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Abstract 
In recent years our knowledge of the varied role that ubiquitination plays in promoting 
signal amplification, novel protein interactions and protein turn-over has progressed rapidly. 
This is particularly remarkable in the examination of how DNA Double-Strand Breaks (DSBs) 
are repaired, with many components of the ubiquitin conjugation, de-conjugation and 
recognition machinery now identified as key factors in DSB repair. In addition, a member of 
the ubiquitin-like family, SUMO (Small Ubiquitin-like Modifier) has also been recognised as 
integral for efficient repair. Here we summarise our emerging understanding of 
SUMOylation both as a distinct modification and as a co-operative modification with 
ubiquitin, using the cellular response to DNA double-strand breaks as the primary setting to 
compare these modifications.  
 
 

SUMO and Ub share similar conjugation enzyme architectures 
Ubiquitin (Ub) and SUMO are small, globular proteins, produced as inactive precursors that 
require processing to generate mature proteins. Ub and SUMO have similar conjugation 
pathways. E1 activating enzymes charge C terminal glycine residues, E2 conjugating 
enzymes then transfer the Ub or SUMO from the E1 to the substrate via an intermediary 
cysteine residue. E3 ligating enzymes aid in substrate recognition and help guide the Ub or 
SUMO conjugate to target lysines. Each conjugating cascade is specific for their respective 
modifier [1, 2]. The SUMO conjugation system features far fewer components than the Ub 
system, with only a single E2 (Ubc9) versus the ~40 conjugation enzymes for Ub and a dozen 
or so known SUMO E3 enzymes compared to hundreds of ligases for Ub [3-5]. SUMO 
conjugation sites differs from ubiquitin conjugation sites in that ~75% of SUMOylated lysines 

occur within a consensus sequence “KxE/D” or its various derivatives (where ‘’ is a large 
hydrophobic residue), while ubiquitination shows little preference for lysine context [6, 7]. 
This may be due to the large number of E2/E3 enzyme pairs in the Ub conjugation system 
compared to the single E2 for SUMO. Also unique to Ubc9, is the ability to directly conjugate 
SUMO to substrates without E3 enzymes so Ubc9 alone can dictate SUMOylation consensus 
lysine targeting [8]. In the DSB repair response the SUMO E1, E2 and E3 enzymes have been 
detected at sites of damage suggesting the SUMO conjugation machinery is locally recruited 
[9-11]. 
 

SUMO is a family of related modifiers 
SUMO and Ub are each encoded by several genes, but the matured protein products of Ub 
genes are identical, whereas SUMO genes (SUMO1-4) give rise to distinct protein products. 
The tertiary structures of SUMO and Ub proteins are similar, but they share limited 
sequence identity and differ in their surface charge distribution [12]. SUMO1 was first 
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identified as an Ub-like protein that interacted with RAD51 and RAD52, localised to PML 
bodies, and conjugated to the GTPase RanGAP1  [13-16].  
 
SUMO2 and SUMO3 share the same conjugation machinery to SUMO1 but are more 
distantly related [4, 5]. The 97% identity between SUMO2 and SUMO3 and the inability of 
antibodies to discriminate between them has lead to their collective designation as 
SUMO2/3. However some differences have been noted, SUMO3 contains a phosphorylation 
site (Ser2) not found in SUMO2 [17, 18] and the differences in the C terminal extensions 
affect maturation efficiency in vitro [19, 20]. The SUMO2 and SUMO3 genes show distinct 
transcriptional responses to oxidative stress, and over-expression of SUMO3 but not SUMO2 
regulates turnover of the Flap structure-specific endonuclease, FEN1 [21, 22]. To add to the 
difficulty distinguishing between these modifications there is inconsistency between 
research groups concerning the naming of SUMO2 and SUMO3 and often-times their 
designations are inverted. Wherever possible in this review we have used SUMO2 = P61956 
and SUMO3 = P55854. 
 
SUMO4 is homologous to SUMO2 but processing to its mature form is restricted by a proline 
residue within the C terminal tail [23]. Nevertheless SUMO4 may be processed by other 
hydrolases in response to stress [24], so that the cellular role for SUMO4 remains to be 
determined. SUMO5 (SUMO1P1) has recently been described as a regulator of PML bodies 
with restricted tissue expression [25]. The human genome contains many putative SUMO 
pseudogenes which include SUMO5/SUMO1P1 [26] and further work is needed to ensure 
SUMO5 is a translated, endogenous protein. Thus unlike ubiquitination, which represents a 
single modification, SUMOylation encompasses several distinct modifications that share 
common conjugation machinery (Fig 1).  
 
