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Abstract

Background—Functional magnetic resonance imaging (fMRI) time series are subject to 

corruption by many noise sources, especially physiological noise and motion. Researchers have 

developed many methods to reduce physiological noise, including RETROICOR, which 

retroactively removes cardiac and respiratory waveforms collected during the scan, and CompCor, 

which applies principal components analysis (PCA) to remove physiological noise components 

without any physiological monitoring during the scan.

New Method—We developed four variants of the CompCor method. The optimized CompCor 

method applies PCA to time series in a noise mask, but orthogonalizes each component to the 

BOLD response waveform and uses an algorithm to determine a favorable number of components 

to use as "nuisance regressors." Whole brain component correction (WCompCor) is similar, except 

that it applies PCA to time-series throughout the whole brain. Low-pass component correction 

(LCompCor) identifies low-pass filtered components throughout the brain, while high-pass 

component correction (HCompCor) identifies high-pass filtered components. Comparison with 

existing method: We compared the new methods with the original CompCor method by examining 

the resulting functional contrast-to-noise ratio (CNR), sensitivity, and specificity.
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Results—1) the optimized CompCor method increased the CNR and sensitivity compared to the 

original CompCor method and 2) the application of WCompCor yielded the best improvement in 

the CNR and sensitivity.

Conclusions—The sensitivity of the optimized CompCor, WCompCor, and LCompCor methods 

exceeded that of the original CompCor method. However, regressing noise signals showed a 

paradoxical consequence of reducing specificity for all noise reduction methods attempted.
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1. Introduction

Blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) 

is plagued by raw intrinsic noise, subject motion, and physiological noise. The presence of 

noise reduces the sensitivity of BOLD fMRI studies and reduces the efficacy of fMRI as a 

biomarker. If BOLD fMRI were to be used as an endpoint in device trials or for diagnostics, 

it is essential to understand the value of computational methods for noise reduction upon the 

sensitivity and specificity of the BOLD signal.

Raw noise, which is independent of the MR signal (Edelstein et al., 1986), is composed of 

both thermal noise and system noise. Thermal noise derives from the random motion of 

electrons in the radiofrequency (RF) coil and the tissue being imaged (Haacke et al., 1999). 

A rise in temperature increases the motion of electrons, increasing thermal noise. 

Imperfection of the hardware leads to system noise, including low frequency drift (Smith et 

al., 1999), static field inhomogeneities due to imperfect shimming, nonlinearities in the 

gradient fields, and irregularities in the performance of the RF coil (Huettel et al., 2004).
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Subject motion constitutes a major source of noise in fMRI (Friston et al., 1996). Even head 

motion of a few millimeters increases the variability of voxel signal intensity as the relative 

proportion of different tissue types changes inside each voxel. Rigid-body registration 

methods have been developed to correct for intrascan motion (Cox and Jesmanowicz, 1999). 

Stimulus- and task-correlated motion can increase the presence of false positives or false 

negatives in fMRI activation maps (Yetkin et al., 1996). To overcome correlated motion 

effects, one can use event-related designs (Birn et al., 1999), optimized block durations (Birn 

et al. 2004), or post-processing methods (Bullmore et al., 1999; Soltysik and Hyde, 2006) to 

separate true BOLD responses from motion artifact responses.

Physiological noise consists of signal variation in images caused by various processes of the 

human body. Weisskoff et al. (1993) first reported the presence of cardiac and respiratory 

waveforms in the power spectra of cortical voxel time series. Cardiac-driven signal changes 

are mostly due to motion from vascular pulsations in voxels near arterial and venous 

structures (Dagli et al., 1999). Bulk susceptibility variations in the lungs during respiration 

leads to systematic variations in the static magnetic field within brain tissue (Raj et al., 

2001). These field strength variations lead to image shift, signal changes in the phase 

encoding direction, and signal variation due to intravoxel dephasing. Mitra et al. (1997) 

found vasomotor oscillations (0.1 Hz). Furthermore, researchers have discovered low-

frequency fluctuations (0.03 Hz) in fMRI data that result from small fluctuations in end-tidal 

CO2 that occur naturally during normal breathing (Wise et al., 2004). Fluctuations in both 

the respiratory volume per time (RVT) (Birn et al., 2006) and the cardiac rate (Shmueli et 

al., 2007) are also present in fMRI data. Spontaneous BOLD fluctuations that occur without 

a designated stimulus or task also represent a source of structured noise in fMRI data 

(Biswal et al., 1995). Because physiological noise results from physiological-dependent 

fluctuations in the baseline signal, it is proportional to the MR signal, S (Kruger et al., 

2001):

where λ is a tissue-dependent parameter. Physiological noise will increase with the MR 

signal, which, in turn, will increase with flip angle (up to the Ernst angle) (Haacke et al., 

1999), magnetic field strength, or voxel volume (Edelstein et al., 1986). With increasing 

field strength, physiological noise limits the achievable image signal-to-noise ratio (SNR) 

(Kruger et al., 2001), but not the BOLD contrast (Gati et al., 1997). However, other factors 

may limit BOLD contrast above 7 T (Seehafer et al., 2010).

Many retrospective methods have been developed to reduce the cardiac and respiratory 

aspects of physiological noise. Biswal et al. (1996) used digital notch filters to remove the 

frequency components of cardiac and respiration noise. This technique fails, however, when 

the noise is aliased into the frequency spectrum of the task, as fMRI data is generally 

acquired with a temporal resolution of 2–4 s. Hu et al. (1995) developed a method called 

RETROKCOR that fits a low-order Fourier series to the k-space time-series data using phase 

information from the respiratory or cardiac cycles. However, only low-order corrections are 

possible, and the method introduces unwanted correlations between voxels. Glover et al. 
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(2000) developed a method called RETROICOR that was similar to the method of Hu et al. 

(1995) but operates in image space. Cardiac and respiratory signals are monitored and 

recorded during the scan. Physiological noise is modeled as a low-order Fourier series, 

which can then be subtracted from voxel time series.

