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Predominant Magnetic States in Hubbard Model on Anisotropic Triangular Lattices
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Using an optimization variational Monte Carlo method, we study the half-filled-band Hubbard model on
anisotropic triangular lattices, as a continuation of the preceding study [J. Phys. Soc. Jpn.75 (2006) 074707].
We introduce two new trial states: (i) A coexisting state of (π, π)-antiferromagnetic (AF) and ad-wave singlet
gaps, in which we allow for a band renormalization effect, and (ii) a state with an AF order of 120◦ spin structure.
In both states, a first-order metal-to-insulator transition occurs at smallerU/t than that of the pured-wave state.
In insulating regimes, magnetic orders always exist; an ordinary (π, π)-AF order survives up tot′/t ∼ 0.9
(U/t = 12), and a 120◦-AF order becomes dominant fort′/t >∼ 0.9. The regimes of the robust superconductor
and of the nonmagnetic insulator the preceding study proposed give way to these magnetic domains.

PACS numbers: 74.70.-b, 74.20.-z

I. INTRODUCTION

A series ofκ-(BEDT-TTF)2X [κ-ET salts] have intrigu-
ing properties specific to strongly-correlated systems; they of-
ten undergo unconventional superconductor (SC)-to-insulator
transitions through the chemical substitution of X or un-
der applied pressure, and have good two-dimensionality in
conductivity with frustrated lattice structure. As a model
of these compounds, the half-filled-band Hubbard model on
anisotropic triangular lattices [1] (an extended square lattice
with hopping integralt in x andy directions, andt′ in one
diagonal direction [1,1]) has been intensively studied: [2]

H =
∑

kσ

εkc
†
kσckσ + U

∑

i

ni↑ni↓, (1)

whereεk = −2t(coskx + cos ky) − 2t′ cos(kx + ky), and
U, t, t′ > 0. To clarify the properties of this model in the
strongly-correlated region,U/t ≫ 1, especially Mott transi-
tions, reliable theoretical approaches are needed. To thisend,
the present authors recently applied to eq. (1) an optimiza-
tion (or correlated) variational Monte Carlo (VMC) method,
which can deal with SC and a Mott transition as a continu-
ous function ofU/t. Henceforce, we call this preceding study
‘(I)’.[3] In (I), we chiefly considered various properties of the
dx2−y2-wave singlet state,Ψd

Q, and constructed a ground-state
phase diagram in thet′-U plane, by comparing its energy with
that of the ordinary (π, π)-antiferromagnetic (AF) state,ΨAF

Q .
Most of the results are consistent with the behavior ofκ-ET
salts, but the area of an (π, π)-AF insulator is unexpectedly
limited (t′/t <∼ 0.4), in considering the appearance of the AF
order in e.g. κ-(ET)2CuN(CN)2Cl (t′/t ∼ 0.74), as well
as the vanishing point of the AF order expected in theJ-J ′

Heisenberg model (t′/t ∼ 0.8) [10]. As we pointed out in (I),
this disagreement possibly stems from the fact that thed-wave
singlet state and the AF state were treated separately; thereby,
the former state does not include a seed of an AF long-range
order, and the latter a band renormalization effect.

For t′ ∼ t, many theoretical studies [4, 5, 6, 7, 8] for the
Hubbard model have obtained results of dominant nonmag-
netic insulating state, which are consistent with the insulat-
ing state found inκ-(ET)2Cu2(CN)3 with t′/t ∼ 1.06 [9].
Nonetheless, we should be also concerned about the AF order
with 120-degree spin structure, which is considered to prevail
in the isotropic case of theJ-J ′ Heisenberg model.[10, 11]
Actually, a recent VMC study[12] for at-J-type model on
the isotropic triangular lattice concluded that the 120◦-AF or-
dered state is dominant in an unexpectedly wide range of dop-
ing rate. Thus, it is possible that the 120◦-AF order is robust
also in the Hubbard model witht′ ∼ t and sufficiently small
values ofU/t for the organics.

In this paper, as a continuation of (I), we introduce two trial
states: (i) A state which includes (π, π)-AF andd-wave gaps
simultaneously;[13, 14] and then a band (or Fermi-surface)
renormalization effect owing to the electron correlation is
taken into account. [15] (ii) A state which exhibits the 120◦-
AF order. In addition to these functions, we newly con-
sider SC states with pairing symmetries suitable fort′ > t.
Our main interest here is the competition among these states
and those treated in (I). It is found that first-order metal-to-
insulator transitions always occur at smaller values ofU/t
than those for the pured-wave state. In the insulating regime,
the (π, π)-AF order remains up tot′/t ∼ 0.9, owing to the
band renormalization effect we considered in the coexisting
state, and the 120◦-AF order becomes predominant in the
range oft′/t >∼ 0.9. Consequently, a magnetic order, namely
the (π, π)-AF or 120◦-AF order, always exists in the insulat-
ing regime, and a regime of a nonmagnetic insulator vanishes.
In addition, a domain of dominant SC found in (I) disappears
within the present results. The previous phase diagram is sub-
stantially modified.

In II, we explain the trial wave functions used, and reca-
pitulate the main points of (I) as a motivation of this study.
In III, we represent the VMC results. In IV, we briefly sum-
marize this study, and compare with experimental and other
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theoretical results.
A part of the results have been reported before.[16]

II. WAVE FUNCTIONS

As usual, we use Jastrow-type trial wave functions:Ψ =
PΦ, in whichΦ denotes a one-body (Hartree-Fock) part ex-
pressed as a Slater determinant, andP a many-body corre-
lation factor. In II A, we describe the correlation factorP .
In II B, we point out insufficient points in the wave functions
used in (I), and introduce a coexisting state of the (π, π)-AF
andd-wave gaps in which the one-body band structure is mod-
ified by optimizing a hopping parametert̃′, as renormalization
owing to electron correlation. In II C, we formulate a state
with an AF order of 120◦ spin structure, as an another new
trial state. In II D, we briefly touch on the conditions of the
VMC calculations.

