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bstract

Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here
e present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The
ethod is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a
aussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps
eform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close
o each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present
novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute
airwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are
haracteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction
sing both real sections and a synthetic volume.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In medical imaging, volumetric data generated by 3D imag-
ng methods such as MRI and CT have wide applications in
he visualization and analysis of organs. 2D imaging methods,
uch as optical microscopy, typically generate serial sections
ith much higher resolution than MRI or CT scans. Recon-

truction of these 2D sections in 3D has therefore become an
mportant tool for understanding anatomical structures in 3D,

nd in particular, for building high-resolution templates (atlases)
f organs (Timsari et al., 1999; Armstrong et al., 1995; Rosen
t al., 2000; Cannestra et al., 1997; MacKenzie-Graham et al.,
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004; Sidman, 2005), or of whole animals (Brune et al., 1999).
ur work is motivated by the need for automatic and efficient
ethods in reconstructing, from a stack of high-resolution Nissl-

tained sections, a smooth representative volume for building
high-quality 3D atlas of a mouse brain. Applications of the

esulting atlas include visualization, physical computing, as well
s constituting a standard coordinates for mapping and com-
aring brain data from different individuals. The authors have
reviously constructed a 2D atlas of the mouse brain that has
een successfully used to build an atlas-based database of gene
xpression patterns (Ju et al., 2003).

Unfortunately, direct 3D reconstruction of serial sections by
tacking successive sections will not produce a smooth vol-

me. While 3D imaging methods can be applied in vivo, planar
maging methods are applied ex vivo. The preparation steps
equired by 2D imaging methods may introduce undesirable
issue distortions specific to the preparation procedures, which

mailto:taoju@cs.wustl.edu
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ig. 1. Four coronal (i.e., vertically cut from front to back) sections from a st
otational and translational differences, successive sections exhibit different non
ell as artifacts, such as air bubbles and dust.

ave been closely examined by several authors (Berthold et al.,
982; Deverell et al., 1989; Schormann et al., 1995; Brey et al.,
002). The experimental data used in this paper were acquired
y cryo-sectioning a frozen mouse brain into 25 �m thin slices
ollowed by histology staining (Carson et al., 2002). Distortions
n the resulted sections are mainly introduced in the section-
ng stage, which include global translation and rotation, local
tretching and compacting, and various image artifacts (see a
ore detailed discussion in Section 2.2.1). Since these defor-
ations vary from section to section, as shown in the examples

n Fig. 1, distortion correction is required to reconstruct a smooth
olumetric representation.

.1. Related works

There has been tremendous amount of work on 3D recon-
truction from distorted serial sections. Typically, reconstruction
s achieved by deforming individual 2D sections using image
egistration (warping) techniques. Here we briefly review related
orks on 2D image warping and 3D reconstruction.

.1.1. Image warping
Image warping considers the task of finding the best deforma-

ion (warp) of a source image that matches a target image under
specific distance measure such as pixel intensities or mutual

nformation (Maes et al., 1997). Image warping methods have
een intensively studied in the field of medical imaging, and
e refer interested readers to survey articles by Antoine Maintz

nd Viergever (1998), by Glasbey (1998) and by Lester and
rridge (1999), as well as books by Toga (1999), by Hajnal et

l. (2001), and by Modersitzki (2004) for excellent reviews. Soft-
are packages implementing state-of-the-art warping methods

re also available for medical applications, such as the Auto-
ated Image Registration (AIR) package from UCLA (Woods

t al., 1998a) and the Insight Segmentation and Registration
oolkit (ITK) from NLM (Yoo et al., 2002).

For the purpose of 3D reconstruction, we are interested in
he classification of image warping methods by the nature of
he resulting image deformations. A number of methods com-
ute deformations represented as global polynomials, such as
igid-body transformations (Woods et al., 1993; Maes et al.,
997), linear affine transformations (Rangarajan et al., 1997;

hevenaz et al., 1998), and higher-degree polynomial deforma-

ions (Woods et al., 1998b). Since these deformations are global
n nature, they do not perform well in the case of local variations
etween images (Glasbey, 1998). To overcome this problem,

2
a
1
t

f histological sections of a mouse brain acquired by cryo-sectioning. Besides
r tissue distortions, such as compacting, stretching, and even folds and tears, as

ransformation frameworks that allow more localized deforma-
ions have been proposed, such as free-form B-spline based
eformations defined on a regular grid of control points, which
ave been studied by numerous authors including Rueckert et
l. (1999) and Studholme et al. (2000), and piecewise affine
ransformations considered by Pitiot et al. (2003). Local warp-
ng methods have more flexible mapping functions and are
ften regularized by some form of elastic energy, such as the
hin-plate spline energy (Bookstein, 1989), to prevent excessive
eformations. Common optimisation techniques for computing
regularized solution include solving partial differential equa-

ions (an excellent review of such methods can be found in the
ook by Modersitzki, 2004), finite-element methods (Guest et
l., 2001), graph methods such as max-flow (Roy, 1999) and
in-cut (Boykov et al., 1999), stochastic methods (Agazzi et

l., 1993), and dynamic programming.
Since its first successful application in speech recognition

y Sakoe and Chiba (1978), dynamic programming has been
nown in 1D as Dynamic Time Warping (DTW) and has been
xtended in various ways for warping 2D images (Levin and
ieraccini, 1992; Cox et al., 1996; Uchida and Sakoe, 1998;
onee et al., 2001). Compared to other optimization methods

n the continuous domain, dynamic programming finds discrete
inimizers in a robust manner. However, due to the exponen-

ial time complexity of a fully 2D dynamic programming task,
xisting DTW-based image warping methods can only handle
xtremely low-resolution images.

.1.2. 3D reconstruction
Previous methods on warp-based 3D reconstruction from

erial sections can be appreciated from two perspectives: the
ypes of image deformations performed, and the subjects from
hich the deformations are computed.
Over the past two decades, many authors have reported how

inear transformations can be applied to automatically bring suc-
essive sections into alignment (Toga and Arnicar-Sulze, 1987;
amers et al., 1989; Rydmark et al., 1992; Schormann et al.,
995; Hess et al., 1998; Streicher et al., 2000; Ourselin et al.,
001a,b; Brey et al., 2002; Nikou et al., 2003). The simplic-
ty of linear transformations not only reduces the complexity
f computation but also allows convenient manual adjustment
hrough software interfaces (Rosen et al., 2000; Chen et al.,

003; Karen et al., 2003; Andrey and Maurin, 2005). However,
s shown in several studies (Deverell et al., 1989; Jones et al.,
994; Boyle et al., 1997), the section distortions induced by
he preparation process are local in nature. With the advance
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f image registration techniques, reconstruction methods were
roposed to correct localized section distortions by using local
D deformations (Durr et al., 1989; Guest and Baldock, 1995;
im et al., 1997; Timsari et al., 1999; Ali and Cohen, 1998) as
ell as elastic 3D surface deformations (Thompson and Toga,
996; Mega et al., 1997; Gabrani, 1998; Gefen et al., 2003).