Paralog specific SUMOylation and deSUMOylaation 
SUMO1 and SUMO2/3 modifications can be entirely distinct and some proteins are 
preferentially modified by particular paralogs while others can be modified by both [27]. 
The availability of different SUMO family members to the conjugation machinery may 
influence SUMO paralog specific modifications. A significant fraction of SUMO1 is localised 
to nuclear pores as SUMO1-RanGAP1 conjugates, while SUMO2 and SUMO3 pools are less 
spatially restricted. This may explain the greater dynamic alterations in SUMO2/3 versus 
SUMO1 conjugation that occurs in response to cellular stress [28, 29].  
 
The paralog specificity of certain target protein modifications can be influenced by the 
activity of SUMO protease enzymes which possess paralog editing specificity. Six SUMO 
proteases (SENP1-3 and 5-7) and three additional enzymes (DeSi1/2 and USPL1) are able to 
cleave SUMO from substrates [30-32]. Maturation of pro-SUMO to the mature form that 
terminates at a glycine is carried out by SENP1 and SENP2 [33]. SUMO1 deconjugation is 
predominantly carried out by SENP1 and to a lesser degree by SENP2 [34], while SUMO2/3 
modifications can be removed by all SENPs [33, 35]. SENP6 and SENP7 are specialised 
SUMO2/3 chain depolymerising enzymes [36, 37]. It is possible that the relative paucity of 
SUMO1-cleaving proteases may explain why SUMO1 modification of substrates appears 
more pronounced than SUMO2/3 conjugation when the isoforms are over-expressed - the 
artificial SUMO1 levels overwhelm limited cellular deconjugation, while more abundant 
SUMO2/3 proteases can better compensate for artificially elevated SUMO2/3 [38]. In 
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addition, SUMO2/3 modification in the form of polymers can trigger degradation of some 
substrates which may limit the detection of highly SUMO2/3 modified proteins (discussed 
later) [39, 40]. Paralog specificity may also be enforced at the level of localisation as SUMO 
deconjugating enzymes distribute to distinct sub-cellular locations, for example, SENP2 
localises to nuclear pores [41], SENP3/5 to nucleoli [42], SENP7 to chromatin [43-45] and 
USPL1 to Cajal bodies [32].  
 

Some degree of redundancy between SUMO1 and SUMO2/3 may be tolerated in cells as 
mice deficient for SUMO1 are viable due to compensation by SUMO2/3 [46, 47]. Similarly 
compensation by SUMO2 rescues the lethality of SUMO3 deficient mice [48]. In contrast 
SUMO2 loss is embryonic lethal, which is thought to be due to inadequate compensation 
from the less abundant SUMO3 protein during development [48]. Therefore, at least in the 
context of mouse embryonic development SUMO1 is redundant with SUMO2/3 but not vice 
versa.  
 
 
SUMO forms multiple types of modification 
SUMO conjugates, like Ub conjugates, can occur in the form of mono, multi-mono, polymers 
and branched chains. SUMO polymers are generated by SUMOylation of an internal lysine 
(K11) embedded within a consensus site in SUMO2/3 [49]. Intriguingly although K11 
linkages of SUMO2/3 are the most abundant (~60% of SUMO2-SUMO2/3), linkages have 
also been detected on many other SUMO2/3 lysine residues [6, 7, 50], suggesting distinct 
SUMO chain types exist. Additionally, peptides belonging to SUMO2 branched chains in 
which SUMO2 is doubly modified at K7 and K11 or K5 and K7 have been detected [51]. The 
discovery of differing linkages of Ub has increased our understanding of the complexity of 
Ub signalling substantially [52, 53]. SUMO2/3 polymers may also have highly complex 
structures with potentially diverse cellular functions.  
 
The lack of SUMO consensus conjugation site on SUMO1 suggests that it is less likely to form 
chains in vivo [49]. However SUMO conjugation site mapping has revealed that SUMO2 is 
conjugated to SUMO1 at several lysine residues and that SUMO1-SUMO2/3 mixed linkages 
occur in cells [6, 7, 50]. SUMO1 incorporation into SUMO2/3 polymers may act as a capping 
mechanism, preventing further chain elongation [18]. Alternatively, given the multiple 
SUMO1-SUMO2 pairs identified on non-consensus SUMO1 lysines [6, 7, 50, 51], it is also 
possible these chains are more complex (Fig 2). 
 