A. Correlation factor

When one treats the Hubbard model on the basis of a var-
iational method, it is crucial to introduce, in addition to the
well-known Gutzwiller (onsite) factorPG, [17, 18] intersite
correlation factors [19, 20] into Jastrow-type wave functions.
In particular, near half filling, the binding effect of a doubly-
occupied site (doublon) to an empty site (holon) is indispens-
able to describe a Mott transition as well as various quantities
appropriately. [19] To this end, we have repeatedly studied
[3, 21, 22, 23] a four-body factor formally written as,

PQ =
∏

i

(

1− µQτ
i

)(

1− µ′Qτ ′

i

)

, (2)

Q
τ(τ ′)
i =

∏

τ(τ ′)

[

di(1− ei+τ(τ ′)) + ei(1− di+τ(τ ′))
]

, (3)

in which di = ni↑ni↓, ei = (1 − ni↑)(1 − ni↓), andτ (τ ′)
runs over all the adjacent sites in the bond directions oft (t′).
In eq. (2),µ (µ′) is a variational parameter which controls the
binding strength between a doublon and a holon in the bond
directiont (t′). We have confirmed thatPQ works effectively
in the model, eq. (1).[3]

B. Coexisting state of d-wave and AF gaps

UsingP = PQPG, we mainly studied, in (I), adx2−y2 -
wave singlet state:Ψd

Q = PΦd, whereΦd is the BCS function
with adx2−y2-wave gap:

∆k = ∆d(cos kx − cos ky). (4)

In Ψd
Q, we allow for renormalization of the one-body bandεk

owing to electron correlation, by varyingt′(≡ t̃′) in Φd as
a variational parameter, [15] independently oft′ fixed in the

Hamiltonian eq. (1). In (I), we obtained the following results
within Ψd

Q. (i) A first-order Mott (conductor-to-nonmagnetic-
insulator) transition takes place for arbitraryt′/t at U = Uc

roughly of the bandwidth. This transition is induced by the
binding (and unbinding) of a doublon (negatively charged) to
a holon (positively charged), unlike the famous Brinkman-
Rice transition. [24](ii) Robustd-wave SC appears in a re-
stricted parameter range immediately belowUc and of weak
frustration (t′/t <∼ 0.7). This SC is considered to be induced
by a short-range (π, π)-AF spin correlation, because when-
ever the superconducting (SC) correlation function is sizably
enhanced, the spin structure factorS(q) has a sharp peak at
the AF wave number,q = K = (π, π). (iii) In the insulating
regime,Ψd

Q exhibits a spin-gap behavior and does not have an
(π, π)-AF long-range order, althoughS(q) has a sharp peak
atq = K, namely a short-range AF correlation considerably
develops.

To consider the competition betweenΨd
Q and a state with

the (π, π)-AF long-range order [see Fig. 1(a)], which should
prevail for smallt′/t, we also studied a projected AF state,
ΨAF

Q = PΦAF, whereΦAF is a mean-field-type (π, π)-AF
state. InΨAF

Q , we did not renormalizẽt′, because the varia-
tional energyE to be minimized becomes a discrete function
of t̃′/t. We found that(iv) the stable range ofΨAF

Q against
Ψd

Q is restricted to a weakly frustrated regime,t′/t <∼ 0.4 (for
U/t = 6), and this range tends to shrink asU/t increases. As
notified in (I), the above results (iii) and (iv) are not consis-
tent with various approximate results [10] for the correspond-
ing J-J ′ spin model, which predict that the (π, π)-AF domain
continues up tot′/t ∼ 0.8. To resolve this disagreement, a
seed of the AF order should be introduced intoΨd

Q, and the
renormalization ofεk owing toU intoΨAF

Q .
In this paper, we study a wave function,Ψco

Q = PΦco,
which meets the above requirements by mergingΨd

Q and
ΨAF

Q . In Ψco
Q , thed-wave gap and an AF order can coexist.

[13] The one-body part is written as,

Φco =

(

∑

k

ϕkb
†
k,↑b

†
−k,↓

)Ne/2

|0〉, (5)

in whichNe is the electron number, andϕk is the ratio of BCS
coefficients:

ϕk =
vk
uk

=
∆k

ε̃k − ζ +
√

(ε̃k − ζ)2 +∆2
k

, (6)

with

ε̃k = −2t(cos kx + cos ky)− 2t̃′ cos(kx + ky), (7)

and b† is a creation operator that diagonalizes the ordinary
(π, π)-AF Hartree-Fock Hamiltonian, and is given as

b†k,σ = αkc
†
k,σ + ςβkc

†
k+K,σ, (8)

b†k+K,σ = −ςβkc
†
k,σ + αkc

†
k+K,σ, (9)

αk (βk) =

√

√

√

√

1

2

(

1− (+)
γk

√

γ2
k +∆2

AF

)

, (10)
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FIG. 1: (Color online) Schematic representation of spin structure in
two AF orders studied in this paper for the anisotropic triangular lat-
tice: (a) an ordinary (π, π)-AF order, and (b) an AF order with 120◦

spin structure.

with γk = −2t(cos kx + cos ky) andς = +(−)1, according
asσ = ↑ (↓). In addition to the six parameters inΨd

Q, namely,
g [Gutzwiller (onsite) parameter],µ, µ′, ∆d, ζ (chemical po-
tential) andt̃′, Ψco

Q has the seventh parameter∆AF, which
controls the staggered spin field and is closely connected to
the (π, π)-AF order parameterms (sublattice magnetization).
Note that, in contrast to∆AF, a finite optimized value of∆d

does not necessarily mean that a SC gap opens, but an insu-
lating spin gap. For∆AF (∆d) → 0, Ψco

Q is reduced toΨd
Q

(ΨAF
Q ). Thus, we may regardΨco

Q asΨd
Q in which the (π, π)-

AF long-range order can arise, and also asΨAF
Q into which a

band renormalization effect is introduced through thed-wave
gap.