A large number of the above reconstruction methods compute
he warp of each section so that the warped section matches

neighboring section. For example, Durr et al. (1989) com-
utes elastic deformation between pairs of distorted images,
hile Karen et al. (2003) uses software tools for user-assisted

lignment between every two consecutive sections by rigid-body
ransformations. However, unlike image registration where exact

atching is preferred, the goal of reconstruction is to form a
mooth volume allowing natural progression of features through
uccessive images (Guest and Baldock, 1995). Recent meth-
ds, and in particular elastic 3D surface deformation methods,
ocus on warping distorted sections onto an undistorted refer-
nce, such as block-face photos (Mega et al., 1997; Kim et al.,
997; Gefen et al., 2003) or tissue markers (Streicher et al.,
000; Ourselin et al., 2001b), 2D sections of a 3D in vivo image
Thompson and Toga, 1996; Schormann et al., 1995; Ourselin
t al., 2001a), or sections from an existing template (He et al.,
995; Ali and Cohen, 1998; Timsari et al., 1999). The problem
ith this approach is that in many applications an un-sectioned

eference is not always available.
There have only been a few works so far (Montgomery and

oss, 1994; Guest and Baldock, 1995; Wirtz et al., 2004) that
ddress the problem of smooth 3D reconstruction using elastic
D image deformations in the absence of a reference volume
note that existing methods using elastic 3D surface deforma-
ions (Thompson and Toga, 1996; Mega et al., 1997; Gefen et
l., 2003) cannot be applied due to the lack of a reference). With-
ut the knowledge of the original object before sectioning, these
orks based their reconstruction on the following assumption:

he shape of an anatomical structure varies slowly with respect to
ection thickness. In other words, corresponding points on adja-
ent sections are likely to be located close together. Both Guest
nd Baldock (1995) and Wirtz et al. (2004) consider all sec-
ions at the same time and aim at minimizing an overall energy
unctional consisting of distances between every two consecu-
ive sections (e.g., spring forces between corresponding points
Guest and Baldock, 1995) or pixel-wise squared differences
Wirtz et al., 2004)) and the sum of elastic deformation potentials
n every section. Although numerical solutions can be obtained
y using finite element method (Guest and Baldock, 1995) or by
pproximating the differential equations using finite differences
Wirtz et al., 2004), solving the global minimization problem
nvolving all sections is non-trivial due to its massive size.

A completely different approach was taken by Montgomery
nd Ross (1994). The idea is to reposition a point on each section
y applying a local Laplacian smoothing operator on the posi-
ion of that point and the positions of its corresponding points

n the two adjacent sections. However, their method requires
anual delineation of contours on each section to establish cor-

espondence. Moreover, the Laplacian operator is only applied
o points on the contours, hence the deformation is restricted to

S
t
b
r
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he overall shape of a contoured region and has limited power
n matching interior features with neighboring sections.

.2. Contributions

In this paper, we introduce a new approach for reconstructing
smooth representative volume by elastically deforming serial

ections, which requires no human intervention or the use of
reference volume. Since it is impossible to “undo” the tissue
istortions without the knowledge of the original object before
ectioning, we base our reconstruction on the same assumption
rom previous works (Guest and Baldock, 1995), that is, the
ection thickness (25 �m) is small comparing to variations in
he shape of anatomical structures. Instead of considering all
ections at the same time (Guest and Baldock, 1995; Wirtz et al.,
004) or only two neighbors for each section (Montgomery and
oss, 1994), we consider an extended neighborhood to compute

he deformation of each section. Our goal is to produce a smooth
olume where a point on a section lies close to its corresponding
oints within its neighborhood. To achieve this goal, we present:

1) An automatic 3D reconstruction method, called warp fil-
tering, based on 2D image warps between each pair of
adjacent sections. During the reconstruction, each section
is deformed using an average warp computed from the pair-
wise warps within a group of neighboring sections. The
average warp results in a smooth volume by effectively repo-
sitioning each point on one section to the weighted-average
location of the corresponding points on the neighboring sec-
tions. The algorithm works with any 2D image registration
techniques for computing pairwise warps, and can be easily
parallelized for speed. We performed quantitative and qual-
itative validation of the reconstruction method on both real
and synthetic data, and the results revealed the effectiveness
of our method in building a smooth volume from distorted
sections.

2) A new image warping algorithm based on dynamic pro-
gramming for computing regularized warps between adja-
cent serial sections. Due to the nature of sectioning distor-
tions, we consider a class of 2D warps that can be decom-
posed into 1D piecewise linear deformations with elastic
constraints. The representation of such a decomposable 2D
warp greatly facilitates the process of warp filtering. More-
over, the decomposition allows us to extend a well-known
1D discrete minimization method called Dynamic Time
Warping (Sakoe and Chiba, 1978) to compute 2D elas-
tic image warps even between images of high resolutions.
Experimental results have shown that the proposed method
achieves an efficiency comparable to state-of-the-art warp-
ing methods, while the resulting deformations often match
successive tissue sections with improved accuracy.

The rest of the paper is organized as follows. We describe
ur image warping reconstruction algorithm in Section 2. In

ection 3 we present our validation framework involving quanti-

ative measures developed from the evaluation criteria suggested
y Guest and Baldock (1995), and we report the experimental
esults on a MRI test volume and a stack of 350 histology sec-
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ig. 2. Reconstruction of a smooth 2D image from deformed 1D columns using
olumns. (c) The reconstructed image. (d and e) A subset of lines connecting co

ions. Finally, we discuss limitations of the method and future
esearch in Section 4.

. Methods

.1. Warp filtering

To reconstruct a volume in which corresponding points on
uccessive sections are located close to each other, warp filter-
ng computes image warps that match each section to a group
f neighboring sections based on pairwise warps between suc-
essive sections.

.1.1. The algorithm
The input to the algorithm is a stack of N serial sec-

ions represented as 2D images gk: R2 → R (k = 1, . . ., N)
nd pairwise warps represented as bivariate, bivalued functions
k,k+1: R2 → R2 (k = 1, . . ., N − 1) between every two successive

mages. The warps φk,k+1 can be computed using any user-
pecified 2D image warping method so that the warped image
k ◦ φk,k+1

1 best matches the neighboring image gk+1.
The algorithm computes new warps Φk: R2 → R2 (k = 1, . . .,

) that match each image gk to a group of its neighboring images
gk−d, . . ., gk+d} (d > 0). Φk is represented as the following
eighted average,

k =
k+d∑
i=k−d

γiφk,i (1)

here γ i (i = k − d, . . ., k + d) are binomially distributed weights
hat approximate a Gaussian filter,(

2d

i− k + d

)

i =

22d ,

nd φk,i represent the warps from image gk to each image gi

n the neighborhood i ∈ [k − d, k + d]. Given the pairwise warps
(φk−d,k−d+1, . . ., φk+d−1,k+d}, φk,i can be constructed induc-

1 Operator ‘◦’ denotes function composition such that (f1 ◦ f2)(x) = f1(f2(x)).

2

a

b
p

filtering. (a) The original grayscale image. (b) The same image with distorted
onding points in successive columns before and after reconstruction.

ively as2

k,i =

⎧⎪⎨
⎪⎩
φk,i+1 ◦ φ−1

i,i+1, k − d ≤ i < k

φk,k, i = k

φk,i−1 ◦ φi−1,i, k < i ≤ k + d

(2)

here φk,k denotes the identity.
In effect, under the warpΦk, each point on gk is repositioned

ot to exactly match its corresponding points on a single neigh-
oring image, but to match the weighted-average location of its
orresponding points on a group of images {gk−d, . . ., gk+d}.
onsequently, in the warped stack of images gk ◦Φk (k = 1, . . .,
), high-frequency noise along lines of corresponding points

hrough successive images, which are often induced by ran-
omized sectioning distortions, are removed, and the distances
etween corresponding points on adjacent images are reduced.