Thomas et al. (2002) used principal component analysis (PCA) and independent component 

analysis (ICA) methods to isolate and remove structured noise (cardiac and respiration) and 

random noise (white noise) from fMRI time series. After component decomposition, the 

method involved spectral analysis, component identification and deletion, and signal 

reconstruction. Thomas et al. found that ICA was a better method to remove structured 

noise, while PCA was better at removing random noise. Both methods resulted in increased 

BOLD contrast sensitivity.

Behzadi et al. (2007) developed a method called CompCor, which applied PCA only to 

voxel time series exhibiting the highest temporal standard deviations. These voxels were 

believed to be contaminated with cardiac and respiratory noise. The top six components 

resulting from this PCA analysis, believed to represent cardiac and respiratory noise, were 

regressed from the entire data set. The reduction in noise achieved with CompCor was found 

to be greater than that achieved with RETROICOR with the extra advantage in that 

physiological monitoring was not required. However, for subjects with especially severe 

motion artifacts, CompCor identified signal components associated mostly with motion.

Early papers suggested that respiration accounted for 10–20% of the temporal variance at 

1.5 T (Raj et al., 2001) or that cardiac and respiration accounted for as much as 30–36% of 

the noise at 4 T (Thomas et al., 1998). Therefore, existing methods to remove physiological 

noise have focused predominantly on removing cardiac and respiratory noise. However, 

recent evidence suggests that spontaneous BOLD activity represents a much larger portion 

of physiological noise. Fox et al. (2006) demonstrated that coherent spontaneous 

fluctuations in human brain activity account for a significant fraction of the variability in 

BOLD fMRI data. Moreover, the authors were able to reduce trial-to-trial variability of 

BOLD responses in the left hemisphere motor cortex by subtracting scaled signals from the 

right hemisphere motor cortex, which only contained noise and spontaneous BOLD 

fluctuations. A study by Chia-Shang et al. (2006) revealed that the vasculature makes a large 

contribution to the physiological noise during gradient-echo echo-planar imaging (GE-EPI). 

The authors showed that physiological noise exhibits an echo time (TE) dependence similar 

to BOLD signal changes. Furthermore, a PCA of complexity showed that the physiological 

noise had a reduced complexity compared to white noise. The structured nature of this 

physiological noise is likely to represent spontaneous BOLD fluctuations from active 

networks in the brain.

In an fMRI study using a repetition time (TR) of 300 ms (yielding a Nyquist frequency of 

1.667 Hz, sufficient to sample both respiration (~0.3 Hz) and cardiac (~1 Hz) fluctuations), 

Petridou at el. (2009) found that time-series physiological fluctuations occurred mainly at 

frequencies below 0.13 Hz and exhibited a BOLD-like TE dependence. This physiological 

noise was localized to gray matter and the vasculature. A frequency analysis revealed that 

the primary respiration and cardiac signals had no significant contribution in white or gray 
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matter, contradicting earlier studies. A study of noise in fMRI data by Bianciardi et al. 

(2009a) demonstrated that thermal noise is the most significant source of fMRI signal 

fluctuations (39% of noise in gray matter voxels), followed by low-frequency drifts (35% of 

noise in gray matter) and spontaneous BOLD activity (18% of noise in gray matter). 

Variations in the rates of cardiac pulsation and respiration volume change accounted for a 

much smaller fraction of noise (2.8% and 2.6% of noise in gray matter, respectively). 

Cardiac and respiratory fluctuations accounted for by RETROICOR represented a similarly 

small fraction of the noise (2.5% of noise in gray matter). Low-frequency drift can be 

accounted for by including polynomials in the regression analysis (Smith et al., 1999). That 

leaves spontaneous activity as not only the largest source of physiological noise in fMRI 

data but also as the largest source of fluctuations besides thermal noise that cannot be easily 

removed. From these results, we conclude that retrospective methods designed to reduce 

physiological noise should focus predominantly on removing spontaneous BOLD activity.

A recent study has shown that removing spontaneous BOLD fluctuations from fMRI data 

can enhance sensitivity. Bianciardi et al. (2009b) used a method developed by de Zwart 

(2008) to identify a reference region of interest (ROI) that correlated with the activation ROI 

in a separate resting state scan. Bianciardi (2009b) then performed a PCA on the time series 

in the reference ROI acquired during the fMRI run to identify regressors related to 

spontaneous BOLD fluctuations. A multiple number of PCA components were used as 

regressors of no interest in the regression analysis, which resulted in an improvement in the 

estimated precision.

We developed four new variants of the CompCor method (Behzadi et al., 2007) and 

compared their ability to reduce physiological noise and increase sensitivity, specificity, and 

functional contrast-to-noise ratio (CNR). The first variation is the optimized CompCor 

method, which applies PCA to time series in a noise mask, but orthogonalizes each 

component to the BOLD response waveform. Next, an algorithm is used to determine the 

favorable number of components to use as nuisance regressors. Whole brain component 

correction (WCompCor) applies PCA to time-series throughout the whole brain. Once again, 

each component is orthogonalized to the BOLD response waveform. Following this, an 

algorithm chooses the strongest components to use as nuisance regressors.

Low-pass component correction (LCompCor) works like WCompCor, but only identifies 

low-pass filtered (< 0.1 Hz) components throughout the brain. The low-pass filter is applied 

to focus our search exclusively on components in the low-frequency domain, where 

spontaneous BOLD activity is known to dominate (Cordes et al., 2000). Importantly, 

spontaneous BOLD fluctuations will not be aliased during fMRI acquisitions, as typical 

pulse sequences have a TR less than 5 s (or a Nyquist frequency greater than 0.1 Hz). 

Similarly, high-pass component correction (HCompCor) works like WCompCor, but only 

identifies high-pass filtered (> 0.1 Hz) components. These last two methods were designed 

specifically to investigate whether the removal of low-frequency or high-frequency noise 

components had a greater impact on the resulting sensitivity to detect fMRI activation.