C. AF-ordered state with 120-degree spin structure

As discussed in I, an AF-ordered state with 120◦ spin struc-
ture [see Fig. 1(b)] is plausible for the region oft′/t ∼ 1. We
introduce such a state,Ψ120 = PΦ120, for the Hubbard model
eq. (1), and check its stability for finite values ofU/t and con-
sistency with the results obtained forU/t = ∞. [10, 11]

As the one-body part,Φ120, we use a Hartree-Fock ground
state for the Hamiltonian eq. (1). As explained in Fig. 2, we
consider six sublattices (A-F); the spin quantization axisof
a sublattice is turned by 60 degrees from that of a neighbor-
ing sublattice. Using this scheme, the Hamiltonian eq. (1) is
transformed to

H = −
∑

λ



t
∑

<iλ,jλ+1>

(

a†iλ,↑a
†
iλ,↓

)

R
(π

6

)

(

ajλ+1,↑

ajλ+1,↓

)

+ t′
∑

(iλ,jλ+2)

(

a†iλ,↑a
†
iλ,↓

)

R
(π

3

)

(

ajλ+2,↑

ajλ+2,↓

)



+ h.c.

+ U
∑

λ

∑

iλ

nT
i↑n

T
i↓, (11)

� �
� 	
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FIG. 2: (Color online) Schematic explanation of Hartree-Fock ap-
proximation for an AF order with 120◦ spin structure. In (a), it is
shown how we divide the anisotropic triangular lattice intosix sub-
lattices (A-F) with different directions of a spin quantization axis,
which are illustrated in (b): the axis of B (C,D,E,F,A) sublattice is
obtained by turning that of A (B,C,D,E,F) sublattice by 60 degrees.
For these sublattices, we suppose that the gap parameter is staggered,
namely∆120,−∆120,∆120, · · · , leading to the formation of a 120◦-
AF order in Fig. 1(b).

where

R(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, (12)

a†i,σ is a creation operator in the sublattice representation,

nT
iσ = a†i,σai,σ, λ (=A-F) is a sublattice index,iλ runs over all

the sites on sublatticeλ, and an angle (round) bracket in the
summation indices in eq. (11) indicates a nearest(diagonal)-
neighbor pair. We apply a Hartree-Fock decoupling to the in-
teraction term in eq. (11),
∑

i

UnT
i↑n

T
i↓ ∼

∑

i

U
(〈

nT
i↑

〉

nT
i↓ +

〈

nT
i↓

〉

nT
i↑

)

+ const.,

(13)
and assume that the gap is staggered as

U

2

(

〈nT
iλ↑

〉 − 〈nT
iλ↓

〉
)

≡
{

+∆120 if λ = A,C,E
−∆120 if λ = B,D,F

, (14)

to form a 120◦-AF order. Using the operators for sublattices,
the Hartree-Fock Hamiltonian in the wave-number represen-
tation is given as,

HHF =
∑

k,σ

(

a†Ak,σ a†Bk,σ a†Ck,σ a†Dk,σ a†Ek,σ a†Fk,σ

)

×















−σ∆120 A1 A∗
2 0 A2 A∗

1

A∗
1 σ∆120 A1 A∗

2 0 A2

A2 A∗
1 −σ∆120 A1 A∗

2 0
0 A2 A∗

1 σ∆120 A1 A∗
2

A∗
2 0 A2 A∗

1 −σ∆120 A1

A1 A∗
2 0 A2 A∗

1 σ∆120































aAk,σ
aBk,σ
aCk,σ
aDk,σ
aEk,σ
aFk,σ

















+
∑

kσ

(

a†Ak,σ a†Bk,σ a†Ck,σ a†Dk,σ a†Ek,σ a†Fk,σ

)
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×















0 B1+ B2+ 0 B2− B1−

B1− 0 B1+ B2+ 0 B2−

B2− B1− 0 B1+ B2+ 0
0 B2− B1− 0 B1+ B2+

B2+ 0 B2− B1− 0 B1+

B1+ B2+ 0 B2− B1− 0































aAk,−σ

aBk,−σ

aCk,−σ

aDk,−σ

aEk,−σ

aFk,−σ

















+ const., (15)

whereaλ†k,σ is the Fourier transformation ofa†iλ,σ, and

A1 = −t cos(π/6)(e−ikx + e−iky ),

A2 = −t′ cos(π/3)e−i(kx+ky),

B1+ = t sin(π/6)(e−ikx + e−iky ),

B1− = −t sin(π/6)(eikx + eiky ),

B2+ = t′ sin(π/3)e−i(kx+ky),

B2− = −t′ sin(π/3)ei(kx+ky). (16)

AsΦ120, we adopt the lowest-energy eigenvector obtained by
diagonalizing eq. (15). However, we do not determine∆120

by a self-consistent equation in the Hartree-Fock approxima-
tion, but optimize∆120 as a variational parameter inΨ120

Q

simultaneously with the other parameters with respect to the
original Hamiltonian eq. (11). If∆120 is finite, all sublattices
have staggered spin densities, constituting the 120◦ spin struc-
ture.

D. Variational Monte Carlo calculations

Generally, it is not easy to accurately calculate expecta-
tion values of a many-body wave function with analytic ap-
proaches. Here, we apply an optimization VMC method,[25]
which effectively minimizes the variational energy and makes
a virtually accurate evaluation, to the wave functions men-
tioned in this section. We have performed VMC calculations
mainly for the lattice ofNs = L × L sites withL = 10 and
12. The conditions of calculations here are mostly the same
as those in (I).

III. RESULTS

In III A, we consider the energies ofΨco
Q andΨ120

Q , and the
critical behaviors appearing in them. In III B, we show these
critical behaviors indicate a metal-to-insulator transition. In
III C, we discuss the properties of the AF order in the insulat-
ing regime ofΨco

Q , and the eventual phase diagram. In III D,
we consider the BCS state with another pairing symmetries
expected for the region oft′ >∼ t.