We illustrate warp filtering in a 2D example in Fig. 2. Here
e consider the simplified problem of reconstructing a coherent
D image from a sequence of deformed 1D columns of pixels
k: R → R. Fig. 2a shows a grayscale image with letters “TMI”,
nd Fig. 2b shows the same image but with each column gk
ynthetically distorted using a randomized local function. To
econstruct a smooth 2D image, pairwise warps φk,k+1: R → R
hat establish correspondences between points on column gk
o column gk+1 are computed between successive columns. In
ig. 2d, a subset of lines connecting corresponding points on
uccessive columns is plotted based on these pairwise warps.
bserve that the lines are jagged due to the local distortions

hat vary from column to column. Our algorithm computes the
ltered warps Φk from pairwise warps φk,k+1 and produces a
tack of warped columns gk ◦Φk that constitute a smooth 2D
mage shown in Fig. 2c. Observe in Fig. 2e that, after warping,
orresponding points on successive columns lie close to each
ther and form smooth curves in space.
.1.2. Comparison
The proposed algorithm is most closely related to the

pproach taken by Montgomery and Ross (1994). In comparison

2 If pairwise warps φk,k+1 are not invertible, reverse warps φk+1,k have also to
e computed using the chosen image warping method between successive image
airs.
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o their method, we present two major improvements. First, the
orrespondence between successive sections, which was estab-
ished manually using contour lines by Montgomery and Ross
1994), is now computed automatically as image warps. Second,
he simple two-neighbor Laplacian operator on contour lines
s replaced by a more general de-noising Gaussian filter that
perates on general warps between image pairs in an extended
eighborhood.

Our method also offers several unique features when com-
ared to global minimization methods (Guest and Baldock,
995; Wirtz et al., 2004):

1) Simplicity: Without the need to setup and solve a 3D min-
imization problem, our local approach involves only 2D
image warping and simple weighted-averaging operations.
In general, the algorithm can be used in conjunction with
any existing 2D image registration techniques for smooth
3D reconstruction.

2) Stability: In contrast with global minimization over all sec-
tions, computing pairwise warps between two individual
sections is a minimization problem at a small scale and
therefore less prone to errors due to variations in the input
data. Such stability is greatly desired due to the systematic
and random nature of section distortions.

3) Efficiency: The decomposition of the reconstruction prob-
lem into warping and filtering tasks makes substantial per-
formance increase possible through parallelization. In par-
ticular, since the pairwise warp between each image pair
as well as the filtered warp for each image are computed
independently of each other, linear reduction of computa-
tion time can easily be achieved in a distributed computing
environment.

.1.3. Warp representation
Although the warp filtering algorithm can be used with any

mage warping techniques, efficient computation using formula
1) and (2) requires appropriate representation of pairwise image
arps φk,k+1.
Regardless of how pairwise warps φk,k+1 are represented, the

ltered warp Φk can always be implicitly constructed by eval-
ating the righthand side of formula (1) and (2) at every point
x,y). This approach, however, needs to evaluate {φk−d,k−d+1,
. ., φk+d−1,k+d} for every point in the image. For efficiency, we
an construct Φk as an explicit function using formula (1) and
2), which can then be used to directly evaluateΦk(x,y) at every
oint (x,y). The second approach requires the pairwise warps
k,k+1 to be represented for the following operations on func-

ions:

Inversion: φ−1
ij , representing the warp from image gj to image

gi.
Composition: φi,j ◦φj,k, representing the warp from image gi

to image gk.

Addition: aφi,j + bφi,k, representing a weighted average of the
two warps.

Although linear functions are feasible, warps represented
s higher-degree global polynomials or displacement fields in

c
p
R

φ

Methods 156 (2006) 84–100

any local warping methods cannot be easily adapted to take
dvantage of these function operations. In the next section, we
escribe a new image warping method for computing a local,
iecewise linear warping function that is readily represented for
fficient warp filtering.

.2. Computing image warps

It is well-known that the problem of computing the optimal
arp is ill-posed (Modersitzki, 2004) and NP-complete (Keysers

nd Unger, 2003), hence regularization is required. For warping
etween successive serial cryo-sectioned images, we consider a
pecific type of regularized image warps such that

1) Each 2D warp can be decomposed into a single 1D deforma-
tion in the horizontal direction and independent 1D defor-
mations in the vertical direction for each column, and

2) Each 1D deformation is represented as a monotonic piece-
wise linear function with elasticity constraints.

As we shall see in the following, such regularized warps are
apable of representing local deformations that are characteristic
etween adjacent serial sections. In addition, the regularization
llows fast warp filtering by supporting the three operations on
arp functions (i.e., inversion, composition and addition) and

fficient warp computation using dynamic programming.

.2.1. Decomposing 2D warps
In our experiment (Carson et al., 2002), the frozen brain

as cut coronally into 350 cryo-sections each 25 �m thick. Tis-
ue sections were placed on slides and then a Nissl stain was
pplied. After staining, a coverslip was applied to each slide.
ssuming that the sections have been rigidly aligned to cor-

ect the rotational and translational differences introduced when
he tissue sections are placed on the slides (see Section 3.2 for
etails), localized differences between adjacent sections include
see examples in Fig. 1):

1) Inherent anatomical variance between adjacent tissue sec-
tions.

2) Regional tissue deformations in the form of vertical stretch-
ing and compacting induced both during cutting and when
the section is placed onto the slide. Extreme deformations
may lead to tearing and folding.

3) Image artifacts, such as dust (dark artifact) and air bubbles
(black ring-shaped artifact), introduced during coverslip-
ping.

While the anatomical variance and image artifacts typically
o not have specific orientation, regional distortions in the form
f stretching and compacting mostly take place in the verti-
al (i.e., slicing) direction. To better represent the deformations

aused by sectioning distortions while accommodating other
ossible local variances, we shall compute a restricted warp φ:
2 → R2 of the following form:

(x, y) = (φX(x), φY (x, y))



T. Ju et al. / Journal of Neuroscience

F
p
h

w
m
(
d
(
t
t
o
m

a
w
(
F
c
b
i
a
c
t
t
w
a

2

o
a
t

(

(

t

φ

w
t
s
t
a
p
2

2

i
c
p
a
t

(

(

(

Note that the inclusion of the coherence term in (3) is neces-
sary to ensure a smooth deformation field using a 2D warp that
ig. 3. Warping from a source image (a) to a target image (b) by only com-
uting the vertical deformation (c) and by computing deformations in both the
orizontal and vertical direction (d).

here φX,φY are single-valued functions. In other words, φX

odels an overall 1D deformation in the horizontal direction
i.e., shifting of image columns) and φY models independent 1D
eformations in the vertical direction for different values of x
i.e., shifting of pixels in each column). A similar decomposi-
ion has been considered previously by Agazzi et al. (1993) for
ext recognition. Such decomposition greatly simplifies the task
f warp computation, since 1D (vector) warps can be obtained
uch more efficiently and robustly than 2D (image) warps.
Previous authors, such as Cox et al. (1996), have considered

more restricted form of 2D warps. In their methods, each 2D
arp consists solely of independent 1D warps on each column

i.e., φX is the identity function). To illustrate the difference,
ig. 3 shows a simple example of warping between two images
ontaining rings of different radii, a typical type of deformation
etween successive tissue sections. Fig. 3c shows the source
mage deformed using only 1D warps in the vertical direction,
nd Fig. 3d shows the same source image deformed using the
ombination of 1D warps in both vertical and horizontal direc-
ions. Observe that the horizontal warp φX is necessary to model
he non-vertical variances between source and target images,
hich is required to handle the anatomical differences and image

rtifacts in tissue sections.