Each of the principal component correction methods works on the assumption that a small 

number of physiological noise fluctuations appear in many voxels distributed throughout the 
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brain. For example, if there were one physiological noise signal that appeared in most voxels 

throughout the brain, PCA would be able to identify it as the main component. If 

physiological noise fluctuations were completely different in every voxel, then regressing 

out the strongest component identified by PCA would only remove physiological noise for 

one voxel. The resulting improvement in the sensitivity would be negligible. However, 

resting state studies have shown that a few distinct components are present in many voxels 

throughout the brain (De Luca et al., 2006). Therefore, removing the strongest few 

components discovered using PCA yields the ability to reduce physiological noise in many 

voxels.

In this study, we collected fMRI data from subjects performing a block-design finger-

tapping task. We analyzed the fMRI data using a standard regression analysis, and regression 

analyses using original CompCor, optimized CompCor, WCompCor, LCompCor, and 

HCompCor. Our first hypothesis was that regression with optimized CompCor would lead to 

a greater improvement in the sensitivity to detect fMRI activation compared to regression 

using original CompCor because the components are orthogonalized to the BOLD response 

waveform. Our second hypothesis was that regression with WCompCor would lead to a 

greater improvement in the sensitivity compared to regression using optimized CompCor 

because components are found using the whole brain. Our third hypothesis was that 

regression with LCompCor would lead to a greater improvement in the sensitivity compared 

to regression using HCompCor because low-frequency signals are believed to be the 

dominant source of noise. Our fourth hypothesis was that regression using LCompCor 

would lead to a greater improvement in the sensitivity compared to regression using 

WCompCor because we believe that regressing noise signals of all frequencies should offer 

no additional benefit and may actually reduce sensitivity. We also examined the functional 

CNR across the noise reduction methods. Improving the sensitivity and functional CNR of 

fMRI has the potential to increase the effectiveness of functional brain mapping for clinical 

applications such as presurgical planning.

2. Materials and methods

2.1 Subjects

Nine healthy subjects (five men, four women, aged 43 ± 10 years) were recruited from the 

local community. These subjects were assessed by the Edinburgh handedness inventory 

(Oldfield, 1971) to be strongly right-handed. All volunteers were scanned under a protocol 

approved by the National Institutes of Health (NIH) Internal Review Board (IRB).

2.2 Experimental design

Subjects were asked to perform a sequential, oppositional finger-tapping task alternating 

between both hands. At the beginning of each functional run, subjects were told to start 

tapping each of their four fingers to their thumb on the right hand in succession and continue 

tapping at a rate that was constant, fast, and comfortable. Every 12 s, an auditory cue (the 

word “switch”) told the subjects to switch hands. Subjects were visually monitored for 

performance. After each run, subjects were asked if they were able to perform the task well.
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Fifteen blocks of 12 s each resulted in exactly three minutes of finger-tapping. This task was 

expected to produce a robust activation in the primary sensorimotor cortex (SMC). The right 

and left motor cortices were expected to have opposite activation patterns due to the 

alternating design of the task.

2.3 Data acquisition

Data were acquired on a Philips Achieva 3.0 T scanner (Philips Medical Systems, Best, 

Netherlands) using a 6-channel receive-array RF head coil. Subjects were instructed not to 

move while inside the scanner. Small cushions were used to comfortably secure each 

subject’s head inside the head coil. After a survey scan, a magnetization-prepared rapid 

gradient echo (MPRAGE) scan (TR/TE/FA = 9.894 ms/4.60ms/8°, FOV = 240 mm, number 

of slices = 140, slice thickness = 1 mm) was acquired to obtain a high spatial resolution, T1-

weighted image of the brain. Next, nine EPI runs (TR/TE/FA = 2000 ms/35 ms/90°, matrix 

= 64×64, FOV = 256 mm, number of slices = 32, slice thickness = 4 mm) were acquired. 

Resulting voxel dimensions were 4.0 mm × 4.0 mm × 4.0 mm. The scanner automatically 

discarded the first two acquisitions to allow the equilibration of magnetization. An image 

volume consisting of thirty-two axial slices was acquired during each repetition time to 

cover most of the brain, focusing on the superior cortex. Over the course of three minutes, 

the EPI run acquired 90 such image volumes.

Subjects performed the finger-tapping task during the EPI sequences. Each subject was 

instructed to stay still inside the scanner and to not move his/her head or body during the 

task. Nine finger-tapping runs were acquired. As this data was originally collected for a 

reproducibility study on head repositioning (Soltysik et al., 2011), the subject’s head was 

repositioned for the last four finger-tapping runs. The study found that small displacements 

due to head repositioning in between EPI scans were not a significant source of variability in 

fMRI activation results.

2.4 Data analysis

MR images were exported from the Philips scanner as NIfTI files. Data were analyzed using 

AFNI (Cox, 1996), R (R Foundation for Statistical Computing, Vienna, Austria), locally 

written programs in MATLAB (The Mathworks, Inc., Natick, MA), and Microsoft Excel 

(2010).

2.5 Pre-processing

The MPRAGE image volume was skull-stripped and warped to the coordinates of Talairach 

space (Talairach and Tournoux, 1988) using AFNI. Next, the first image volume of each EPI 

run was aligned to the skull-stripped MPRAGE image volume in subject space using a 

python script in AFNI (align_epi_anat.py). This script uses a weighted local Pearson 

coefficient to align a T2*-weighted image volume to a T1-weighted image volume (Saad et 

al., 2009). Alignment results were visually inspected. If corrections were needed, spatial 

shifts were manually applied prior to rerunning the alignment script.

The EPI runs underwent a six-parameter, rigid-body volume registration routine (Cox and 

Jesmanowicz, 1999) to correct for any small motion that occurred during the runs. The first 
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image volume, which had been aligned to the skull-stripped MPRAGE, was used as the base 

image volume. To assess motion during the runs, we calculated the framewise displacement 

as performed by Power et al. (NeuroImage, 2014).