 
Mixed SUMO~Ub polymers 
The complexity of SUMO polymers is increased further by the discovery of mixed SUMO-Ub 
polymers. SUMO1 and SUMO2/3 are ubiquitinated at several lysine residues, most likely by 
SUMO targeting Ub E3 ligases such as RNF4 and RNF111 [39, 40, 54]. In addition Ub is 
extensively modified by SUMO2, suggesting both ubiquitination of SUMO and SUMOylation 
of Ub [50]. SUMO2/3 is conjugated to different Ub lysines depending on the condition, 
switching from K63 to K11 residues upon proteotoxic stress [7]. Incorporation of SUMO2/3 
into ubiquitin polymers at sites such as K63 would presumably impact the cells ability to 
signal through this type of ubiquitin linkage, generating entirely new chain topologies for 
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other binding domains. Therefore this crosstalk between Ub and SUMO could substantially 
increase the complexity of small modifier recognition in cells [7].  
 
SUMO and Ub act as docking sites mediating protein-protein interactions 
A major function of small modifier conjugation such as Ub and SUMO is the additional 
interaction interfaces they provide to their modified substrates. This allows docking of 
protein domains that would otherwise not occur on unmodified substrates. More than 20 
Ub interaction domains have been identified, some of which display preferences for 
monomers or for specific chain types [55]. In contrast until recently the only known SUMO 
binding elements were the SUMO Interacting Motifs (SIMs). These are short sections of 
small hydrophobic amino acids with similarities to the sequence (V/I/L)x(V/I/L)(V/I/L), which 
form a hydrophobic core within a groove on the surface of SUMO [56]. Local amino acid 
charge variation, in particular acidic or phosphorylated residues can determine specificity in 
binding SUMO paralogs [56, 57], [58-60]. SIMs are present in the conjugation machinery 
enzymes, and for some may assist SUMO conjugation activity [61, 62]. SIM motifs in 
substrates can also promote paralog specific modification [63]. Recently SIMs in the N 
terminus of the SUMO E3 ligase ZNF451 were shown to be required for SUMO2/3 chain 
forming ability and for SUMO2/3 preference [64, 65]. Additional binding surfaces on SUMO 
distinct from the patch recognised by SIMs include the “backside” patch that interacts with 
Ubc9 and the E67 loop that interacts with the protease DPP9 [66, 67]. 
 
In addition to SIMs, two more SUMO interacting domains have been identified, the zinc 
finger MYM, and ZZ domains. The MYM domain binds the same SUMO surface as SIM 
motifs, while the ZZ domain contacts a different surface and has a preference for binding 
SUMO1 over SUMO2/3 [68-70]. Interestingly the MYM domain containing protein ZMYM3 
has recently been described as a factor required for recruiting BRCA1 to sites of damage, 
although it is not known if its SUMO binding activity is required for this function [71]. 
 
SUMOylation can promote Ub-dependent clearance  
Polyubiquitin conjugation often serves as degradation signal, directing proteins for 
proteasome mediated degradation [72], however the multifarious functions of Ub have 
expanded as our view of the modification in signalling has advanced [3]. Conversely, our 
perspectives of SUMOylation as a non-proteolytic signalling molecule have also shifted. Cells 
treated with the proteasome inhibitor MG132 rapidly accumulate high molecular weight Ub 
adducts due to failure of the proteasome to clear ubiquitinated proteins, in addition they 
also accumulate SUMO conjugates [73]. This suggested that both modifications are 
processed by proteasomal degradation. It is now clear that specialised E3 Ub enzymes such 
as RNF4 and RNF111 [39, 40, 54], recognise and ubiquitinate SUMO2/3 polymers through 
SIM motifs  providing insight into how SUMOylation can direct proteins for degradation [39, 
40].  
 