A. Stability of coexisting state and 120◦-AF state

We start with the energy reduction of the coexisting state
Ψco

Q and the 120◦-AF stateΨ120
Q for t′ ∼ t. In Figs. 3(a)
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FIG. 3: (Color online) Total energies of the coexisting state Ψco
Q

[d+AF], the 120◦-AF stateΨ120
Q [120AF], and thed-wave stateΨd

Q

[d] are compared as a function of the correlation strength, for(a)
t′/t = 0.8 and (b) 1.0. The critical values of Mott transitionsUc/t
are indicated by arrows for respective states. Although thedata for
L = 10 and12 are plotted, the system-size dependence is almost
negligible in this scale. Fort′/t = 1, the system ofL = 10 is not
used because the closed-shell condition is not satisfied.

and 3(b), the total energy per siteE is compared amongΨco
Q

(Eco), Ψ120
Q (E120) andΨd

Q (Ed) for t′/t = 0.8 and 1.0, re-
spectively. For both values oft′/t, the curves ofE/t for the
three states are almost indistinguishable from one anotherfor
smallU/t, whereas they separate with cusps asU/t becomes
large. In fact, as we will see shortly, these cusps indicate
metal-insulator transitions. Fort′/t = 0.8, Eco exhibits a
cusp first atU = U co

c = 6.65t ± 0.05t and becomes appre-
ciably lower than bothEd andE120 for U > U co

c . On the
other hand, fort′/t = 1.0, E120 exhibits a cusp first atU =
U120
c = 7.65t± 0.05t and becomes the lowest forU > U120

c .
Thus, the lowest-energy state for largeU/t is switched from
Ψco

Q to Ψ120
Q in the range of0.8 < t′/t < 1.0. To seet′/t

dependence ofE/t in the insulating regime (U > Uc), we
plot the total energies atU/t = 12 of various states in Fig. 4.
For t′ < t′c ∼ 0.90t, the coexisting state is the most stable,



5

Z [\] ^ _`a
bcde

fghi

jklm

nopq

rstu

vwxy

z{|}~ �����

�� � � ��
�
�
�

�� ��

���� ��

���������  ¡¢£
¤¥
¦§

¨

©ª«¬ ­®

FIG. 4: (Color online) Comparison of total energies in the insulat-
ing regime (U/t = 12) as a function oft′/t among various states:
a coexisting stateΨco

Q [d+AF], a 120◦-AF stateΨ120
Q [120AF] and

three singlet states: ad waveΨd
Q [d], an ext.s+dxy waveΨs+d′

Q

[ext.s+dxy] and adx2
−y2+idxy waveΨd+id

Q [d+id]. The latter two
states will be discussed in III D. The arrows indicate the bound-
ary values betweent′c/t and t′c2/t satisfying E120 = Eco and
E120 = Es+d′ , respectively.

and the decrease inE/t fromEd/t estimated in (I) is approx-
imately 7.6%, irrespective of the value oft′/t. This invariant
behavior ofE/t with respect tot′/t is caused by marked band
renormalization; this point will be discussed in detail in III C.
In contrast,E120 decreases rapidly ast′/t increases, and be-
comes the lowest fort′ > t′c1. As expected,Ψ120

Q becomes
predominant near the symmetric point (t′/t ∼ 1). Conse-
quently, the area where the pured-wave singlet stateΨd

Q pre-
vails does not appear in the insulating regime.

To discuss the energy reduction more closely, especially in
the conductive regime, we introduce the condensation energy:

Ec = EF − E, (17)

whereEF denotes the energy per site of the projected Fermi
sea,ΨF

Q = PΦF, as the reference value. In Fig. 5,Eco
c , E120

c

andEd
c are shown for three values oft′/t. Note thatEc for

every state is almost zero forU < Umin
c , whereUmin

c /t is
shown by an arrow in each panel. This means that every state
for U < Umin

c is almost reduced to a normal metallic state
ΨF

Q. Here, it is important to recall that, as discussed in (I),[26]
robust SC occurs only forUd

onset < U < Ud
c , in whichEc/t

has a small but perceptible finite value. Although this ten-
dency can be seen inEd

c /t for t′/t = 0.6 and6<∼ U/t < 7.15
[Fig. 5(a)], more stableΨco

Q covers the whole range of SC,
namely,Umin

c = U co
c < Ud

onset. Consequently,Ψd
Q comes to

have no chance to arise appreciable SC. We will return to this
subject in III B.
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FIG. 5: (Color online) Comparison of the condensation energy Ec/t
amongΨco

Q (d+AF), Ψ120
Q (120AF) andΨd

Q (d), for (a) t′/t = 0.6,
(b) 0.8 and (c) 1.0. The arrow on the horizontal axis in each panel
indicates the critical point of the metal-insulator transition arising at
the smallestUrmc (≡ Umin

rmc) among those states.

B. Metal-insulator transitions

In this subsection, we study the critical behavior atU = Uc

found inEco andE120 (cusps) in Fig. 3 and inEco
c andE120

c

(sudden increases) in Fig. 5. Although we have not men-
tioned, in fact,Eco andE120 in Fig. 3 undergo clear hysteresis
(dual-minimum behavior) near the cusps atUc. This indicates
a kind of first-order transition takes place atUc. We will reveal
the properties of this transition with various quantities.

First, we take up the doublon density,

D =
1

Ns

∑

i

〈ni↑ni↓〉 =
1

Ns

〈Hint〉
U

, (18)

where Hint denotes the second (interaction) term of the
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FIG. 7: (Color online) The momentum distribution function of the
lowese-energy states is shown for various values ofU/t along the
path(0, 0)-(π, 0)-(π,−π)-(0, 0) in the Brillouin zone, (a) fort′/t =
0.8 (coexisting stateΨco

Q , Uc/t ∼ 6.65) and (b) for t′/t = 1.0

(120◦-AF stateΨ120
Q , Uc/t ∼ 7.65). The open (solid) symbols de-

note the data forU < Uc (U > Uc).