EPI intensity information was used to create brain masks (using AFNI’s 3dAutomask). Prior 

to statistical analysis, the voxel intensities of each EPI run were normalized by dividing each 

voxel value by the mean of its time-series and multiplying by 100.

The data was spatially smoothed in three dimensions using a Gaussian filter with a full 

width at half maximum (FWHM) of 5 mm (using 3dBlurInMask). The image data were only 

spatially smoothed inside the brain mask to prevent voxel intensities from being relocated to 

positions outside the brain.

A rectangular stimulus waveform, representing the right-handed finger-tapping task, was 

convolved with a standard gamma-variate function (Cohen, 1997) to yield a BOLD response 

waveform. Using this BOLD response waveform, the activation in the left hemisphere was 

analyzed.

2.6 Standard regression analysis

A multiple linear regression analysis was performed on the voxel time-series within the 

brain mask. The baseline data were fit to a second-order polynomial to account for the mean 

as well as any linear or quadratic trend. The motion parameter files were not used as 

regressors. The regression analysis was performed using the BOLD response waveform 

corresponding to the right-handed finger-tapping task as the parameter of interest.

2.7 Original CompCor

We calculated the standard deviation for each voxel time-series within the brain mask. 

Voxels with a standard deviation in the top 2% were identified to create a non-contiguous 

noise ROI. Voxels were removed from the noise ROI if the time series of the voxels 

correlated with the BOLD response waveform (r > 0.136, p < 0.2). PCA was then run on the 

time series of the remaining voxels within the noise ROI (using AFNI’s 3dpc), extracting the 

top six ranked PCA components. A multiple linear regression analysis was then performed 

on the voxel time-series within the brain mask, using the PCA components as regressors of 

no interest and the BOLD response waveform as the parameter of interest.

2.8 Optimized CompCor

As in the original CompCor method, voxels with a standard deviation in the top 2% were 

identified to create a noise ROI. Unlike the original CompCor method, voxels were not 

removed if they correlated with the BOLD response waveform. PCA was then run on the 

voxel time series within the complete noise ROI (using AFNI’s 3dpc), extracting the top 

fifty PCA components. Next, we orthogonalized each component to the BOLD response 

waveform so there was no correlation between the two time series. Finally, we used an 

algorithm to determine the favorable number of PCA components to use as nuisance 

regressors. Specifically, we calculated the number of time series from voxels in the brain that 

were significantly correlated (r > 0.207, p < 0.05) to each PCA component. As an empirical 
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threshold, we determined the lowest-ranking component that was correlated to at least 10% 

of the voxels in the brain. We then chose this component and all higher ranking components 

to use as nuisance regressors in a regression analysis.

2.9 WCompCor

PCA was performed on the EPI voxel time series inside the brain mask (using AFNI’s 

3dpc). Fifty PCA components were identified. Next, we orthogonalized each component to 

the BOLD response waveform so there was no correlation between the two time series. The 

same algorithm described for the optimized CompCor method was used to determine the 

favorable number of PCA components to use as nuisance regressors in a regression analysis.

2.10 LCompCor

A low-pass (< 0.1 Hz) filter was applied to the time series of the voxels inside the brain 

mask. PCA was run on these low-pass filtered voxel time series inside the brain mask (using 

AFNI’s 3dpc), extracting fifty PCA components. Following this, we orthogonalized each 

component to the BOLD response waveform and used the same algorithm to determine the 

favorable number of PCA components to use as nuisance regressors in a regression analysis.

2.11 HCompCor

A high-pass (> 0.1 Hz) filter was applied to the time series of the voxels inside the brain 

mask. PCA was run on these high-pass filtered voxel time series inside the brain mask 

(using AFNI’s 3dpc), extracting fifty PCA components. Following this, we orthogonalized 

each component to the BOLD response waveform and used the same algorithm to determine 

the favorable number of PCA components to use as nuisance regressors in a regression 

analysis.

2.12 CNR analysis

The percent signal change for each voxel was calculated by taking the coefficient of fit (the 

beta value), dividing by the mean of the time series used in the regression analysis, and 

multiplying by 100%,

The functional contrast-to-noise ratio (CNR) was calculated as the percent signal change 

divided by the standard deviation of the residuals resulting from regression analysis,

The CNR was calculated for all voxels inside the true positive activation mask for the last 

four runs of each subject. An analysis of variance (ANOVA) test was performed to see if the 

CNR resulting from the different noise reduction methods were different. Post hoc, two-
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tailed, pairwise t-tests were performed to compare the CNR (averaged across runs) across 

the different noise reduction methods.

2.13 Sensitivity, specificity, and ROC analysis

For each subject, we used the first five finger-tapping runs to create a true positive activation 

mask. For a liberal true positive activation mask, we first selected every voxel that was active 

(using a Bonferroni-corrected threshold of t > 5.05, pBon < 0.05) in at least two of these five 

runs. This activation map was then masked by the expected activation ROI, which included 

the left hemisphere sensorimotor cortex (LH SMC), the right hemisphere superior 

cerebellum, and the supplementary motor area (SMA). The remaining active voxels were 

designated the true positive activation mask. It was assumed that the use of this true positive 

mask would yield a good approximation for analyzing sensitivity and specificity. Voxels 

appearing active outside of the true positive activation mask were assumed to be false 

positives. Voxels not appearing active within this true positive activation mask were assumed 

to be false negatives.

For the last four runs of each subject, we plotted sensitivity versus threshold, specificity 

versus threshold, and receiver operator characteristic (ROC) curves (true positive fraction 

versus false positive fraction). For each run, the area under the sensitivity curve was 

calculated between t-statistic thresholds of 0 and 15. The area under the specificity curve 

was calculated between t-statistic thresholds of 0 and 5. We also calculated the area under 

the ROC curve. Distributions of the area under the sensitivity curve, the specificity curve, 

and the ROC curve were created for each method. Analysis of variance (ANOVA) tests were 

performed to see if the mean area under the curve for different noise reduction methods were 

different. Following this, two-tailed, pairwise t-tests were used to evaluate whether the area 

under the curve for one noise reduction method was significantly greater than the area under 

the curve for another method.