 
The Setting: Double-Stranded Break Repair 
DNA double-stranded breaks (DSBs) are highly toxic lesions. These breakages need to be 
rapidly repaired to prevent loss of genetic data, chromosome fusions and ultimately cell 
death [74].  Improper DSB repair results in genomic instability linked to cancer, aging and 
immune dysfunction. Ionising radiation (IR), various chemotherapies and stalled replication 
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forks can promote the formation of DSBs. Their repair involves the localised recruitment of 
DNA repair sensors and effecter proteins to sites of damaged chromatin. In mammals the 
majority of DSBs are repaired by ligating the broken ends together in a process termed Non-
homologous end joining (NHEJ). The processing of the broken ends during NHEJ often leads 
to loss of DNA and is therefore mutagenic. If DSBs form in S/G2 phases of the cell cycle 
when a second copy of the DNA is available as template, cells can utilise the main homology 
repair (HR) mechanism of gene conversion, which uses resection of the DNA surrounding 
the break followed by homology searching by RAD51 recombinase. DNA is faithfully 
repaired without any changes in genetic material (repair pathways are reviewed in detail 
elsewhere [74]. Many factors involved in DSB repair are SUMOylated in both basal 
conditions and in response to genotoxic stresses [75, 76], the role SUMOylation plays in 
regulating those proteins repair activities is beginning to emerge.  
 
Paralog specific SUMOylation and deSUMOylation in the DSB response. 
In the DSB repair response both SUMO1 and SUMO2/3 modifications occur on damaged 
chromatin as detected by ionising radiation induced foci (IRIF), recruitment to laser-induced 
DNA damage lines, recruitment to DSB flanking Lac-operon arrays, and enrichment detected 
by ChIP near to break sites [9-11, 75, 77-79]. Some reports have also identified distinct 
recruitment kinetics for SUMO1 versus SUMO2/3 in their enrichment to sites of damage [80, 
81] and DSB signalling promotes paralog specific SUMOylation in some repair factors. 
Factors that accumulate or are modified early in the response such as γH2AX (H2AX 
phosphorylated at Ser139), MDC1, HERC2 and RNF168 are predominantly modified by 
SUMO1 [69, 82, 83] while later factors such as BRCA1, 53BP1 and EXO1 can be modified by 
both SUMO1 and SUMO2/3 [9] [10, 84]. These temporal differences in SUMO paralog 
modification may explain the differing kinetics of SUMO conjugates detected at DSBs [80, 
81]. The preferences for paralog conjugation could be due to the activities of two SUMO E3 
enzymes that localise to DSBs. PIAS4 is required for the earlier phases of repair, upon which 
SUMO1 modification appears critical whereas PIAS1 is required for SUMO2/3ylation of later 
arriving components [10, 69, 82]. It is not yet clear how paralog specific conjugation arises 
from these E3 ligases. 
 
The redundancy observed in mouse development between SUMO1 and SUMO2/3 may not 
be reflected in DSB repair as U2OS cells depleted of SUMO2/3 are radiosensitive, suggesting 
SUMO1 cannot compensate for SUMO2/3 loss [75]. In I-SceI DSB reporter assays SUMO1 
depletion has a more profound effect on repair efficiency than SUMO2/3 depletion 
suggesting both forms of SUMOylation are required for proper DSB repair [85]. 
 
Our understanding of the potential roles for cellular SUMO chains is hampered by a lack of 
specific reagents and currently it is not possible to discriminate between SUMO2/3 multi-
mono conjugates Vs SUMO polymers in vivo. In the ubiquitin field a growing number of 
reagents, such as antibodies that detect Ub conjugates and distinct Ub chain types (K48, K63 
and K11), or specific Ub chain type sensors have informed the role that Ub plays in DNA 
repair [86-89]. While improved SUMO reagents are on the horizon the presence of SUMO 
polymers, or possibly multi-mono conjugates can be inferred by the recruitment of SUMO 
specific Ub E3 ligases, such as RNF4 to DSBs. In these proteins SIMs (SUMO Interacting 
motifs) are arranged in tandem to allow reading of poly or multi SUMO2/3 modifications. 
Mutation of RNF4 SIMs abrogates recruitment to DSBs suggesting the presence of 
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polymers/multi-monomers [39, 40, 75, 77-79]. Our understanding of the biological 
significance of multi-mono modifications by SUMO is also poorly understood. A screen for 
proteins that interact with a multi-mono SUMO2 mimic identified several proteins that have 
roles in DSB repair, including BLM and 53BP1 [91]. The presence of multiple SUMO 
conjugates on a substrate may aid in co-ordinating protein-protein interactions between 
multi subunit protein complexes and remains to be studied in greater detail. 
 