Hamiltonian eq. (1).D is regarded as the order parameter
of metal-insulator transitions, [27] by analogy with the parti-
cle density in gas-liquid transitions. As shown in Fig. 6,D
exhibits a discontinuity atU = Uc for eacht′/t, strongly sug-
gesting a first-order metal-insulator transition.
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FIG. 8: (Color online) The charge structure factorN(q) for the same
states with those in Fig. 7 is plotted along the same path: (a)Co-
existing stateΨco

Q for t′/t = 0.8, and (b) 120◦-AF stateΨ120
Q for

t′/t = 1.0. The open (solid) symbols denote the data forU < Uc

(U > Uc).

In Fig. 7, the momentum distribution function,

n(k) =
1

2

∑

σ

〈c†kσckσ〉, (19)

of the lowest-energy states is plotted fort′/t = 0.8 (Ψco
Q ) and

1.0 (Ψ120
Q ). Discontinuities ofn(k) at kF in both sections,

(0, 0)-(0, π) and (0, 0)-(π, π), are obvious forU < Uc for
both magnetic states, whereasn(k) becomes smooth in both
sections forU > Uc. Because the quasi-Fermi surface van-
ishes forU > Uc, we may consider that the state becomes
non-metallic.

In Fig. 8, we depict the charge structure factor,

N(q) =
1

Ns

∑

i,j

eiq·(Ri−Rj) 〈NiNj〉 − n2, (20)

with Ni = ni↑ + ni↓, for the same states as those in Fig. 7.
Similarly to the case ofΨd

Q studied in (I),N(q) near theΓ
point (0, 0) seems linear in|q| for U < Uc, whereas the be-
haviors ofN(q) abruptly change to roughly quadratic in|q|
for U > Uc, regardless ofΨco

Q or Ψ120
Q . It follows that the

states are gapless in the charge sector and are conductive for
U < Uc, but a charge gap opens forU > Uc and they become
insulating.

The above results ofD, n(k) andN(q) indicate that inΨco
Q

andΨ120
Q , a first-order metal-to-insulator transition occurs at
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FIG. 9: (Color online) Optimized values of variational parameters in
correlation factorP , for severalt′/t as function ofU/t; (a)g [onsite
(Gutzwiller) correlation parameter], (b)µ [doublon-holon binding
parameter in the direction oft], and (c)µ′ [the same oft′]. For
t′/t = 0.4-0.8, the parameters are optimized in the coexisting state
Ψco

Q , and fort′/t = 1.0, in the 120◦-AF stateΨ120
Q . The symbols

are common to all panels.

U = Uc, as we showed forΨd
Q in (I). Nevertheless, the quan-

tities studied below will show that these transitions do notbe-
long to pure Mott transitions with no relevance to magnetism
like in Ψd

Q, but to metal-to- magnetic-insulator transitions.
Let us consider the optimized variational parameters in the

correlation factorP . Shown in Figs. 9(a)-(c) is theU/t de-
pendence of the optimized values ofg, µ andµ′ for the lowest
energy states:Ψco

Q for t′/t = 0.4-0.8, andΨ120
Q for t′/t = 1.0.

The fact that all the parameters show apparent discontinuities
at U = Uc supports the first-order transition. In comparing
these values with the corresponding ones forΨd

Q shown in
Fig. 4 in (I), we notice that the behavior of the Gutzwiller pa-
rameterg is opposite near the critical point. AtU = Uc, g for
Ψco

Q (t′/t ≤ 0.8) becomes larger in the insulating sideU > Uc

than in the metallic side [Fig. 9(a)], in contrast to the casefor
Ψd

Q [Fig. 4(a) in (I)]. This behavior can be understood reason-
ably, if the(π, π)-AF order arises in the insulating regime; it
is known [33] thatg becomes larger in a projected (π, π)-AF
state than in the corresponding paramagnetic state, because
the one-body Hartree-Fock stateΦAF already includes an ef-
fect to suppress the double occupation, in inducing staggered
spin structure. ForΨ120

Q (t′/t = 1.0), the increase ofg at
Uc is still larger than that ofΨco

Q , meaning that the triplicate
staggered field inΦ120 forms a firmer order for the isotropic
case.

Another noticeable difference is the behavior of the
doublon-holon binding parameterµ. The discontinuity ofµ
atUc is an order of magnitude smaller inΨco

Q than inΨd
Q for

t′/t ≤ 0.8. This behavior is considered reasonable, again as-
suming the(π, π)-AF order in the insulating regime. As we
studied before,[22] the doublon-holon binding effect is intrin-
sic in the Néel background ofΦAF. Accordingly,µ in the cor-
relation factorPQ plays a minor role for the (π, π)-AF state.
This tendency becomes more thorough forΨ120

Q ; µ in Ψ120
Q ,

inversely, drops to almost zero atUc and remains very small
for U > Uc. Similarly,µ′ drops to almost zero atUc for Ψ120

Q ,
and also forΨco

Q . Thus, the doublon-holon binding factor is
almost useless forΨ120

Q in the insulating regime. However,
in the insulating regime ofΨ120

Q , doublons exist as shown in
Fig. 6, and we have confirmed in the records of Monte Carlo
sweeps that a doublon almost necessarily sits in a nearest-
neighbor site of a holon. This indicates that the one-body HF
stateΨ120

Q already has a sufficient doublon-holon binding ef-
fect for finite∆120. At any rate, the binding (and unbinding)
of a doublon to a holon must be the essence of Mott transi-
tions.

