the orientation
of the map f . Thus, we can write σp(f) = sign det (I − Jp(f)). Clemens shows that this
determinant can also be expressed as

det (I − Jp(f)) =
n∑

r=0

(−1)rtr(∧rJp(f)) (3.2)

so that we can write ∑

p∈M

σp(f) =
∑

p,r

(−1)r
tr(∧rJp(f))

| det (I − Jp(f))|
.

Denote the restrictions of Jp(f) to type (1,0) (holomorphic) and type (0,1) (anti-holomorphic)
parts of Jp(f) by J ′

p(f) and J ′′
p (f), respectively. Clemens notes that if the manifold M is
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a Kähler manifold then we can replace the de Rham complex by the Dolbeault complex on
M . Thus Equation 3.1 becomes

∑

p,r

(−1)r
tr(∧rJ ′′

p (f))

| det (I − Jp(f))|
=

∞∑

n=0

(−1)ntr[f ∗|Hn(M,O)], (3.3)

We also have that ∑

r

(−1)rtr(∧rJ ′′
p (f)) = det (I − J ′′

p (f)),

as we did in Equation 3.2, and

det (I − Jp(f)) = det (I − J ′
p(f)) det (I − J ′′

p (f)).

Hence,

∑

p,r

(−1)r
tr(∧rJ ′′

p (f))

| det (I − Jp(f))|
=

∑

p

det (I − J ′′
p (f))

| det (I − J ′
p(f)) det (I − J ′′

p (f))|

=
∑

p

1

| det (I − J ′
p(f))|

=
∑

p fixed

1

| det (I − J ′
p(f))|

.

Thus,
∑
σp(f) can be expressed in terms of the holomorphic part of Jp(f).

We specialize to the case where f is the Frobenius map and the manifold is an algebraic
curve C. Note that Jp(f) = 0 since d(xp)/dx = pxp−1 = 0 in Fp. Hence, | det (I − J ′

p(f))| = 1
and

∑
p∈C σp(f) = the number of fixed points of f . Since f is a map on C and xp = x if and

only if x ∈ Fp, the number of fixed points of f will be exactly the number of Fp-points on C
plus the point at infinity. Thus,

∑

p∈C

σp(f) = 1 + the number of Fp-points on C.

We now rewrite the expression
∑∞

n=0(−1)ntr[f ∗|Hn(C,O)] for the case we are considering.
Recall that, in general, Hn(M,O) = 0 whenever n > dim(M). Equation 3.3 then becomes

1 + the number of Fp-points on C = 1− tr[f ∗|H1(C,O)],

i.e.
the number of Fp-points on C = −tr[f ∗|H1(C,O)]. (3.4)

In Section 4 we will see that the right-hand-side of this equation is related to the periods
of an algebraic curve.

4. The Hasse-Witt Matrix

In this section, we piece together the work of [4] and [16]. Let g be the genus of the
algebraic curve C. The Hasse-Witt matrix of C is the g × g matrix of the Frobenius map
with respect to a basis of regular differentials of the first kind. Thus, the trace of this matrix
will give us tr[f ∗|H1(C,O)] (trace is independent of basis). In this section we aim to describe
the Hasse-Witt matrix in greater detail.
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The genus g of the curve is equal to both the dimension of the space H1(C,O) of 1-cycles
and the dimension of the space of regular 1-forms on C. We will choose dual bases for these
two spaces (dual with respect to a residue pairing). Let P1, . . . , Pg be a set of distinct points
on C such that the divisor D =

∑
Pi is nonspecial. It is noted by Manin [16, Section 1.5]

that we may identify H1(C,O) with the space of functions that have poles at worst at the
points P1, . . . , Pg. Thus, we can choose a basis h1, . . . , hg for H1(C,O), where each hi is a
function with a simple pole at Pi and no other poles (except at infinity). Thus, hi has Taylor
series expansion,

hi =
1

x− xi
+
∑

l≥0

ci,l(x− xi)
l,

where Pi = (xi, yi) is a point on C as above [4, Section 2.12]. Similarly, to each point
Pi = (xi, yi) we can associate a differential ωi, which is to say we can write ωi locally at the
point Pi:

ωi = dx+
∑

r≥1

ai,r(x− xi)
rdx.

The bases {ωi}i and {hi}i are dual with respect to the pairing (ωi, hj) = Res(hjωi, Pi), the
residue at Pi, since

Res(hjωi, Pi) =

{
1 if i = j
0 if i 6= j.