SUMO and Ub deconjugation are essential for proper DSB repair 
The editing function of DUBs (De-ubiquitinating enzymes) are an essential component of 
DSB signalling acting as critical nodes to prevent over-accumulation of Ub signals and 
balance modification of repair factors [92-96]. The SUMO system has relatively few SUMO 
proteases. Consequently SENP enzymes are less able to compensate for one another during 
the DSB repair response. Indeed depletion of each SENP (except SENP3) individually alter HR 
and NHEJ repair efficiencies in ISceI reporter assays [45]. To date only the two chain editing 
SENPs have been studied for their roles in DSB repair. SENP6 interacts with RPA70, a protein 
that coats single-stranded DNA generated during replication and following DNA resection 
during HR repair. SENP6 maintains RPA70 in a hypoSUMOylated state, but following 
replication stress, dissociates from RPA70 allowing SUMOylation to proceed. RPA70 
SUMOylation is required for the loading of RAD51 - the subsequent step required for 
homology search and successful gene conversion repair [90]. SENP7 is also required for HR 
repair through constitutive deSUMOylation of the transcriptional repressor and 
heterochromatin component KAP1/TRIM28. Phosphorylation of KAP1 by ATM during DSB 
repair weakens the SUMO dependent interaction between it and the NuRD (Nucleosome 
Remodelling Deacetylase complex) subunit CHD3 (Chromodomain Helicase 3) [97]. This 
allows release of the chromatin condensing activities imposed by the NuRD complex which 
impede DSB repair. Loss of SENP7 promotes hyperSUMOylation of KAP1 and prevents CHD3-
NuRD eviction and the chromatin remodelling that occur in response to DSBs, resulting in 
downstream failure to generate RAD51 filaments and subsequent repair [45]. 
 
Therefore, just as with DUBs, deSUMOylases are critical for managing the steady state 
SUMOylation of factors that are employed during DSB repair and in facilitating rapid 
changes in SUMOylation status in response to stress stimuli. 
 
Ubiquitin and SUMO chains are each depolymerised by specific proteases, but the identity 
of enzymes that recognise mixed linkages is not well understood. DUB enzymes USP11 and 
USP7 have been proposed to act on hybrid chains via disassembly of the Ub component [98, 
99]. It is not clear if they have any intrinsic specificity for mixed chains or simply remove 
ubiquitin from SUMO as they would many other substrates. Interestingly both proteins have 
important roles in genome stability, though their specific role in removing Ub from SUMO 
chains is not yet clearly associated with those roles [98-104]. The UCH type DUB UCH-L3 can 
also cleave Ub conjugated to SUMO2 at K11, and from artificial linear SUMO2 chains in vitro 
[105]. In cells UCH-L3 is recruited to sites of damage where its activity promotes the 
interaction between RAD51 and BRCA2 [95, 106]. Whether this role relates to regulation of 
Ub~SUMO polymers is not yet known.  
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SUMO and Ub act as docking sites mediating protein-protein interactions in the DSB 
response. 
 
SUMOylation regulates recruitment of the Ub machinery at DSBs 
 
The importance of Ub as nucleating factor in the DSB repair response is well documented 
(for reviews [107-109]). Ubiquitin signalling in DSB repair is promoted by a sequential relay 
of E3 Ub ligases. SUMO has an extensive impact on the sequential ordering of the cellular 
response to DSBs and directs both ubiquitin conjugation and deconjugation within the DSB 
repair pathway [9, 10, 75, 77]. 
 
HERC2 promotes the activity of the first Ub ligase associated with DSBs, RNF8, via 
interaction with the K63 specific E2 enzyme Ubc13 [110]. HERC2 is SUMOylated in response 
to IR and it has been suggested this promotes intramolecular re-organisation to further 
enhance its ability to activate the E3 Ub ligase activity of RNF8. K63-Ub conjugates 
generated by RNF8 promote recruitment of another Ub ligase, RNF168 [69, 89]. The PIAS4 
SUMO ligase regulates transcription of RNF168, and RNF168 is SUMOylated in response to 
IR [69]. Moreover RNF168 interacts with SUMO2-K63-Ub mixed chains [111] suggesting 
SUMO may have several influences on RNF168-mediated signalling. The ubiquitinated 
product of RNF168 ligase activity (Histone H2A and H2AX ubiquitinated at K13/15) recruits 
53BP1 - a scaffold protein that antagonises the ability of BRCA1 to promote resection in 
homologous recombination [112, 113]. 53BP1 is also SUMOylated during DSB repair, but 
what function this has is currently unknown [10, 75].  
 