.2.2. Piecewise linear representation
For convenient representations that will facilitate the function

perations in warp filtering, we consider 1D warps {φX, φY} that
re monotonic, piecewise linear functions. In particular, given
wo images s and t with n + 1 columns and m + 1 rows,
1) The horizontal deformation φX is represented by a pair of
piecewise linear functions σ,ψ: [0, K ∈ Z+] → [0, n], which
match column σ(k) in image s to columnψ(k) in image t for
k = 0, . . ., K.

i

Methods 156 (2006) 84–100 89

2) The vertical deformation φY is represented by a sequence of
piecewise linear function pairs σk, ψk: [0, L ∈ Z+] → [0, m]
for k = 0, . . ., K, which match the point (σ(k),σk(l)) in image
s to point (ψ(k),ψk(l)) in image t for k = 0, . . ., K and l = 0,
. . ., L.

We require functions σ,ψ and σ�,ψ�3 to be invertible, so
hat the warp φs,t from image s to image t can be represented as:

s,t(x, y) = (σ(x̂), σx̂(ψ
−1
x̂ (y)))

here x̂ = ψ−1(x) for x ∈ [0, n] and y ∈ [0, m] (linear interpola-
ion is used when subscript x assumes a non-integer value). The
ymmetry of σ and ψ allows the inverse warp φt,s from image
to image s to be represented in the same way with symbols σ
ndψ exchanged. Such convenience will later become crucial in
erforming function operations during warp filtering in Section
.2.4.

.2.3. Elastic deformation
To prevent excessive image deformation, an image is typ-

cally modelled as an elastic material and image warps are
onstrained by some form of deformation energy. Due to the
iecewise-linear nature of our warp representation, we consider
discrete form of deformation energy that consists of three

erms:

1) First and second order deformation energy in the X direction:

EX(σ,ψ) = αX

K∑
k=0

δ(k)2 + βX

K−1∑
k=0

(δ(k + 1) − δ(k))2

where δ(k) = σ(k) −ψ(k) and αX, βX are constant weights.
2) Independent first and second order deformation energy in

the Y direction for each vertical warp:

EY (σk, ψk) = αY

L∑
l=0

δk(l)
2 + βY

L−1∑
l=0

(δk(l+ 1) − δk(l))
2

where δk(l) = σk(l) −ψk(l), and αY, βY are constant weights.
3) Coherence between neighboring vertical warp functions:

EC(σ�,ψ�) = γ

K−1∑
k=0

L∑
l=0

((σk+1(l) − σk(l))
2

+ (ψk+1(l) − ψk(l))
2).

where γ is a constant weight.
s decomposed into independent 1D warps.

3 σ� is the short hand for writing the whole sequence σ0, . . ., σk.
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ig. 4. Comparison of a Manhattan path (a) and a restricted path (b) whose slop
skewed square along the diagonal.

Putting together, the warping problem that we consider
ecomes the minimization of the following error:

(σ,ψ, σ�,ψ�) =
K∑
k=0

MY (σ(k), ψ(k), σk, ψk) + EX(σ,ψ)

+EC(σ�,ψ�) (3)

here MY is the warping error for each independent vertical warp
nder the l2-norm (e.g., sum of pixel-wise squared differences):

Y (σ(k), ψ(k), σk, ψk) =
L∑
l=0

(s(σ(k), σk(l)) − t(ψ(k), ψk(l)))
2

+EY (σk, ψk) (4)

.2.4. Dynamic programming
To compute a minimizer of (3), we first need an efficient

ethod for minimizing the 1D warping error in (4). Dynamic
ime Warping (DTW) (Sakoe and Chiba, 1978) is such a method

hat robustly computes a discrete minimizer in 1D matching
roblems. Here we describe how 1D DTW can be extended to
arp 2D images by computing a discrete minimizer of (3).

.2.4.1. 1D Warping. First we consider the 1D problem of
omputing the vertical warp pair (σk, ψk) between column σ(k)

n image s and column ψ(k) in image t, assuming the existence
f σ and ψ. DTW discretizes (σk(l), ψk(l)) (l = 0, . . ., L) as a

eij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Min

εi,j,

∞,
ath on the integer grid from (0, 0) to (m, m). The original DTW
lgorithm computes a Manhattan path from (0, 0) to (m, m), as
hown in Fig. 4a. However, the resulting piecewise linear func-
ions (σk,ψk) would become non-invertible due to existence of

(

ig. 5. Weights assigned to the entries in the error table ε for computing functions
eft(i,j), Down(i,j) and Diag(i,j).

ero derivatives on the linear segments. To enforce invertibil-
ty, we adopt a similar technique to the method of Kovar and
leicher (2003) that restricts the slope of every segment of the
ath to be 1/2, 1 or 2. An example path is shown in Fig. 4b.
sing DTW, the path with bounded slope that minimizes the 1D
arping error MY(σ(k),ψ(k), σk,ψk) defined in (4) can be found

n three steps:

1) Construct a m + 1 by m + 1 error table ε , so that

εi,j = (s(σ(k), i)−t(ψ(k), j))2+αY (i−j)2, ∀i, j ∈ [0,m]

2) Construct a m + 1 by m + 1 auxiliary table e, in which ei,j is
the error of the minimal-error path with bounded slope from
entry (0, 0) to entry (i,j) in the error table ε. We can compute
ei,j inductively as follows:

−2,j−1 + Left(i, j) + βY

−1,j−2 + Down(i, j) + βY

−3,j−3 + Diag(i, j)

⎞
⎟⎠ , i > 0 or j > 0

i = 0 and j = 0

i < 0 or j < 0

(5)

where each function Left, Down, and Diag computes a
weighted sum of entries in ε according to the direction and
length of the previous path segment, as shown in Fig. 5. Note

that the sum of the weights is proportional to the length of
the path segment in each direction.

3) The minimal-error path that leads to em,m encodes the piece-
wise linear functions (σk, ψk): [0, L] → [0, m] where L is
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sented as grayscale images of dimensions n = 850 and m = 670.
We compare the result of applying our method4 to the result
of using two other popular warping methods: Automated Image
Fig. 6. A test pattern warped by applying a non-coherent w

the number of path segments and eσk(l),ψk(l) are entries along
the path for l = 0, . . ., L.

Both time and space complexity of the above algorithms is
(m2). However, we can dramatically improve the speed and the
emory usage in practice. First, εi,j and ei,j only have to be com-

uted for grid points i, j that lie within a skewed square of size
m + 2)/3 along the diagonal, as shown in Fig. 4b, which effec-
ively reduces the computation by a factor of 9. Furthermore,
e can limit our computation to grid points {i,j} within a nar-

ow band along the diagonal, whose half-width is the maximum
eformation ||(k(l) −ψk(l)||. When warping between adjacent
issue sections, we typically observe a maximum deformation
f less than 10% in both horizontal and vertical directions, hence
anding reduces the computation further by an approximate fac-
or of 5. However, this percentage can be increased or decreased
y the user, based on how well the sections are aligned with
espect to each other, so that dynamic programming will be com-
uted over a larger or smaller neighborhood.