Let K be the matrix of scalar products [(ωi, hj)]. We can write the Hasse-Witt matrix H as

H = KH = [(ωi, f
∗hj)] ,

where the map f ∗ sends each hi(x) to

hi(x
p) =

1

(x− xi)p
+
∑

l≥0

bi,l(x− xi)
pl.

Thus, tr[f ∗|H1(C,O)] =
∑g

i=1(ωi, f
∗hi). In fact we can say even more about this matrix. Note

that if i 6= j then

(ωi, f
∗hj) = Res(f ∗hjωi, Pi) = 0

since hj , and therefore f ∗hj , is holomorphic at the point Pi. Thus, the Hasse-Witt matrix is
a diagonal matrix with this choice of basis.

These diagonal entries can be expressed in terms of coefficients in the expansions of the
differentials. We have that Res(f ∗hjωi, Pi) is the coefficient of 1/(x− xi) in the expansion

f ∗hiωi =

(
1

(x− xi)p
+
∑

l≥0

bi,l(x− xi)
pl

)(
1 +

∑

r≥1

ai,r(x− xi)
r

)
dx.

Thus, (ωi, f
∗hi) = ai,p−1, so that tr[f ∗|H1(C,O)] =

∑g
i=1 ai,p−1.
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5. Generalized Legendre Curves

We now apply this theory to a particular family of curves. We look at a specific case of
generalized Legendre curves given by

C4
λ : y4 = x(x− 1)(x− λ).

When viewed as a projective curve, it is given by the homogeneous equation

Y 4 = ZX(X − Z)(X − λZ)

by sending (x, y) → (X/Z, Y/Z). When written in this form we see that the curve is
nonsingular in P2. Thus, by a well-known genus formula for nonsingular curves, the genus

of C4
λ is g = (4−1)(4−2)

2
= 3.

5.1. Period Computation. In this section we give formulas for certain period integrals
associated to genus 3 generalized Legendre curves. The periods we are interested in are
obtained by choosing dual bases of the space of holomorphic differentials and the space of
cycles H1(C4

λ,O) and integrating the differentials over each cycle. Note that Barman and
Kalita developed a hypergeometric formula for one of these period integrals in [3] using
trigonometric substitution.

Using the method described in [2, Section 2] yields the following basis for the space of
differentials {

ω1 =
xdx

y3
, ω2 =

dx

y2
, ω3 =

dx

y3

}
.

Theorem 5.1. The periods of the genus 3 generalized Legendre curve are

π1 = 2F1

(
1/4 3/4

1/2

∣∣∣∣λ
)
, π2 = 2F1

(
1/2 1/2

1

∣∣∣∣λ
)
, π3 = 2F1

(
3/4 5/4

3/2

∣∣∣∣λ
)
.

Proof. As noted in Section 4, we can write each ωi locally at a distinct point Pi on the curve.
We compute the periods π1, π2, π3 of C4

λ by integrating each differential ωi over a cycle in
H1(C4

λ,O) that contains the point Pi and not the other Pj. Such a cycle exists since the
chosen points are distinct.

We follow the work of Clemens [4, Section 2.10] to find differential equations satisfied by
the periods and then give combinatorial expressions for them. We show the computation for
π3 and omit the work for the remaining periods. Starting with the differential

ω3 =
dx

y3
= (x(x− 1)(x− λ))−3/4dx,

we take derivatives with respect to λ to get

∂

∂λ
((x(x− 1)(x− λ))−3/4) = −3

4
x−3/4(x− 1)−3/4(x− λ)−7/4

∂2

∂λ2
((x(x− 1)(x− λ))−3/4) = 21

16
x−3/4(x− 1)−3/4(x− λ)−11/4.
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We wish to find a linear combination of ω3 and its derivatives that gives an exact differ-
ential. To do this, we rewrite the following differential

d

(
x1/4(x− 1)1/4(x− λ)1/4

(x− λ)2

)
= d

(
x1/4(x− 1)1/4(x− λ)−7/4

)

=

[
1

4
x−3/4(x− 1)1/4(x− λ)−7/4

+
1

4
x1/4(x− 1)−3/4(x− λ)−7/4 −

7

4
x1/4(x− 1)1/4(x− λ)−11/4

]

=
1

3
(x− 1)

dω3

dλ
+

1

3
x
dω3

dλ
−

4

3
x(x− 1)

d2ω3

dλ2

= −
5

4
ω3 − 2(2λ+ 1)

dω3

dλ
−

4

3
λ(λ− 1)

d2ω3

dλ2
.