To directly confirm the existence of long-range magnetic
orders forU > Uc, we next discuss the behavior of the gap
parameters,∆AF and∆120, and the order parameterms. For
Ψco

Q , the sublattice magnetizationms is given, as usual, by

ms =
1

Ns

∣

∣

∣

∣

∣

∣

∑

j

eiK·Rj 〈Sz
j 〉

∣

∣

∣

∣

∣

∣

, (21)

with Sz
j = 1/2

(

c†j,↑cj,↑ − c†j,↓cj,↓

)

. Similarly, we definems

for Ψ120
Q as,

m120
s =

1

Ns

∣

∣

∣

∣

∣

∣

∑

j

eiK·Rj 〈STz
j 〉

∣

∣

∣

∣

∣

∣

, (22)

with STz
j = 1/2

(

a†j,↑aj,↑ − a†j,↓aj,↓

)

. Form120
s > 0, Ψ120

Q

has a 120◦-AF order. In Figs. 10(a) and (b), we show∆AF

andms of Ψco
Q for three values oft′/t (≤ 0.8). The behavior

of these two quantities is similar; they are negligibly small
for U < Uc, whereas they abruptly increase atU = Uc and
preserve the large magnitude forU > Uc. They are almost
independent of the value oft′/t. We will turn to this point
in III C. Shown in Figs. 10(c) and (d) are∆120 andm120

s of
Ψ120

Q for t′/t = 1.0. TheirU/t dependence is basically the
same as those ofΨco

Q , but the magnitude of∆120/t andm120
s

is larger than that of∆AF/t andms. In this point, the 120-
degree AF order is not less steadfast than the (π, π)-AF order.
The spin structure factorS(q) is also checked (not shown),
which has a sharp peak atq = (2π/3, 2π/3) in the insulating
regime ofΨ120

Q , supporting the realization of the 120◦ spin
structure. Thus, we have confirmed that a firm magnetic long-
range order always arises in the insulating regime at least for
t′/t ≤ 1.

Finally, we discuss thed-wave gap∆d and thed-wave SC
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FIG. 10: (Color online) (a) Optimized gap parameter∆AF/t and (b) order parameterms of a (π, π)-AF order for the coexisting stateΨco
Q

(t′/t = 0.4-0.8). (c) Optimized gap parameter∆120/t and (d) order parameterm120
s of a 120◦-AF order for the 120◦-AF stateΨ120

Q

(t′/t = 1.0). For the full polarization,ms andm120
s become 1.

correlation function of the nearest-neighbor-site pairing:

Pd(r) =
1

4Ns

∑

i

∑

τ,τ ′=x̂,ŷ

(−1)1−δ(τ,τ ′) ×

〈

∆†
τ (Ri)∆τ ′(Ri + r)

〉

, (23)

wherex̂ and ŷ denote the lattice vectors in thex andy di-
rections, and∆†

τ (Ri) is the creation operator of a nearest-
neighbor singlet,

∆†
τ (Ri) = (c†i↑c

†
i+τ↓ + c†i+τ↑c

†
i↓)/

√
2. (24)

Unless∆d increases,Pd(r) does not increase, but the opposite
does not hold, in contrast to the relation between∆AF andms.
It is possible that finite∆d indicates a non-SC singlet gap.[28]
In contrast,Pd(r) is an good indicator ofdx2−y2-wave SC,
and was studied in detail forΨd

Q in (I), which yielded a con-
clusion that SC arises fort′/t <∼ 0.7 within Ψd

Q. Here, we
consider the long-distance behavior ofPd(r) by P ave

d , which
is the average ofPd(r) only for r = (x, L/2) and(L/2, y)
with x, y = 0-L.

As shown in Fig. 11(a),∆d for Ψco
Q is always substantially

zero forU < Uc. Accordingly,Pd(r) does not develop mean-
ingfully exceeding the value ofU = 0, even ifU approaches
Uc, as shown in Figs. 11(b) and 11(c). This is in contrast with
the case ofΨd

Q. Thus, appreciable SC does not appear in the
conducting regime. In the insulating regime, thed-wave sin-
glet gap∆d is still strongly suppressed inΨco

Q [Fig. 11(a)],
compared with inΨd

Q [Fig. 4(c) in (I)], where∆d/t ∼ 1.2-
1.3. It is found, like the case ofΨd

Q, Pd(r) is very small and
vanishes rapidly asL increases (not shown). Consequently,
for U > Uc, the (π, π)-AF order is overwhelmingly dominant
over thed-wave SC order;Ψco

Q in the insulating side can be re-
garded as an almost pure (π, π)-AF insulating state. It means

that Ψco
Q undergoes a simple first-order metal-to-(π, π)-AF-

insulator transition atU = Uc [29] for t′/t ≤ 0.8.
In conclusion, there is no chance that robustd-wave SC or

a nonmagnetic insulator appears withinΨco
Q .

C. Antiferromagnetic state and phase diagram

In this subsection, we consider the properties of the (π, π)-
AF state realized in the insulating regime ofΨco

Q .

In (I), we found that the properties ofΨd
Q in the (nonmag-

netic) insulating regime are almost independent of the frustra-
tion strengtht′/t [cf. Fig. 4 for example]. This tendency be-
comes more strong inΨco

Q . As in Fig. 12(b), the renormalized
frustrationt̃′/t becomes nearly zero forU > Uc, regardless
of the model parametert′/t, namely, in the strong coupling
regime, the effective band almost retrieves the nesting con-
dition for the simple square lattice (t′ = 0), even for highly
frastrated cases.[30] The other variational parameters inΨco

Q

are also almost independent oft′/t, as seen in each panel of
Figs. 9, 10(a), 11(a) and 12(a), where all the data points for
U > Uc are represented very well by a unique curve, regard-
less oft′/t. Thus, the optimizedΨco

Q is not changed with the
frustration strength, as long asU > Uc.

In Fig. 4, the total energy forΨco
Q in the insulating regime

(U/t = 12) is plotted as a function oft′/t. Here,Eco is al-
most constant, and the difference ofE/t betweent′/t = 0
and 1.2 is as small as 0.1%. This behavior is not trivial even
if the wave function is not changed witht′/t, because thet′-
term in the Hamiltonian changes. To understand this result,
we check the behavior of energy components; letEt, Et′ and
EU be the contributions from the hopping in thet-bond and
t′-bond directions, and from the onsite interactionU , respec-
tively. We list the numerical data fort′/t = 0.8 in Table I as
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FIG. 11: (Color online) (a) Optimized values ofd-wave gap pa-
rameter inΨco

Q for t′/t = 0.4-0.8 as a function ofU/t. Averaged
nearest-neighbord-wave pairing correlation function inΨco

Q for (b)
t′/t = 0.4 and (c)t′/t = 0.8. Note that we averagePd(r) only for
large values of|r| (see text). ForU/t = 0, we use analytic values.
The error bars in (b) and (c) include the standard deviationsboth of
VMC calculations and by averaging with respect tor.