Ub-chains act as a recruitment scaffold for the BRCA1-A complex component RAP80. 
Ubiquitin interaction motifs (UIMs) in RAP80 recognise K63-Ub linkages enabling the 
recruitment of BRCA1-A [114-117]. More recently RAP80 has been identified as a dual K63-
Ub SUMO2 interacting partner via a SIM motif adjacent to the UIMs. The SIM is needed for 
full recruitment of RAP80 and BRCA1 to DSBs [80, 118, 119]. RAP80, along with other 
BRCA1-A components BRCC36, Abraxas, BRE and MERIT40 have been detected as binding 
partners of mixed SUMO2~K63 Ub chains in cell lysates [111] and RNF4, which can generate 
K63 linked Ub~SUMO2 mixed chains in vitro [120] could serve as a source for this signal 
[118]. RNF4 is also an additional example of an Ub E3 ligase recruited to DSBs via SUMO [75, 
77, 78]. SUMO2/3 also regulates RNF4 activity by SIM directed dimerisation and ultimately 
degradation through auto-ubiquitination [121]. 
 
BRCA1 is SUMOylated in response to various DNA damaging agents [9, 10, 50] and 
SUMOylation enhances its Ub ligase activity in vitro [9]. The BRCA1:BARD1 Ub ligase activity 
modifies lysines in the extreme C terminus of H2A (K125/127/129) [122] and in DSB repair 
the BRCA1 E3 ligase function stimulates 53BP1 re-positioning and DNA resection required 
for HR through promoting the recruitment and activity of the chromatin remodeller 
SMARCAD1 [123]. Whether SUMOylation potentiates this activity is not yet clear. 
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CBX4 is a SUMO E3 ligase within the Polycomb repressor complex 1 (PRC1) that is recruited 
to DSBs [81]. IR promotes CBX4 dependent SUMOylation of BMI-1 which is essential for 
BMI-1 localisation to sites of damage. Together with RING1a/b, BMI-1 has E3 Ub ligase 
activity responsible for the majority of Ub modified H2A (at K118/K119) in cells. In addition 
to a general role in transcriptional repression at promoters this modification and BMI-
1/RING1b have been implicated in further Ub-signalling at DNA double-strand breaks and 
transcriptional repression local to DSBs directed by the repair response [124-126].  
 
SUMOylation dependent regulation of DUB recruitment and activity 
 
SUMO also aids recruitment of the DUB enzyme Ataxin 3 (ATXN3). DSB localisation of ATXN3 
is rapid and dependent on SIM interaction with SUMO1, but is independent of Ub binding 
via its UIM motifs. ATXN3 is required for accumulation of RNF8, RNF168, ubiquitin, 53BP1 
and BRCA1 to sites of damage and thus for efficient HR and NHEJ repair [95] [79].  
 
DUB enzyme activity can be regulated by both ubiquitin [127] and SUMO. SUMOylation of 
USP28 at K99 or direct fusion of SUMO2 to USP28 inhibits its DUB activity [128]. It is not 
known what impact this has in cells but USP28 is an interacting partner of 53BP1 that 
modulates 53BP1’s transcriptional activity towards p53 [95, 129, 130]. In addition to the 
SUMO dependent recruitment of ATXN3, free SUMO1 can also stimulate ATXN3 DUB activity 
against Ub-K63 chain in vitro. Thus non-covalent interactions with SUMO may also regulate 
DUB catalytic function [79].  
 
SUMOylation regulates recruitment of repair factors at DSBs 
 
SLX4 is a scaffold protein that recruits nucleases to DNA lesions in various contexts [131]. 
SLX4 binds SUMO through SIM motifs in addition to Ub via UBZ domains [132-134]. The 
SIMs in SLX4 are required for recruitment to laser induced damage and collapsed replication 
forks, whereas Ub binding, but not the SIMs, is required for its accumulation at inter-strand 
cross links. Thus recognition of SUMO and Ub independently can channel SLX4 into different 
repair structures [132, 133, 135].  
 
The helicase BLM has roles in both promoting and preventing RAD51 dependent 
recombination and is extensively SUMOylated at multiple sites [50, 136]. Mutation of two 
SUMOylation sites in BLM promote its localisation to IRIF rather than PML bodies, 
suggesting that SUMOylation may function to prevent BLM from accessing DSBs by 
sequestration into PML bodies [136]. RAD51, while not SUMOylated itself interacts with 
SUMO via a conserved SIM. Indeed SUMO1 was first identified through a yeast two hybrid 
screen for RAD51/RAD52 interactors [13]. Mutation of the RAD51 SIM disrupts filament 
formation and HR repair suggesting SUMO is essential for the homology search component 
of HR, but the SUMOylated factors to which RAD51 interacts are currently unknown [11]. 
 