.2.4.2. 2D Warping. The 2D warping task M(σ, ψ, σ�, ψ�)
s achieved in two stages. First, observing a similar form on the
ight-hand side of the 2D minimization goal in (3) (ignoring the
oherence term EC) and the 1D minimization goal in (4), we
onsider functions (σ, ψ) such that (σ(k), ψ(k)) (k = 0, . . ., K)
orm a path on the integer grid from (0, 0) to (n, n) with bounded
lope. Similarly, using DTW, such a path that minimizes the sum
f vertical warping error

∑K
k=0MY (σ(k), ψ(k), σk, ψk) and the

orizontal elastic energy EX(σ, ψ) can be found in three steps:

1) Construct a n + 1 by n + 1 error table ε, so that

εi,j = MY (i, j, σ̄i, ψ̄i) + αX(i− j)2, ∀i, j ∈ [0, n]

where (σ̄i, ψ̄j) is the minimal-error vertical warp between
column i in s and column j in t, computed using the previous
1D algorithm.

2) Construct a n + 1 by n + 1 auxiliary table e in the same way
as in (5) except constant βY is replaced by βX.
3) The minimal-error path that leads to en,n encodes the piece-
wise linear functions (σ, ψ): [0, K] → [0, n] where K is the
number of path segments and eσ(k),ψ(k) are entries along the
path for k = 0, . . ., K.

R

) and a coherent warp (b) from sections 14 to 15 in Fig. 1.

Next, given (σ, ψ), the vertical warps (σ�, ψ�) can be then
omputed using the previous 1D algorithm. However, these
inimal-error vertical warps yield 2D warps that may vary

ignificantly from column to column. For example, Fig. 6a
hows the result of applying a 2D warp computed from sec-
ions 14 to 15 in Fig. 1, without considering the coherence
mong vertical warps, to a test pattern (a sequence of uniformly
paced horizontal bars). Notice the high-frequency noise in the
arped test pattern due to the large disparity between vertical
arps in neighboring columns. Typically, the true 2D deforma-

ions induced during the sectioning process are much smoother.
o incorporate the coherence energy EC(σ�, ψ�), given (σ,
), instead of computing a single best vertical warp (σk, ψk)

or every k = 0, . . ., K, we compute a subset of the low-error
arps (σk�, ψk� ) in step 3 of the 1D algorithm. Finally, we

dd an extra dynamic programming pass to choose the best
arp (σk, ψk) from each group (σk�, ψk� ) that minimizes the

um of vertical warping error
∑K
k=0MY (σ(k), ψ(k), σk, ψk) and

he coherence energy EC(σ�, ψ�) (each vertical warp func-
ion must be first re-parameterized to have the same domain
0, L], see Section 2.2.5). Fig. 6b shows the coherent warp
pplied to the same test pattern, which exhibits a much smoother
eformation.

The dominant operation in 2D warping is the construction
f error table ε in step 1, which has time complexity O(n2m2).
owever, the computation can be efficiently implemented by

estricting the calculation to a subset of entries and using appro-
riate banding, as described in 1D warping. Experiment results
ave shown that the speed of our algorithm is comparable to
ther state-of-the-art methods while producing higher quality
arps.

.2.4.3. Examples and comparison. Fig. 7 shows two examples
f warping adjacent Nissl-stained cryo-sections shown in Fig. 1.
n each example, the goal is to find the warp that deforms the
ource section s to match the target section t. Sections are repre-
egistration (AIR) (Woods et al., 1998a), and NLM Insight Seg-

4 With elastic energy weights αX =αY = 0.00001, βX =βY = 0.02, γ = 0.005.
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ig. 7. Two examples of warping from a source image s to a target image t using
mplementation in ITK (ITK(s)), and the dynamic programming method presen

entation and Registration Toolkit (ITK) (Yoo et al., 2002).

or AIR, we used the 182-parameter 12-degree global polyno-
ial non-rigid transformation model, which provides the highest

egree of deforming flexibility among all AIR models.5 For ITK,

5 In our test, alignwarp program was used with model menu number (m) 32,
hreshold (t1, t2) 2, and convergence threshold (c) 0.00001.

I
t
r

s
s

al polynomial transformation in AIR package (AIR(s)), deformable registration
this paper (DP(s)).

e used the FEM-based local deformable registration method.6
n both AIR and ITK, we started from the standard parameter set-
ings and modified them slightly to achieve the best deformation
esult on our testing images. The l2-norm between the warped

6 In our test, FEM Registration Filter was used with mean square metric,
ingle-resolution, 8 pixels per element, 40 iterations with elasticity (E) and den-
ity (RhoC) set to 1e5.
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Table 1
Performance comparison of three warping methods applied to the two examples in Fig. 7

Example 1 Example 2

Time (s) l2-norm Time (s) l2-norm

Source image (s) – 11717.1 – 17069.7
Polynomial transformation (AIR(s)) 36 5907.5 252 12419.5
Deformable registration (ITK(s)) 1325 5005.9 1190 14314.6
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{σ̄k, ψ̄k} = {σk1 , ψk1 ) ◦ {σ̂k2 , ψ̂k2}

where k1 = σ−1(σ̄(k)) and k2 = ψ̂−1(ψ̄(k)).
ynamic programming (DP(s)) 165

he l2-norm is computed between the source image (or warped source image) a

ource image and the target image in each method as well as the
omputation time are compared in Table 1. Note that the dynamic
rogramming method used in this paper achieves a comparable
fficiency to a global warping method, while the quality of the
esulting 2D warp is often better than a conventional local warp-
ng method when deforming between successive tissue sections.

Observe from Fig. 7 that the proposed warping method also
andles extreme deformations (e.g., severe folding in the second
xample) and image artifacts (e.g., the big air bubble in the first
xample) in a reasonable manner. These random artifacts and
istortions are examples of incompatible features between the
ource and target images, which imply that there does not exist
perfect warp that exactly matches one image to the other.

uch incompatible features may also assume the form of tissue
ears, or appearing (disappearing) anatomical features (e.g.,
he dense circular feature in upper middle of the target image
n the first example) that are typical through successive tissue
ections. The proposed warping method matches compatible
eatures between the two images well while producing moderate
odifications in places where incompatibility arises without

riggering excessive deformations.

.2.5. Warp operations
As we mentioned before, the piecewise linear 2D warp rep-

esentation facilitates the three operations involved in warp
ltering (i.e., inversion, addition and composition). First, we
eed to resolve a subtle problem that arises in our dynamic pro-
ramming approach. That is, horizontal warps (σ, ψ) between
ifferent images may have different domain K, and even vertical
arps (σ�,(�) in a same 2D warp may have different domain L.
or convenience, we re-parameterize every horizontal warp σ,
: [0, K] → [0, n] onto a fixed domain [0, 2n] as follows:

∗(x) = σ(ω−1(x)), ψ∗(x) = ψ(ω−1(x)) (6)

here ω(x): [0, K] → [0, 2n] is a monotonic, invertible mapping
efined as ω(x) = σ(x) +ψ(x). Intuitively, (6) re-parameterizes
he two functions σ and ψ along the diagonal from (0, 0) to
n, n), as shown in Fig. 8a. Every vertical warp (σk, ψk) can be
iagonalized onto domain [0, 2m] in a similar fashion.