We tested four hypotheses regarding sensitivity:

Hypothesis 1: The mean area under the sensitivity curve will be greater when 

performing a regression analysis with the optimized CompCor method than when 

performing a regression analysis with the original CompCor method. This is because the 

components from the optimized CompCor method will be forced to be uncorrelated to 

the BOLD response waveform, preventing us from regressing out true positive signal 

changes.

Hypothesis 2: The mean area under the sensitivity curve will be greater when 

performing a regression analysis with the WCompCor method than when performing a 

regression analysis with the optimized CompCor method. This is because more accurate 

noise components are likely to be found using data from the whole brain.

Hypothesis 3: The mean area under the sensitivity curve will be greater when 

performing a regression analysis with the LCompCor method than when performing a 

regression analysis with the HCompCor method. This is because low-frequency signals 

are believed to be the dominant source of noise.
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Hypothesis 4: The mean area under the sensitivity curve will be greater when 

performing a regression analysis with the LCompCor method than when performing a 

regression analysis with the WCompCor method. This is because using regressors of all 

frequencies is believed to offer no additional benefit and may actually reduce sensitivity.

3. Results

3.1 Task assessment

Based on visual monitoring, subjects appeared to maintain a constant finger-tapping rate. 

Upon being asked after each run, subjects said they were able to perform the task easily.

3.2 Motion

Intra-run motion was evaluated by examining the motion parameters resulting from the 

volume registration process. Across the nine subjects, the average number of time points per 

run with FD > 0.2 mm varied from 28% to 85%. Based on the framewise displacement 

analysis and the limit of 0.2 mm suggested by Power et al. (2014), it is likely that motion 

play a significant role in creating signal changes within the runs.

3.3 Component selection

For each run, we optimized the number of PCA components to use as nuisance regressors 

separately for four of the noise reduction methods. For optimized CompCor, WCompCor, 

LCompCor, and HCompCor, we plotted the number of time series in the brain that 

correlated significantly (r > 0.207, p < 0.05) with each PCA component. Examples of these 

plots for one run of one subject are shown in Fig. 1. For optimized CompCor and 

WCompCor, the first two PCA components were significantly correlated with time series 

from more than 80% of the voxels in the brain. For LCompCor, the first three PCA 

components were significantly correlated with time series from more than 60% of the voxels 

in the brain. For HCompCor, the first four PCA components were significantly correlated to 

time series from nearly 40% of voxels in the brain. In all cases, the number of time series 

that were significantly correlated fell quickly as the PCA rank increased.

Across runs, the favorable number of PCA components for optimized CompCor ranged from 

9 to 26 (average: 15.10 ± 3.29). For WCompCor, it ranged from 9 to 18 (average: 13.75 

± 2.09). For LCompCor, it ranged from 12 to 37 (average: 16.89 ± 5.51). And for 

HCompCor, it ranged from 11 to 25 (average: 17.06 ± 3.05).

3.4 Activation

Fig. 2 shows activation in the left hemisphere primary sensorimotor cortex for one run of 

one subject. Activation was thresholded at p < 10−10 uncorrected for multiple comparisons. 

Compared to the standard regression analysis (Fig. 2A) and original CompCor (Fig. 2B), 

application of the optimized CompCor (Fig. 2C), WCompCor (Fig. 2D), and LCompCor 

(Fig. 2E) increased the statistical significance of voxels in the motor cortex. In contrast, 

application of HCompCor (Fig. 2F) decreased the statistical significance of many voxels 

across the motor cortex.
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3.5 CNR analysis

The functional CNR of the finger-tapping runs resulting from the application of each noise 

reduction method was averaged across all voxels in the true positive activation mask for the 

last four runs of all nine subjects. Over all subjects, this included 7,480 different voxels. The 

average CNR resulting from each noise reduction method is shown in Fig. 3. The ANOVA 

revealed a significant difference (p < 0.05) among the CNR values for the different noise 

reduction methods. Furthermore, a pairwise t-test confirmed that the CNR for the optimized 

CompCor method was significantly greater (p < 0.05) than that for the original CompCor 

method, revealing the advantages of the optimization. A pairwise t-test also confirmed that 

the CNR for the WCompCor method was significantly greater (p < 0.05) than that for the 

optimized CompCor method, revealing the advantages of applying CompCor to all brain 

voxels. In addition, a pairwise t-test confirmed that the CNR for the LCompCor method was 

significantly greater (p < 0.05) than that for the HCompCor method, revealing that removing 

low-frequency noise signals increased CNR more than removing high-frequency noise 

signals. Contrary to our expectations, the CNR for the WCompCor method was found to be 

significantly greater (p < 0.05) than that for the LCompCor method, revealing that the 

removal of noise signals of all frequencies increased CNR more than the removal of only 

low-frequency noise signals.

Compared to the average CNR resulting from standard regression (175 ± 90), the average 

CNR resulting from WCompCor (297 ± 152) was 69% higher. Compared to the average 

CNR resulting from the original CompCor method (216 ± 103), the average CNR for 

WCompCor was 38% higher.

3.6 Sensitivity, specificity, and ROC analysis

The sensitivity curves, specificity curves, and ROC curves for one run of one subject are 

shown in Fig. 4. Differences were seen for sensitivity and specificity curves, but the ROC 

curves were virtually indistinguishable. These results were similar across subjects and runs.

Fig. 5 (left) shows histograms of the area under the sensitivity curve for each analysis 

method using data from the last four runs in all nine subjects. For reference, the histogram of 

the area under the sensitivity curve for the standard regression analysis is shown in Fig. 5A 

(left). A single-factor ANOVA revealed that these distributions were not the same (p < 0.05). 