�
���
�	

��

���

�
��

� � � �� ��
�

���

�

 ! "

#$
%&
'

()* +,
-./ 01
234 56
789 :;
<=> ?@

ABCD E

FGH

IJK

FIG. 12: (Color online) Optimized values of the remaining varia-
tional parameters inΨco

Q for t′/t = 0.4-0.8 as a function ofU/t; (a)
ζ/t [chemical potential], and (b)̃t′/t [band renormalization factor].
The symbols are common in both panels.

a typical example, because each contribution is again almost
constant as a function oft′/t. As expected,Et′ is substan-
tially zero, indicating if we allow the band renormalization,
the wave function is by far stabilized by retrieving the nest-
ing condition for the simple square lattice at the cost of the
energy reduction due to the diagonal hopping or frustration,
even ift′/t is considerably large.

It is natural to guess that this renormalization readily occurs
in Ψco

Q , because the nesting condition is advantageous not only

TABLE I: Energy components and total energy ofΨco
Q for three

values ofU/t in the regime of the (π, π)-AF insulator (U > Uc).
Here,t′/t = 0.8 (Uc/t ∼ 6.65). The small system-size dependence
is a characteristic of an (π, π)-AF state. [33] The digits in brackets
indicate the errors in the last digits.

U/t L Et/t Et′/t EU/t E/t
10 10 -0.7761(6) -0.0001(0) 0.3659(6) -0.4103(1)

12 -0.7759(9) -0.0001(0) 0.3657(9) -0.4103(1)
12 10 -0.6618(7) -0.0002(0) 0.3134(7) -0.3485(1)

12 -0.6601(6) -0.0001(0) 0.3119(6) -0.3483(1)
14 10 -0.5749(5) -0.0002(0) 0.2713(6) -0.3038(1)

12 -0.5738(5) -0.0001(0) 0.2703(7) -0.3035(1)
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FIG. 13: (Color online) Ground-state phase diagram in thet′-U plane
constructed from the present VMC results of the coexisting wave
functionΨco

Q and the 120◦-AF stateΨ120
Q . At the boundaries of the

metallic and insulating phases, first-order magnetic transitions take
place.

to the (π, π)-AF state but to thed-wave state, as discussed in
(I). Anyway, in recalling the point (iv) itemized in II, we no-
tice that the band renormalization effect, namely the recovery
of nesting, is essential to stabilize the (π, π)-AF state, as well
as thed-wave singlet state. [23]

Finally, we discuss the ground-state phase diagram, which
is reconstructed withinΨco

Q andΨ120
Q and depicted in Fig. 13.

As compared with the diagram byΨd
Q andΨAF

Q shown in
Fig. 14 in (I), the area of the (π, π)-AF insulator extends to
extremely larget′/t (> 0.9) and to somewhat smallU/t.
In addition, the area of the 120◦-AF insulator appears near
the isotropic pointt′/t = 1. We consider these tendencies
are broadly consistent with the results for theJ-J ′ model
(U/t = ∞), [10] in which the domain of (π, π)-AF contin-
ues tot′/t > 0.8. In Fig. 13, asU/t increases, the boundary
value in t′/t between the (π, π)-AF and 120◦-AF insulators
tends to increase. This is probably becauseΨco

Q is stabilized
by thed-wave gap∆d, which rapidly increases for largeU/t,
as seen in Fig. 11(a). We consider that the above tendency
of the boundary will be corrected by introducing an appropri-
ate singlet gap also intoΨ120

Q . As a result of the stabilization
of magnetic phases, the domains of nonmagnetic insulating
and of robustd-wave SC phases disappear, which occupy cer-
tain parts of the phase diagram made in (I) and also in recent
studies of a variational cluster perturbation theory [6] and a
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|∆max| denotes the maximum of|∆k| for each pairing gap.

cellular dynamical mean field theory. [7]

D. Extention of pairing-gap form

From the argument in III C, we expect a state yielding a gain
in Et′ overcomesΨco

Q andΨ120
Q for larget′/t. In this subsec-

tion, we consider a couple of different pairing gaps, which
seem suitable fort′ >∼ t, in the projected BCS function.

One has a specific gap parameter to thet′ direction (∆d′),
independent of∆s for thet direction, [32, 34]

∆k = ∆s(cos kx + cos ky)−∆d′ cos(kx + ky), (25)

which we call “ext.s+dxy wave” (Ψs+d′

Q = PΦs+d′). This
form of ∆k has nodes near thekx andky axes for∆s ∼ ∆d′

[see Fig. 14(b)], which resembles the nodes proposed by some
experiments. [35, 36]∆k approaches thedxy wave of a one-
dimensional character for|∆d′ | ≫ |∆s|. The other is a
dx2−y2+idxy wave (Ψd+id

Q = PΦd+id),

∆k=∆d+id

[

cos kx+ei
2π
3 cos(kx+ky)+ei

4π
3 cos ky

]

, (26)

as shown in Fig. 14(c). This form was often used to study fa-
vorable gap symmetries for cobaltate SC; [37, 38, 39] using a
VMC method [39] for thet-J model on an isotropic triangular
lattice, it was shown thatΨd+id

Q is degenerate withΨd
Q at half

filling, and has lower energy for doped cases. This gap form
breaks a time reversal symmetry.

In Fig. 4, the total energies ofΨs+d′

Q (Es+d′

) andΨd+id
Q

(Ed+id) are plotted in addition to those mentioned earlier. For
t′/t <∼ 1.1, Ed+id is almost constant in the same reason as
Eco andEd, whereasEd+id starts to decreases att′/t ∼ 1.1
abruptly, because, there, the direction of band renormalization
is reversed from̃t′/t → 0 to t̃′/t → ∞. Thus, the effective
Fermi surface ofΨd+id

Q becomes quasi one dimensional for

t′/t >∼ 1.1. Similarly toEd+id, Es+d′

considerably decreases
as t′/t increases. In the range of decreasingE, the energy
reduction in bothΨd+id

Q andΨs+d′

Q is largely attributed toEt′ .