.2.5.1. 1D warp operations.
Inversion: Given a pair of 1D warps {σ,ψ}, the inverted warp
{σ, ψ}−1 is easily obtained by exchanging the two functions
as {ψ, σ}.

F
i
t
b

3951.9 173 9207.4

e target image.

Addition: Given two pairs of warps {σ, ψ} and {σ̂, ψ̂} with
domain [0, 2n], the addition a{σ,ψ} + b{σ̂, ψ̂} is simply com-
puted as the symmetric warp {aσ + bσ̂, aψ + bψ̂}. Note that
the new warping functions preserve the monoticity, invertibil-
ity and the same domain. Fig. 8b illustrates this operation for
a = b = 1/2.
Composition: The composition of two pairs of warps {σ, ψ}
and {σ̂, ψ̂}with domain [0, 2n], represented as {σ,ψ} ◦ {σ̂, ψ̂},
is computed as a new symmetric warp {σ(ψ−1), ψ̂(σ̂−1)}.
Note that the new warping functions are defined on
the domain [0, n], so diagonalization (6) must be per-
formed to re-parameterize σ(ψ−1) and ψ̂(σ̂−1) onto domain
[0, 2n].

.2.5.2. 2D warp operations. Let {σ, ψ, σ�, ψ�} be a sym-
etric 2D warp between two images, the inverted warp is easily

btained by exchanging the symbols σ and ψ.
Given two 2D warps {σ,ψ, σ�,ψ�} and {σ̂, ψ̂, σ̂�, ψ̂�}, the

ddition can be computed as simply {aσ + bσ̂, aψ + bψ̂, aσ� +
σ̂�, aψ� + bψ̂�}. Composition of the two warps can be per-
ormed as follows. First, the horizontal warp in the composite
D warp, denoted by {σ̄, ψ̄}, is computed as the composition of
orizontal warps {σ,ψ} ◦ {σ̂, ψ̂}. Then, the vertical warps in the
omposite 2D warp, denoted by {σ̄�, ψ̄�}, are computed such
hat
ig. 8. (a) Re-parameterized functions σ* and ψ* of the restricted path (colored
n gray) along the diagonal from (0, 0) to (n, n). (b) Symmetric addition of
wo diagonalized warps (colored in gray), the resulted warp is plotted in solid
lack.
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Fig. 9. Validation of warp filtering using an existing 3D volume. (a) A sagittal
cross-section of a MRI volume of the mouse brain. (b) A coronal section from the
MRI volume. (c) The same section in (b) after synthetic distortion. (d) Sagittal
cross-section of the MRI volume after each coronal section has been randomly
d
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. Results

Here we report the validation methods and the corresponding
esults for evaluating the effectiveness of the proposed recon-
truction method both qualitatively (i.e., by visual examination)
nd quantitatively (i.e., by computing distance and smoothness
easures). These methods form a general framework for validat-

ng any warp-based 3D reconstruction algorithm. The evaluation
s carried out on two sets of data: a synthetic volume with known
istortions, and real serial sections with unknown distortions. All
omputations are performed on a commodity PC with 1.5 GHz
MD Athlon processor and 2.5 GB memory.

.1. Using a synthetic volume

We first apply our reconstruction method to a stack of syn-
hetically distorted cross-sections from an existing 3D volume.
n our experiment, we use a MRI volume of the C57BL/6J mouse
rain that has been generously provided by the LONI group at
CLA. The volume has dimension 2563 with a uniform spac-

ng of 56 �m. Although this dataset is not representative of
he current state-of-the-art MRI technology, which may gen-
rate images with higher resolutions, it is the best synthetic
olume that has been made available to us, and we are using
he dataset for the sole purpose of validating our reconstruction

ethod.
Fig. 9a shows a sagittal cross-section of the MRI volume.

e take each of the 256 coronal cross-sections of the volume
nd apply a B-spline based local image distortion that varies
andomly from section to section. Fig. 9b and c shows one of
he coronal sections from the MRI volume before and after the
ynthetic distortion. Notice that deformation mainly takes place
n the vertical direction so as to simulate the actual cutting dis-
ortions in real cryo-sections. The sagittal cross-sectional view
f the distorted volume is shown in Fig. 9d.

The reconstruction proceeds by first computing the pairwise
arps between successive sections followed by warp filtering
ith width d = 5. The computation took 742 s (12 min and 22 s)

n total, with 661 s spent on warp computation and 81 s on warp
ltering and final image deformation.

.1.1. Visual validation
Fig. 9e shows the sagittal cross-section at the same location

hrough the reconstructed stack. In comparison with Fig. 9d, our
econstruction method removes the majority of high frequency
oises caused by synthetic distortions and is able to form smooth
nd easily recognizable anatomical structures.

.1.2. Quantitative validation
We further compute the l2-norm from each coronal cross-

ection in the original MRI volume to the same section after
ynthetic distortion and after reconstruction, which are plotted
n Fig. 10. The sum of all section-wise l2-norm are reduced by

6% after automatic reconstruction. The l2-norm quantitatively
easures how close the reconstructed volume is to the real vol-

me. However, one should realize that such measure is imperfect
n that exact restoration of the un-distorted volume is not the goal

t
v
t
v

istorted. (e) Sagittal cross-section of the reconstructed volume from distorted
ections using warp filtering.

f our reconstruction. Since there is no way to “undo” a distor-
ion without the knowledge of the image before the distortion,
he goal of our reconstruction is to instead produce a smooth

olume representation. In the next experiment we present a bet-
er criteria that measures the smoothness of the reconstructed
olume.
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Fig. 10. The l2-norm from each of the 256 coronal sections of a MRI volume to
the same section after synthetic distortion (top curve) and to the reconstructed
s
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tions. We find that the shapes of the anatomical structures recov-
ered in the reconstructed volume closely resemble the shapes of
the corresponding structures in real tissue sections.

Table 2
Comparison of performance for different filtering width d and the corresponding
mean and maximum smoothness measure Sk of the reconstructed volume

Filter width, d Time (min) Memory (MB) Mean Sk Maximum Sk

0a – – 85.43 1165.68
1 4.4 37 7.71 74.39
ection after warp filtering (bottom curve).

.2. Using serial sections

We next test our method in reconstructing a 3D volumet-
ic representation of the cell-density for the mouse brain from
erial sections. The input is a stack of 350 Nissl-stained images
cquired by cyro-sectioning coronally a single frozen adult
ouse brain (data preparation is detailed in Section 2.2.1). Each

mage is size 850 × 670 pixels at a resolution of 15 �m per pixel.

.2.1. Pre-processing
The images were first registered using rigid-body transforma-

ions that align the symmetry axis of each coronal section to the
ertical midline of the image and vertically adjust the sections
sing reference sagittal histology sections from Paxino’s Atlas
Paxinos and Franklin, 2000). The axis alignment ensures the
ertical direction of sectioning distortion, to which our warp-
ng method is tailored. The vertical adjustment avoids causing
straight cylinder to be reconstructed as a sloping cylinder by
arp filtering. The resulting stack exhibits a natural 3D profile
ith minimal translational and rotational differences between

djacent sections. Fig. 12 shows synthetic cross-section cuts in
he sagittal (a1) and horizontal (b1) direction through the rigid-
ody aligned stack.