Using two-tailed, pairwise t-tests, we found that the mean area under the sensitivity curve 

for the optimized CompCor method was significantly greater (p < 0.05) than the mean area 

under the sensitivity curve for the original CompCor method, suggesting that the optimized 

CompCor method was better than the original CompCor method at reducing noise and 

increasing sensitivity (Fig. 5B,C left). The mean area under the sensitivity curve for the 

WCompCor method was significantly greater (p < 0.05) than the mean area under the 

sensitivity curve for the optimized CompCor method, revealing that applying CompCor to 

all brain voxels improved sensitivity more than applying CompCor to an ROI of noisy 

voxels. (Fig. 5C,D left). The mean area under the sensitivity curve for the LCompCor 

method was significantly greater (p < 0.05) than the mean area under the sensitivity curve 

for the HCompCor method, revealing that removing low-frequency noise signals increased 

sensitivity more effectively than removing high-frequency noise signals (Fig. 5E,F left). In 
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contrast to our expectations, the mean area under the sensitivity curve for the WCompCor 

method was significantly greater (p < 0.05) than the mean area under the sensitivity curve 

for the LCompCor method, revealing that the removal of noise signals of all frequencies 

increased sensitivity more than the removal of only low-frequency noise signals (Fig. 5D,E 

left). Average areas under the sensitivity curves are shown in Table 1. Results of the t-tests 

are summarized in Table 2. In addition, t-tests revealed that the mean area under the 

sensitivity curve for each noise reduction method was significantly greater (p < 0.05) than 

the mean area under the sensitivity curve for the standard regression method.

Fig. 5 (center) shows histograms of the area under the specificity curve for each analysis 

method using data from the last four runs in all nine subjects. For reference, the histogram of 

the area under the specificity curve for the standard regression analysis is shown in Fig. 5A 

(center). A single-factor ANOVA revealed that the distributions were not the same (p < 

0.05). Using two-tailed, pairwise t-tests, we found that the mean area under the specificity 

curve for the original CompCor method was significantly greater (p < 0.05) than the mean 

area under the specificity curve for the optimized CompCor method, suggesting that the 

optimized CompCor method yielded more false positives (Fig. 5B,C center). The mean area 

under the specificity curve for the optimized CompCor method was significantly greater (p < 

0.05) than the mean area under the specificity curve for the WCompCor method, suggesting 

that the WCompCor method yielded even more false positives (Fig. 5C,D center). The mean 

area under the specificity curve for the HCompCor method was significantly greater (p < 

0.05) than the mean area under the specificity curve for the LCompCor method, suggesting 

that removing low-frequency noise yielded more false positives than removing high-

frequency noise (Fig. 5E,F center). Finally, the mean area under the specificity curve for the 

LCompCor method was significantly greater (p < 0.05) than the mean area under the 

specificity curve for the WCompCor method, suggesting that the WCompCor method 

yielded more false positives than the LCompCor method (Fig. 5D,E center). Average areas 

under the specificity curves are shown in Table 1. Results of the t-tests are summarized in 

Table 2. In addition, t-tests revealed that the mean area under the specificity curve for each 

noise reduction method was significantly less (p < 0.05) than the mean area under the 

specificity curve for the standard regression method.

Fig. 5 (right) shows distributions of the mean area under the ROC curve for all analysis 

methods using data from the last four runs of all nine subjects. A single-factor ANOVA 

revealed that there was no difference between the distributions (p < 0.05). Average areas 

under the ROC curves are shown in Table 1. In general, the mean area under the ROC curve 

was similar across methodology.

4. Discussion

In this study, we compared the results of five different PCA methods to reduce physiological 

noise and motion artifacts from EPI data sets in order to improve the sensitivity of detecting 

task-related fMRI activation. We confirmed our first hypothesis that the average area under 

the sensitivity curve for the optimized CompCor method was significantly greater (p < 0.05) 

than the average area under the sensitivity curve for the original CompCor method. In 

addition, the optimized CompCor method yielded a significantly higher functional CNR (p < 

Soltysik et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.05) compared to the original CompCor method. These results revealed that the 

methodology added for the optimized CompCor method (orthogonalizing the PCA 

components to the BOLD response waveform and choosing a favorable number of PCA 

components to use as nuisance regressors) improved the ability to reduce noise and detect 

activation compared to the original CompCor method.

Next, we confirmed our second hypothesis that the average area under the sensitivity curve 

for the WCompCor method was significantly greater (p < 0.05) than the average area under 

the sensitivity curve for the optimized CompCor method. In addition, the WCompCor 

method yielded a significantly higher functional CNR (p < 0.05) compared to the optimized 

CompCor method. These results revealed that applying PCA to time series from voxels 

throughout the entire brain mask improved the ability to reduce noise and detect activation 

compared to applying PCA to a small ROI of noisy voxels.

Next, we confirmed our third hypothesis that the average area under the sensitivity curve for 

the LCompCor method was significantly greater (p < 0.05) than the average area under the 

sensitivity curve for the HCompCor method. In addition, the LCompCor method yielded a 

significantly higher functional CNR (p < 0.05) compared to the HCompCor method. These 

results revealed that the use of low-frequency PCA components as nuisance regressors was 

much better than the use of high-frequency PCA components as nuisance regressors for 

reducing noise and improving the detection of activation.

Finally, we rejected our fourth hypothesis, instead finding that the average area under the 

sensitivity curve for the WCompCor method was significantly greater (p < 0.05) than the 

average area under the sensitivity curve for the LCompCor method. In addition, the 

WCompCor method yielded a significantly higher functional CNR (p < 0.05) compared to 

the LCompCor method. These results revealed that applying PCA to low-frequency filtered 

time series offered no improvement in sensitivity compared to applying PCA to unfiltered 

time series.

When comparing the five different PCA methods for reducing noise, we found that the 

WCompCor method yielded the greatest area under the sensitivity curve and the highest 

average functional CNR. In addition, the WCompCor method required the lowest number of 

PCA components to use as nuisance regressors (averaging 13.75 ± 2.09) compared to 

optimized CompCor (average: 15.10 ± 3.29), LCompCor (average: 16.89 ± 5.51), and 

HCompCor (average: 17.06 ± 3.05). These results suggest that WCompCor was best-suited 

for identifying non-task-related sources of noise in the time-series data. Therefore, to reduce 

noise and improve the sensitivity of task-based fMRI activation maps, we recommend 

applying the WCompCor method over all other PCA methods tested.