By integrating both sides and then multiplying by 3/4, we see that π3 satisfies F3π3 = 0,
where

F3 = −
15

16
+ (3/2− 3λ)

d

dλ
+ λ(1− λ)

d2

dλ2
. (5.1)

Note that this is a hypergeometric differential equation. We solve for a, b, c in Equation
2.2 and find that a = 3/4, b = 5/4 (or vice versa) and c = 3/2. This gives us the following
expression for the period

π3 = 2F1

(
3/4 5/4

3/2

∣∣∣∣λ
)
.

Similarly, we find that π1 satisfies F1π1 = 0, where

F1 = −
3

16
+ (1/2− 2λ)

d

dλ
+ λ(1− λ)

d2

dλ2
(5.2)

and can be expressed as

π1 = 2F1

(
1/4 3/4

1/2

∣∣∣∣λ
)
,

and that π2 satisfies F2π2 = 0, where

F2 = −
1

4
+ (1− 2λ)

d

dλ
+ λ(1− λ)

d2

dλ2
(5.3)

and can be expressed as

π2 = 2F1

(
1/2 1/2

1

∣∣∣∣λ
)
.

�

5.2. Point Count. In this section we will compute the number of points on the curve C4
λ

in two ways. We first specify the work in Section 4 to the curve C4
λ. Then, we will compute

the number of points using character sums.

Recall Manin’s result (see Theorem 1.1 of this paper) that tells us that the rows of the
Hasse-Witt matrix satisfy every differential equation satisfied by the periods of a curve. In
Section 4 we specifically chose bases for the spaces of differentials and cycles that were dual
to each other, which results in a diagonal Hasse-Witt matrix. Thus, the sum of the rows of
the Hasse-Witt matrix is exactly the trace of the matrix, which in this case is the trace of
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Frobenius. Hence, the trace of Frobenius must satisfy the same differential equations as the
periods.

Moreover, since the space of differentials is 3-dimensional and we have developed differen-
tial equations for three C-linearly independent periods, it must be the case that the trace of
Frobenius is a C-linear combination of the periods:

tr[f ∗|H1(M,O)] ≡

3∑

i=1

ci,p(λ)πi (mod p),

where each ci,p(λ) ∈ C may depend on the order p of the field and on the parameter λ of the
curve. Using Equation 3.4 we can conclude that

number of Fp-points on C
4
λ ≡ −

3∑

i=1

ci,p(λ)πi (mod p),

which we showed in Section 5.1 is C-linear combination of classical hypergeometric series.
In fact each of the classical hypergeometric series are congruent to truncated series when we
reduce mod p. Thus, we have proved the following theorem.

Theorem 5.2.

#C4
λ ≡ 1−c1,p(λ)2F1

(
1/4 3/4

1/2

∣∣∣∣λ
)

tr(p)

− c2,p(λ)2F1

(
1/2 1/2

1

∣∣∣∣λ
)

tr(p)

− c3,p(λ)2F1

(
3/4 5/4

3/2

∣∣∣∣λ
)

tr(p)

(mod p),

where #C4
λ is the number of Fp-points plus the point at infinity and ci,p(λ) ∈ C.

This gives us the number of points on the curve modulo the order of the field we are
working over. We have not solved for the coefficients ci,p(λ), though it is perhaps possible
to using methods similar to Clemens’ exposition on Legendre elliptic curves in [4, Section
2.11]. Rather than go through this computation, we instead compute the exact number of
points on C4

λ using character sums.

Theorem 5.3. Let q be a prime power such that q ≡ 1 (mod 4). Let T ∈ F̂×
q be a generator

of the character group and let ψ = T
q−1

4 . Then

#C4
λ = q + 1 + qǫ(λ)

3∑

m=1

ψm(−1) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

.

Remark. This result may follow from [5, Theorem 11], though our equation for the generalized
Legendre curve is written in a slightly different form. In [5], the genus 3 generalized Legendre
curve is written as

y4 = x(1 − x)(1− λx).

The resulting point count formulas are identical, so we should be able to find a transformation
between the two curves.
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Proof. To prove the result, we first express the number of points as a sum of characters over
the finite field Fq.

#C4
λ(Fq) =

∑

x∈Fq

#
{
y ∈ Fq

∣∣y4 = x(x− 1)(x− λ)
}
+ 1

=
∑

x∈Fq−{0,1,λ}

(
3∑

m=0

ψm(x(x− 1)(x− λ))

)
+ 1 + 3

=
∑

x∈Fq−{0,1,λ}

ǫ(x(x − 1)(x− λ)) +
∑

x∈Fq−{0,1,λ}

(
3∑

m=1

ψm(x(x− 1)(x− λ))

)
+ 4

= q − 3 +
∑

x∈Fq−{0,1,λ}

(
3∑

m=1

ψm(x(x− 1)(x− λ))

)
+ 4

For each m we have

∑

x∈Fq−{0,1,λ}

ψm(x(x− 1)(x− λ)) =
∑

x∈Fq−{0,1,λ}

ψm(x)ψm(x− 1)ψm(x− λ).