Since the distance between adjacent sections (25 �m) far
xceeds the size of a cell (∼10 �m), matching individual cells
n two adjacent sections is not practical. To avoid aligning
ellular details while matching macro features (e.g., the dark
olds of the cerebellum) during warp computation, we first
pply a smoothing filter on the tissue sections before comput-
ng the pairwise warps. Although a Gaussian filter could be
sed, an edge-preserving filter is more appropriate in that bound-
ries between anatomical structures are retained. Fig. 11 shows
he result of applying a bilateral filter (Tomasi and Manduchi,
998) that we used in our experiment (other filters may also
e used). Note that the filtered image exhibits clearer bound-

ries between different anatomical features. After performing
arp filtering on the bilaterally filtered images, the final warps
ould then be applied to the original images for accurate

econstruction.

1
2

ig. 11. A tissue section before (a) and after (b) applying the bilateral filter.

.2.2. Performance
The computation of 349 pairwise warps between successive

ections consumes 27 MB memory and a total of 976 min (16 h
nd 16 min), averaging 168 s for each single warp. The perfor-
ance of the subsequent warp filtering stage at different filtering
idth d is summarized in Table 2. We want to point out that since

very pairwise warp φk,k+1 is computed independently of each
ther (and so is every filtered warp Φk), both warp computation
nd filtering can be greatly sped up by distributing the com-
utation of different warps to different processors. Using this
imple parallelization scheme on a cluster of 16 processors, for
xample, all pairwise warps would be computed within an hour
hile warp filtering would finish in approximately 10 min at
= 20.

.2.3. Visual validation and comparison
Fig. 12 shows cross-section cuts in the sagittal (a2) and hor-

zontal (b2) direction through the smooth volume reconstructed
sing filtering width d = 20 (while the filtered warps are com-
uted from bilaterally filtered images, they are applied to the
riginal images). Note that anatomical features become much
ore coherent in the reconstructed volume. The reconstruction

lso recovers the shape of some key structures, such as the folds
n the cerebellum to the left and the hippocampus region in the

iddle, whose profiles are barely recognizable or completely
llegible in the original stack.

For qualitative validation, we compare the reconstructed vol-
me to real histology sections from Paxino’s Atlas (Paxinos and
ranklin, 2000) at similar sagittal (a4) and horizontal (b4) loca-
2 17.2 91 3.15 24.83
5 46.6 178 1.33 7.04
0 83.4 269 1.09 6.22
0 172.1 449 1.04 6.15

a Original stack.
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ig. 12. Comparison of sagittal (a1–a4) and horizontal (b1–b4) cross-sections:
econstructed volume using our method (a2 and b2) and reconstruction by the m
ections from the Paxino’s atlas (Paxinos and Franklin, 2000) at sagittal plate n

To further demonstrate of the effectiveness of our method,
e performed visual comparison with the results by applying

he FEM-based reconstruction method of Guest and Baldock
1995). The key idea behind their method is to model each sec-
ion as a thin elastic plate, which is constrained so that points
an only move within the plane. Similarly to our method, their
ethod assumes that the sections have been coarsely registered,

nd computes point correspondences between every two suc-
essive sections using statistical tests of pixel populations in
mall local neighborhoods. Forces are then applied to each plate
y matching corresponding points, and the system is released
nd allowed to reach equilibrium in a global minimization sys-

em involving all sections. In contrast, our method are mainly
ifferent in the use of the new warping method for computing
orrespondence between two sections and in the replacement
f the whole-system minimization process by the local, direct

3

l
O

riginal stack of 350 brain sections after rigid-body alignment (a1 and b1), the
d of Guest and Baldock (1995) (a3 and b3) on filtered images, and histological

(a4) and horizontal plate no. 157 (b4).

aussian averaging step. The local property of our method
llows more direct control over the smoothness of the volume.
or example, we compare in Fig. 12a2 and a3 and b2 and b3

he results of applying our method and the method of Guest and
aldock (1995). Please note that the input data that we provided
aldock’s group were the bilaterally filtered coronal images,
nd the deformations computed by their method were applied
o the same set of filtered images instead of the original images.
bserve that in comparison, our method reconstructs smoother

natomical shapes and tissue boundaries by using direct and
ocalized smoothing operations.
.2.4. Quantitative validation
Objective validation with serial sections is difficult due to the

ack of the knowledge of the original object before sectioning.
ne commonly used technique is to measure the correlation
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Fig. 13. The l2-norm between successive images in the stack of 350 coronal
sections before (top curve) and after (middle curve) rigid-body alignment. The
elastic warping error between successive sections (bottom curve) is computed
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s the l2-norm between the warped image gk ◦Φk and image gk+1 for k = 1, . . .,
49.

etween adjacent sections before and after reconstruction, as
one by Wirtz et al. (2004). However, as pointed out by Guest
nd Baldock (1995), such criteria are inappropriate since the
urpose of reconstruction is not to exactly match one section to
he next section. Inspired by the smoothness measure proposed
y Guest and Baldock (1995), we propose the following two-step
rocedure to measure the smoothness of our reconstruction:

.2.4.1. Correspondence evaluation. We first evaluate the qual-
ty of the pairwise warps φk,k+1 that establish the correspon-
ences between adjacent images gk, gk+1 for k = 1, . . ., N. This is
ccomplished by computing the l2-norm between each warped
mage gk ◦φk,k+1 and target image gk+1, as plotted in Fig. 13,
hich reveals the quality of matching. For comparison, we plot

he l2-norm between successive images in the original stack as
ell as in the rigidly registered stack. Observe that the pairwise
arps reduce the pixel-wise differences between neighboring

ections substantially by 60–90% in comparison to the origi-
al stack. Correspondence evaluation is a necessary step as the
moothness of corresponding features will make no sense if the
orrespondences are computed incorrectly.

.2.4.2. Smoothness evaluation. We compute a smoothness
easure Sk on each section k as follows:

k =
∑n
i=0
∑m
j=0(B(i, j) + C(i, j) − 2A(i, j))2

nm
(7)

here A(i, j) = Φ−1
k (i, j) denotes the location of (i, j) in

he warped image gk ◦Φk, B(i, j) = Φ−1
k−1(φk−1,k(i, j)) and

(i, j) = Φ−1
k+1(φ−1

k,k+1(i, j)) denote the locations of the cor-
esponding points of (i, j) on the two neighboring sections
k−1 ◦Φk−1 and gk+1 ◦Φk+1 respectively after warping. As a
eminder, φ refers to pairwise warps between adjacent sections,

nd Φ refers to the filtered warp. Sk is similar to the CAM mea-
ure proposed by Guest and Baldock (1995), which effectively
easures how close a point lies to its corresponding points on

he neighboring sections. For comparison, the smoothness mea-

e
h
t
t
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ure of each section before reconstruction is computed by setting
k−1, Φk and Φk+1 to be identity functions.
Table 2 reports the mean and maximum smoothness measure

k for all 350 sections in the reconstructed volume for differ-
nt filtering width d. Observe that Sk decreases by an order
f magnitude just by warp filtering using a single neighbor on
ach side of a section (i.e., d = 1). A reduction by two orders
f magnitude is observed in both the mean and maximum Sk
or d ≥ 5. To interpret the numbers, we notice from (7) that
k reflects the average distance from every point A(i, j) to the
id-point of its two corresponding points (B(i, j) + C(i, j))/2.
or example, at d = 20, Sk = 1.04, hence the average distance
|(B(i, j) + C(i, j))/2 − A(i,j)|| = 0.51. In other words, in the recon-
tructed volume, each point deviates from the middle of its two
orresponding points on the neighboring sections by only 0.51
ixels on average. These results appear to improve on the exper-
mental results of a global reconstruction method reported by
uest and Baldock (1995) that uses a similar measurement of

moothness.