In contrast to the increase in sensitivity, our results showed that each of the regressor 

methods decreased the specificity of the resulting activation map compared to the standard 

regression analysis. These results reveal that the increase in sensitivity and functional CNR 

for each of these noise reduction methods comes with the price of a decrease in specificity.

One explanation for this decrease in specificity is that the increase in functional CNR 

allowed the regression analysis to more easily identify task-correlated motion signals, which 
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would increase the presence of false positive activation. The framewise displacement 

analysis revealed that, across runs, between 28% and 85% of the time points had a 

framewise displacement greater than 0.2 mm. If this excess motion contributed to task-

correlated signal changes, it would have decreased the specificity, as these signals would not 

have been removed with the PCA methods. It is possible that “scrubbing” motion-

contaminated time points may have increased specificity. However, too many time points 

were affected by motion in these runs to consider removing motion-contaminated data. The 

potential increase in false positive activation tempers the enthusiasm one would otherwise 

have for the increase in sensitivity seen for these noise reduction methods. Although the 

current study used a task duration ideally designed to separate true BOLD responses from 

task-correlated motion, longer or shorter task durations may lead to an even greater decrease 

in specificity as task-correlated motion signals become difficult to separate from true BOLD 

responses. The current study also used a finger-tapping task, which is more likely to yield 

task-correlated motion artifacts than cognitive tasks not requiring motion. Applying 

WCompCor to an fMRI study with a cognitive task is expected to result in less task-

correlated motion and less of a decrease in specificity.

Previous studies using nuisance regressors did not take into account the effect of the analysis 

technique on both sensitivity and specificity. The study introducing RETROICOR (Glover et 

al., 2000) provided no analysis of sensitivity or specificity. The study introducing CompCor 

(Behzadi et al., 2007) reported an analysis using simulated data that showed improved ROC 

curves when applying CompCor compared to RETROICOR or uncorrected data. However, 

our study using human subject data found no significant difference between the ROC curves 

of CompCor and standard regression. The PCA method used by Bianciardi et al. (2009b) did 

not analyze specificity. Future work may be needed to more clearly understand the effect of 

different noise regressor methods on both sensitivity and specificity of fMRI activation.

The LCompCor method regressed out PCA components in the low frequency range (< 0.1 

Hz), where spontaneous BOLD activity is believed to be dominant (Cordes et al., 2000). If 

spontaneous BOLD fluctuations were the dominant source of physiological noise, we would 

have expected the LCompCor method to yield equal or better results than the WCompCor 

method. Unexpectedly, the WCompCor method yielded better improvements in sensitivity 

compared to the LCompCor method. One explanation for why WCompCor yielded a 

sensitivity higher than LCompCor is that there were strong sources of noise besides the 

spontaneous BOLD fluctuations that were reduced using WCompCor. For example, our 

analysis revealed that for each run, between two and nine PCA components correlated 

significantly with the framewise displacement vector, revealing that motion-related noise 

was captured by the principal components analysis. Also, the global mean signal is likely to 

be composed of a wide range of frequencies, and WCompCor would have been more 

effective than LCompCor at removing it. A second explanation is that spontaneous BOLD 

fluctuations might occur above the commonly cited 0.1 Hz threshold as one recent study has 

shown (Niazy et al., 2011). In either case, our data suggest that to most reliably reduce noise 

in task-based fMRI data, PCA should be applied to unfiltered time series from voxels 

throughout the brain.
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We did not acquire cardiac and respiratory data during the fMRI acquisitions, so we were 

unable to directly compare our methods with RETROICOR (Glover et al., 2000). The 

RETROICOR method is specifically designed to remove only cardiac and respiratory noise 

components. Behzadi et al. (2009) found that the CompCor method was superior to the 

RETROICOR method in terms of the activation volume (i.e., sensitivity). In our study, we 

found that the WCompCor method was superior to the original CompCor method in terms of 

sensitivity and CNR. As we have shown, the WCompCor method is designed to remove 

many different types of noise components, including but not limited to cardiac and 

respiratory fluctuations. Because RETROICOR only removes cardiac and respiratory 

signals, we believe that WCompCor should be superior to RETROICOR for improving the 

sensitivity of detecting task-based fMRI activation. Future research could employ the 

PESTICA algorithm (Beall, 2010) to compare the abilities of RETROICOR and WCompCor 

to retrospectively remove noise from fMRI data.

For every regressor of no interest that is included in the regression analysis, there is a loss of 

one in the degrees of freedom, reducing the significance of the resulting test statistic. As a 

result, there are diminishing returns for regressing out an increasing number of nuisance 

regressors. In our analysis, the activation of the final regression analysis was evaluated using 

the adjusted degrees of freedom. Previous papers using PCA appear did not adjust for the 

change in the degrees of freedom due to regressing out PCA components, which questions 

the optimization of these studies (Thomas et al., 2002, Behzadi et al., 2007). Because we 

adjusted the degrees of freedom for every regressor of no interest included in the regression 

analysis, we believe that our study yielded a more believable optimization of the CompCor 

method to reduce noise.

A disadvantage of a component correction method like WCompCor is that there is no single 

ideal number of components to regress from the data. We devised an algorithm to determine 

a favorable number of components to use as nuisance regressors. However, determining the 

number of nuisance regressors separately for each run can complicate the data analysis. For 

our data, we chose between 9 and 18 (average: 13.75 ± 2.09) components to use as nuisance 

regressors for WCompCor.