We work to rewrite the summand and get

=
∑

x∈Fq−{0,1,λ}

ψm(x)ψm(1− x)ψm(λ− x)ψm(−1)ψm(−1)

=
∑

x∈Fq−{0,1,λ}

ψm(x)ψm(1− x)ψm(1−
1

λ
x)ψm(λ)

= ψm(λ)
∑

x∈Fq−{0,1,λ}

ψm(x)ψm(1− x)ψm(1−
1

λ
x)

= ψm(λ)
∑

x∈Fq−{0,1,λ}

ψm(x)ψ−mψ2m(1− x)ψm(1−
1

λ
x),

which we recognize as being the hypergeometric function expression

= ψm(λ) ·
q

ǫ
(
1
λ

)
ψ3m(−1)

· 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣
1

λ

)

q

= ψm(−λ) ·
q

ǫ
(
1
λ

) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣
1

λ

)

q

.
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We use Theorem 2.1 to write

2F1

(
ψ−m ψm

ψ2m

∣∣∣∣
1

λ

)

q

= ψ−m+m+2m(−1)ψm

(
1

λ

)
· 2F1

(
ψ−m ψ−m+2m

ψ−m−m

∣∣∣∣λ
)

q

= ψm

(
1

λ

)
· 2F1

(
ψ−m ψm

ψ−2m

∣∣∣∣λ
)

q

= ψm

(
1

λ

)
· 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

.

Thus, for each m we have

ψm(−λ) ·
q

ǫ
(
1
λ

) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣
1

λ

)

q

= ψm(−λ) ·
q

ǫ
(
1
λ

) · ψm

(
1

λ

)
· 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

= q · ψm(−1)ǫ(λ) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

.

Putting this back into the formula for #C4
λ gives

#C4
λ(Fq) = q − 3 +

3∑

m=1

q · ψm(−1)ǫ(λ) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

+ 4

= q + 1 + qǫ(λ)
3∑

m=1

ψm(−1) · 2F1

(
ψ−m ψm

ψ2m

∣∣∣∣λ
)

q

.

�

5.3. Period - Point Count Connection. We notice two phenomena here that also occur
when one computes periods and point counts for Legendre elliptic curves. The first is that,
remarkably, the number of points on the curve can be expressed in terms of finite field hy-
pergeometric functions with input given by λ. In fact we get equality, not just a congruence,
between the number of points and a finite field hypergeometric expression. This phenomenon
also occurs for families of curves not expressible in Legendre form over Q (see, for example,
[7, 8, 15]). In fact, this phenomenon seems to extend to some higher dimensional Calabi-Yau
manifolds as is shown in [1, 9, 10, 17, 21] leading us to wonder if this will be the case for a
large class of algebraic varieties.

The second phenomenon is that in computing the point count in two different ways, we get
a congruence between classical and finite field hypergeometric expressions. We can say a bit
more on this: it seems as though we can identify congruences between particular summands
that “match”. For example, we saw in Theorem 5.1 that one period of the curve C4

λ can be
expressed as

π2 = 2F1

(
1/2 1/2

1

∣∣∣∣λ
)
.
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We saw in Theorem 5.3 that one of the summands in the point count for C4
λ is

qT
q−1

2 (−1)2F1

(
T

q−1

2 T
q−1

2

ǫ

∣∣∣∣λ
)

q

.

Note that since q ≡ 1 (mod 4), T
q−1

2 (−1) = 1. Theorem 2.2 then tells us that this
expression is congruent modulo p to the negative of the classical hypergeometric series π2.
The classical and finite field hypergeometric expressions – including the two that are not
covered by Theorem 2.2 – for the generalized Legendre curves “match” in the same way that
period and trace of Frobenius expressions match for elliptic curves: we replace the fraction a

b
with a character of order b raised to the ath power. This phenomenon also seems to extend
to some other curves (see [19]) and to higher dimensional Calabi-Yau manifolds (see, for
example, [9, 10, 13, 17, 20]. By testing values in Sage [6], we know that it is not the case
that congruences exist between arbitrary (matching) truncated hypergeometric series and
finite field hypergeometric functions. This leads us to wonder when we can expect to have a
congruence between these two types of series.
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