. Discussion

.1. Noise removal using majority filtering

Despite the use of elastic warping, image artifacts such as
issue folds and air bubbles remain after reconstruction. This is
ecause the warping functions that we compute are one-to-one
apping functions, and such invertibility of the mapping is pre-

erved during warp filtering. In other words, all image features
n the original data will be preserved after reconstruction, and no
xtra features will be added. Yet in some applications, such as
isualization, image artifacts are not desirable. An effective solu-
ion to clean up the artifacts that we found is to apply a majority
lter to corresponding points through successive images based
n the pairwise image warps. Specifically, for each pixel on an
mage, if the intensity of the pixel is the highest or the lowest
mong its corresponding pixels in a group of nearby images, we
et it inherit the average intensity of its neighbors (see Fig. 14
op). The filter removes outliers along matched pixels through
ifferent images, which are often introduced by bubbles or tis-
ue folding on a single image. The bottom of Fig. 14 shows
coronal section in the reconstructed volume before and after

he majority filter is applied. Observe that the dark folds in the
riginal image are much less apparent in the filtered image.

For efficient implementation, majority filtering of pixel inten-
ities can be performed as the same time when the Gaussian filter
s applied to the pairwise image warps. Fig. 15a and b show the
ross-section cuts of the reconstructed volume after incorporat-
ng the majority filter, which is applied to three neighbors on
ach side of a given pixel. In comparison with Fig. 12a2 and b2,
he majority filtering along lines of corresponding points through
uccessive sections improve the smoothness of the appearance.

It should be noted that the purpose of majority filtering is to

nsure a smooth appearance of the reconstructed volume. As we
ave stated in the introduction, the motivation of our work is
o be able to construct a smooth anatomical atlas from the his-
ological sections. Such atlas may not be completely accurate
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ig. 14. (a) A dark pixel and its corresponding pixels on the neighboring section
f its neighbors. (c) A reconstructed coronal section. (d) The same coronal sect

o the original brain subject due to unknown image distortions.
owever, it provides a good starting point for further exam-

nation of the 3D brain anatomy. More importantly, the atlas
rovides a common coordinate system onto which experimental
ections collected from different individuals can be registered,
nd cross-individual comparisons can be performed. An exam-
le of mapping and comparison of brain data using a geometric
tlas is provided in the work of Ju et al. (2003).

.2. Smoothness of the volume

The smoothness of the reconstructed volume using our
ethod is controlled by the filtering width d. Although d does

ot have direct physical meaning, it intuitively determines the
umber of consecutive sections that will be used for computing
n average image for the middle section. Inappropriate choices
f d, however, may cause the method to either flatten the highly
urved or sharp features (when d is too big) or fail to remove the
istortion errors (when d is too small). This problem of obtaining
he desired amount of smoothness in the reconstructed volume

rises from all smoothness-based reconstruction methods (Guest
nd Baldock, 1995; Wirtz et al., 2004).

A good choice of d depends on the input data. In most cases,
he scale of randomized tissue distortions is small in compari-

a
d
o
i

Fig. 15. Synthetic cross-section of the reconstructed brain volume after
Using majority filter, the dark pixel is replaced with the average pixel intensity
ter the majority filter is applied to the stack.

on to the size of anatomical features, and the value of d can be
etermined via experiments and visual evaluation. For example,
ig. 16 shows the hippocampus region in a sagittal cross-section
ut through the original stack of 350 images and the recon-
tructed stack with filter width d = 5, 10, 20. Note that although

choice of d = 5 already achieves a good local smoothness
easure in Table 2, the dark stripe at the top of hippocam-

us still exhibits low-frequency noise inherent to the input data,
hich spans a larger neighborhood and requires a wider filtering
idth. At d = 20, the waviness is gone and the region becomes

mooth. Still, the reconstructed volume needs to be examined to
nsure that other key anatomical features have not been overly
moothed.

Sometimes a reasonable choice of d fails to exist, for exam-
le, when the scale of the largest distortion noise exceeds that of
he smallest anatomical feature. To remove large distortions in
ne place while preserving small meaningful features in other
ocations, a more flexible method is to find independent filter
idths dk for each section gk or even independent widths dk(i,

) for each individual pixel gk(i, j). These local filter widths will

dapt to the regional noise-signal ratio based on the correspon-
ence information between adjacent sections. Such local choices
f filter widths can be easily incorporated into the warp filter-
ng framework in (1) and (2). Moreover, edge-preserving filters,

majority filtering in the sagittal (a) and horizontal (b) directions.
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ig. 16. Closeup looks at the hippocampus region in the synthetic sagittal cross-
idth d = 5 (b), d = 10 (c) and d = 20 (d). The region is indicated as red boxes in

uch as a bilateral filter (Jiang et al., 2003), can be used in place
f the Gaussian filter during warp filtering for preserving sharp
eatures in the reconstructed volume that are often flattened out
sing the Gaussian filter.

. Limitation of 2D warps

Any restricted image deformation, such as the regularized 2D
arp described in Section 2.2, has its limitations. Specifically,
ur warp representation only models those 2D deformations
hat can be characterized by non-uniform deformations in the
ertical direction and uniform deformation in the horizontal
irection. Eligible deformations include translation, scaling, uni-
orm growth/shrinkage of anatomical structures in the horizontal
irection, and sectioning distortions in the vertical direction. The
eformations that are not well modelled include rotation and
on-uniform growth/shrinkage of anatomical structures in the
orizontal direction. Although rotational differences between
djacent sections can be eliminated using rigid-body registra-
ion, we do observe, in a few cases, non-uniform variance of
natomical structures in the horizontal direction that are not
odelled accurately by our method. Even for these rare cases,

ur method behaves in a reasonable manner, as observed from
he uniform appearance of the graph of warping error in Fig. 13.
o better handle a wider range of 2D deformations, we are
urrently investigating more flexible ways of decomposing 2D
arps into 1D warps, such as the idea of allowing columns to
end and break during the horizontal deformation as discussed
n (Levin and Pieraccini, 1992; Uchida and Sakoe, 1998; Ronee
t al., 2001).

While we will continue our research on more accurate and
fficient warping methods, we notice that comparing the qual-
ty of 2D warps generated by various methods is difficult due
o the lack of standard benchmark data. In an effort to pro-

ote the development of benchmarks for 2D image warping
ethods as well as for 3D reconstruction methods, we have
ade the 350 histological sections in our experiment as well as

ur preliminary reconstruction result available for download at
ttp://www.geneatlas.org/gene/data/histology.zip. We encour-
ge those interested in this problem to apply their methods to
his data.
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