SUMO acts as a scaffold for protein group recruitment in the DDR. 
In 2012 the Jentsch group proposed the concept that SIM:SUMO interactions promote 
protein group modification [137]. In this process entire complexes, and perhaps super-
complexes, are SUMOylated. Interaction between these SUMOylated components with 
near-by proteins and other components bearing SIMs then promotes the complex and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

9 
 

super-complex interaction. In yeast localisation of SUMO E3 ligase, Siz1, to DSBs occurs via 
its DNA binding SAP domain and through interaction with the critical DSB sensor complex, 
MRX (MRE11/RAD50/Xrs2). The ligase then promotes modification of multiple repair factors 
proximal to sites of damage. Their collective modification and interactions, rather than 
individual modifications, is then responsible for repair. The group modification hypothesis is 
supported by proteomics analysis of SUMOylation substrates where frequently all members 
of some protein complexes are SUMO modified [50], and it explains why so often 
researchers find that mutation of single SUMO conjugation sites in target proteins have only 
mild effects on investigated phenotypes [137, 138] . 
 
It is not yet clear how significant this group modification is in the mammalian double-strand 
break response where multiple SUMO isoforms, ligases and deSUMOylating enzymes add 
additional complexity to SUMOylation outcomes (Reviewed in Garvin and Morris Phs Trans 
B 2017). One potential example of group modification concerns the ATR kinase partner 
ATRIP. SUMOylation of ATRIP has a mild impact on function but regulates interaction with 
multiple binding partners, suggesting this modification is more important for complex 
formation than direct activity of ATRIP [138]. 
 
SUMO promotes Ub dependent clearance of DSB repair factors. 
SUMO conjugates present at sites of damage interact with the tandem SIM domains of the 
Ub ligase RNF4 and direct its rapid recruitment [75, 77-79, 82]. RNF4 promotes the 
clearance of the DSB repair scaffold protein MDC1 from sites of damage and its removal is 
critical to subsequent repair steps [75, 77, 82]. RNF4 activity has also been implicated in the 
proteasomal clearance of BRCA1, 53BP1, BLM, RPA, EXO1 and KAP1 suggesting multiple 
points in DSB repair in which RNF4 is required [77, 78, 84, 139, 140]. Thus SUMO 
modification and subsequent interaction with RNF4 is essential for the step-wise 
progression of the repair process.  
 
Some ubiquitinated proteins are physically removed from their surroundings by the AAA 
ATPase complex VCP/p97, often prior to their proteasomal degradation. It can act on 
nuclear proteins in the context of chromatin and replication forks [141-143]. VCP and its 
adapters are recruited to DSBs through interactions with ubiquitin [144, 145]. In yeast dual 
SUMO/Ub recognition by a VCP adapter is essential for DSB repair [146-148] and may have a 
similar activity in mammalian cells [147]. 
 
SUMO-like domains and Ub-like domains 
Protein domains that mimic the structure of Ub are important for regulating the activity of 
components of the Ub enzyme pathway [149]. In yeast SUMO like domains (SLD) in RAD60 
are important for recombination after replication fork collapse through an unknown 
mechanism possibly involving an interaction with Ubc9 to modulate SUMO chain formation, 
target specific substrates for SUMOylation, or attenuate of Ubc9 activity [150, 151]. SLDs in 
mammalian cells are found in UAF1, a heterodimeric partner of several DUB enzymes. UAF1 
contains two SLDs that interact with SIMs in RAD51AP1 and FANCI [152, 153]. These 
domains mediate the formation of a ternary complex (UAF1-RAD51-RAD51AP1) required for 
recombinase activity and homologous recombination [153]. 
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Expanding complexity in SUMO and Ub signalling 
 
This review has focussed primarily on two modifications, but our growing understanding of 
post-translational signalling suggests a far more complex story. The modifiers themselves, 
SUMO and Ub, can be subjected to post translational regulation; acetylation of SUMO1 and 
SUMO2 neutralises positively charged lysine residues required for interaction with some 
SIMs, and can provide additional protein interaction faces to acetyl reading domains such as 
the bromodomain of p300 [154, 155]. The dominant chain forming lysine residue (K11) in 
SUMO2/3 can also be acetylated [156] suggesting the possibility that 
acetylation/deacetylation regulates SUMO chain formation. Mixed linkages between SUMO 
and NEDD8 and NEDD8 and Ub have been described adding more complexity to the system 
[7], [157]. Possibly the enzyme RNF111/Arcadia, described as a SUMO targeted Ubiquitin 
ligase [54, 158, 159], can also generate NEDD8 polymers in this context [160]. 
 