Especially inΨs+d′

Q , the energy reduction is entirely owing
to Et′ , and the direction of band renormalization ist̃′/t →
∞; the optimized∆s is negligible (∼ 0.54) compared to the
optimized∆′

d (∼ 7.05), for U/t = 12, t′/t = 1.2, andL =

12. Thus, the singlet gap has an almost puredxy-wave of one-
dimensional character. As shown in Fig. 4,Es+d′

overcomes
E120 for t′ >∼ t′c2 ∼ 1.65t for U/t = 12, meaning thatΨ120

Q

is predominant for an unexpectedly large range oft′/t (> 1)
within the states we have studied (L = 10 and12). We expect
a more favorable pairing gap will be found fort < t′ < t′c2,
but we leave a search for it for the future.

Detailed results forΨs+d′

Q was reported in another publica-
tion. [40]

IV. CONCLUSION

A. Summary

As a continuation of the preceding study (I), [3] we have
studied the Hubbard model on anisotropic triangular lattices,
eq. (1), at half filling, using an optimization variational Monte
Carlo method. We introduce two new trial wave functions:
(i) A coexisting state of (π, π)-AF andd-wave gaps, which
allows for a band renormalization effect,Ψco

Q , and (ii) a state
with an AF order of 120◦ spin structure,Ψ120

Q . Main results
are summarized as follows:

[1] First-order metal-to-insulator transitions occur in both
Ψco

Q andΨ120
Q at smaller values ofU/t than those of thed-

wave stateΨd
Q studied in the preceding paper (I). As a re-

sult, the regime of robustd-wave SC found in (I) is covered
with the domain of these states. The modified phase diagram
within Ψco

Q andΨ120
Q is shown in Fig. 13.

[2] In the insulating regimes,Ψco
Q andΨ120

Q are consider-
ably stable, compared withΨd

Q, and magnetic long-range or-
ders always exist fort′/t <∼ 1.65. Thus, a domain of a non-
magnetic insulator is not found fort′ ∼ t within the wave
functions used this time.

[3] In the insulating regime ofΨco
Q , the realized state can be

regarded as a pure (π, π)-AF insulator, because the sublattice
magnetization as well as the (π, π)-AF gap (∆AF) is robust,
and thed-wave pairing correlation almost vanishes. In the
optimizedΨco

Q , the effective band is renormalized so greatly
(t̃′ → 0), irrespective oft′/t, that the nesting condition for
t′ = 0 is retrieved almost completely. Accordingly, the con-
tribution of diagonal hopping energy vanishes even for large
t′/t.

[4] For t′ ∼ t, Ψ120
Q becomes predominant (U > Uc),

even though the effects of band renormalization and of co-
existing singlet gaps are not considered. If these effects are
introduced, the area of the 120◦-AF order will somewhat ex-
pands, although, at present, the area of the (π, π)-AF order
extends to as large ast′/t >∼ 0.9.

[5] For large values oft′ (> tc2 ∼ 1.65), the singlet pairing
states with gaps oriented to the diagonal-bond direction over-
comeΨ120

Q . We speculate that another predominant singlet
(and SC) state will be discovered fort < t′ < tc2.

We believe that the mechanisms of a Mott (conductive-to-
nonmagnetic insulator) transition and of thedx2−y2 -wave SC
pursued in (I) fundamentally remain valid, if the magnetic or-
ders are removed for some reasons. However, the ground-state
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phase diagram for the model eq. (1) is substantially modified
byΨco

Q andΨ120
Q .

B. Discussions

In comparing the present results with experimental ones of
κ-ET salts, a favorable point is that a (π, π)-AF insulator is
realized for realistic values oft′/t, namely e.g. 0.74 in κ-
(ET)2CuN(CN)2Cl. An unfavorable point is that robust SC
and a nonmagnetic insulator do not appear; the latter state
is believed to be realized inκ-(ET)2Cu2(CN)3.[9] One con-
ceivable cause of this discrepancy is the insufficiency of trial
wave functions; it is possible that quantum fluctuation is not
sufficient forU ∼ Uc and larget′/t, and that we have not
exhausted crucial orders. Another possible cause is that the
present model eq. (1) is not sufficient to describeκ-ET salts.
For instance, the dimerization of ET molecules is not strong
enough to justify the use of a single-band model. [41]

In the theoretical point of view, the present result is com-
parable to that forU/t → ∞, namely theJ-J ′ Heisenberg
model. According to it, the (π, π)-AF long-range order van-
ishes att′/t ∼ 0.8, [10] and an AF order with 120◦ spin
structure prevails att′/t = 1,[11] although a disordered phase
may intervene between the two magnetic phases. Some other
theoretical studies [4, 6, 7, 8] for the equivalent Hubbard
model have yielded results of nonmagnetic insulating states
at t′/t ∼ 1. However, these studies have not explicitly treated
the 120◦-AF order, which is shown very stable fort′/t = 1 in
this study.

Although robust SC does not appear within the present
study, we found that the symmetry of a singlet gap changes
at larget′/t (∼ 1.2) from the simpledx2−y2 wave to, for in-
stance, thedxy wave as mentioned in III D (see Fig. 4). This
aspect is in accordance with that of FLEX, [42] in which
a predominant SC symmetry switches from adx2−y2-wave
to a dxy-wave state att′/t ∼ 1. Owing to this competi-
tion betweendx2−y2 anddxy waves near the isotropic point
(t′/t = 1), the SC gap symmetry realized inκ-ET salts, espe-
cially in κ-(ET)2Cu2(CN)3, may not be definitive but sensitive
to physical parameters such as pressure. In contrast, a recent
study of the Hubbard model with an extra exchange term using
a Gutzwiller approximation [43] concluded that ad+id-wave
SC is stable forU ∼ W andt′ >∼ t. Thus, it is urgent to carry
out VMC calculations, in which the form of the pairing gap
can be optimized without biased assumptions.
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