Another disadvantage of a component correction method like WCompCor is that it may not 

work well for short time-series. The degrees of freedom in the regression analysis is equal to 

the number of time points in the fMRI run minus the number of parameters used in the 

regression model. The shorter the time-series, the fewer degrees of freedom remaining after 

applying an identical regression model. Our fMRI runs had 90 image volumes (or time 

points) each. After fitting the baseline to a polynomial of second order (three parameters) 

and a BOLD response waveform (one parameter), there were 86 degrees of freedom 

remaining. If we also regressed out 14 components of no interest, that would have left us 

with 72 degrees of freedom. If our fMRI runs had been acquired with only 50 image 

volumes, we would have been left with only 32 degrees of freedom. Such a small number of 

degrees of freedom would lower the statistical significance, potentially reducing any 

possible benefit from the WCompCor method.
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The PCA method has the ability to identify the global mean signal. Previously, researchers 

have pointed out that removing the global mean signal can yield spurious negative activation 

in resting state studies (Murphy et al., 2009). However, our method orthogonalized each 

PCA component to the BOLD response waveform, preventing any increase in spurious 

negative activation caused by regressing out the unfiltered global mean signal.

Finally, it should be stressed that the WCompCor method is intended for use on task-related 

fMRI data and should not be applied to resting state fMRI data where the intent is to find 

resting state networks. The WCompCor method is likely to remove resting state BOLD 

fluctuations that form resting state networks, as these fluctuations also contribute strongly to 

physiological noise. If investigators are interested in removing physiological noise from 

resting state fMRI data, the only known physiological noise of interest would be non-BOLD 

physiological noise, such as cardiac and respiratory signal changes. These signals can be 

removed using either RETROICOR (Glover et al., 2000) or CompCor (Behzadi et al., 2007).

5. Conclusions

We compared the results of five different PCA methods (original CompCor, optimized 

CompCor, WCompCor, LCompCor, and HCompCor) to reduce physiological noise and 

motion artifacts and increase the sensitivity of detecting fMRI activation. First, we found 

that orthogonalizing PCA components to the BOLD response and choosing a favorable 

number per run (optimized CompCor) greatly improved the sensitivity. Second, we found 

that applying PCA to voxel time series throughout the whole brain (WCompCor) further 

improved the sensitivity. Third, we found that applying to PCA to low-pass filtered data 

(LCompCor) improved the sensitivity much better than when applying PCA to high-pass 

filtered data (HCompCor). Fourth, we found that applying PCA to low-pass filtered data 

(LCompCor) offered no improvement over applying PCA to unfiltered time series 

(WCompCor). Therefore, to reduce noise and improve the sensitivity of task-based fMRI 

activation maps, we recommend application of the WCompCor method. The disadvantage of 

this method, as with all of the PCA methods tested, is that the specificity is decreased. This 

decrease in specificity may be due to the increased sensitivity of detecting task-correlated 

motion artifacts.

The fact that sensitivity increases while specificity decreases may limit the utility of this 

noise reduction method. The use of WCompCor may be best suited for an application like 

presurgical planning, where sensitivity is valued more than specificity. Investigators asking 

general neuroscience questions that demand both high sensitivity and specificity may wish 

to avoid using noise regressors in their analysis.
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Highlights

• We developed four new PCA methods to identify nuisance regressors in fMRI 

analysis

• We compared these PCA methods with CompCor, an established PCA method

• The best improvement in CNR and sensitivity resulted from the whole brain 

component correction (WCompCor) method

• However, regressing noise signals showed a paradoxical consequence of 

reducing specificity for all noise reduction methods attempted
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Figure 1. 
Plots of the percentage of voxels that were significantly correlated (p < 0.05) to each PCA 

component versus the PCA component rank for one run of one subject. A) Optimized 

CompCor, B) WCompCor, C) LCompCor, and D) HCompCor. The red dashed line indicates 

the level of 10%.

Soltysik et al. Page 22

J Neurosci Methods. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Coronal activation maps show activation in the left hemisphere primary sensorimotor cortex 

for A) standard regression, B) regression with original CompCor, C) regression with 

optimized CompCor, D) regression with WCompCor, E) regression with LCompCor, and F) 

regression with HCompCor.
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Figure 3. 
CNR, averaged across all voxels in the true positive activation mask for the last four runs of 

all nine subjects, for each noise reduction method.
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Figure 4. 
(A) Sensitivity plotted against threshold, (B) specificity plotted against threshold, and (C) 

the ROC curves for one run of one subject.
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Figure 5. 
Histograms of area under the sensitivity curve (left), area under the specificity curve 

(center), and area under the ROC curve (right) for five different analysis methods: (A) 

standard regression, (B) original CompCor, (C) optimized CompCor, (D) WCompCor, (E) 

LCompCor, and (F) HCompCor.
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Table 1

Average areas under the sensitivity, specificity, and ROC curves (mean ± standard deviation)

Method Average area under
the sensitivity curve

Average area under
the specificity curve

Average area under
the ROC curve

Standard Regression 6.85 ± 1.25 3.78 ± 0.14 0.969 ± 0.017

Original CompCor 7.42 ± 1.23 3.63 ± 0.18 0.969 ± 0.020

Optimized CompCor 9.55 ± 1.33 3.28 ± 0.19 0.969 ± 0.017

WCompCor 9.94 ± 1.29 3.20 ± 0.18 0.969 ± 0.017

LCompCor 8.39 ± 1.95 3.47 ± 0.25 0.960 ± 0.029

HCompCor 7.08 ± 1.21 3.73 ± 0.13 0.970 ± 0.017
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Table 2

Results of the pairwise t-tests comparing average areas under the curves

Hypothesis p-value for
comparing average

areas under the
sensitivity curve

p-value for
comparing average

areas under the
specificity curve

Optimized CompCor >
Original CompCor

3.57 × 10−11 * 4.68 × 10−14 **

WCompCor >
Optimized CompCor

1.51 × 10−6 * 8.12 × 10−10 **

LCompCor >
HCompCor

6.02 × 10−5 * 2.19 × 10−9 **

LCompCor >
WCompCor

1.38 × 10−11 ** 1.71 × 10−11 *

*indicates significance and confirmation of hypothesis,

**indicates significance and confirmation of opposite of hypothesis
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