Phosphorylation through the apical repair kinases ATM and ATR plays an essential part in 
DSB signalling [161]. Kinases required for cell cycle progression such as CDKs are also 
important in the repair processes as these links DSB sensing to checkpoint arrest and correct 
repair pathway choice. Recently CDK-mediated phosphorylation has been associated with 
SUMO site modification in a sub-set of substrates [7]. Phosphorylation can also alter SUMO-
SIM interactions, and modify SUMO isoforms themselves [60]. Since the complexity of the 
Ub code, mediated by different chain topologies and by post translational modification of 
Ub such as phosphorylation can trigger specific cellular responses [53, 162-164], it seems 
likely that SUMO isoforms, chains and modifications convey a wide range of signals in a 
similar fashion.  
 

Conclusion 
 
In the last decade it has become apparent that Ub signalling in the DSB response is 
exquisitely complex and contributes to the integration of cell cycle stage and chromatin 
state with correct pathway choice. Almost a decade since the first identification of SUMO 
recruitment to DSBs our knowledge of SUMOs role in repair has moved on, but has still 
lagged behind its more glamorous cousin ubiquitin. However deepening our understanding 
of SUMO and its complexity alone will not be sufficient.  SUMO, Ub and other PTMs are so 
extensively intertwined in DSB repair that significant insights will come from studying these 
proteins as co-operative modifiers. Given the importance of DSB repair in pathways relevant 
to health and disease such an approach will help accelerate development of therapeutic 
approaches.  
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Figure 1. Paralog specific SUMOylation. 
 
A) SUMO is composed of at least 3 mature isoforms. SUMO4 and SUMO5 are omitted here 
as they may not be involved in conjugation. B) Availability of free pools of SUMO1 and 
SUMO2/3 may influence paralog dependent SUMOylation. SUMO1 is enriched at nuclear 
pores in the form of SUMO1 modified RanGAP1 while SUMO2/3 are less restricted in their 
localisation. Additionally a larger proportion of SUMO1 is found in conjugated pools 
compared to SUMO2/3.  C) SUMO E3 ligases can promote paralog specific SUMOylation of 
some substrates - though the mechanisms are not well understood. D) SENP proteases 
exhibit some degree of paralog specificity and preference for SUMO polymers over 
monomers. The activity of SENP enzyme is likely important for defining paralog specific 
modification of SUMOylation substrates.  
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Figure 2. Complexity of SUMO and SUMO~Ub conjugates 
A) SUMOylation, like ubiquitination occurs as mono, multimono and polymers but with the 
added complexity of multiple paralogs compared to a single ubiquitin. Mixed linkages of 
SUMO, ubiquitin and NEDD8 and modification by other PTMs such as phosphorylation and 
acetylation (“modified modifiers”) add an additional layer of complexity. B) Mixed 
SUMO~Ub linkages require processing by DUBs and SENPs. If the presence of SUMO within 
Ub chains alters DUB activity or if Ub within SUMO chains affects SENP activity is unknown. 
Enzymes that specifically recognise mixed linkages have yet to be identified, but several 
DUBs have the ability to cleave ubiquitin chains from SUMO. C) Tandem SUMO and Ub 
recognition modules in proteins such as RAP80 “read” mixed linkages while tandem SUMO 
Interacting Motifs (SIMs) in proteins such as RNF4 recognise SUMO2/3 polymers.  
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Graphical abstract  
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Research highlights 
 

 SUMO and ubiquitin have both distinct and overlapping functions in DSB repair. 

 Mixed SUMO~Ub polymers impart additional layers of complexity and specificity to DSB 
repair such as the dual recognition of mixed conjugates by “reader” proteins such as RAP80. 

 SUMOylation co-operates with ubiquitination through promoting recruitment and regulating 
the activity of ubiquitin ligases and de-ubiquitinating enzymes involved in DSB repair. 


