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DIVISIBILITY RESULTS CONCERNING TRUNCATED

HYPERGEOMETRIC SERIES

CHEN WANG AND WEI XIA

Abstract. In this paper, using the well-known Karlsson-Minton formula, we mainly establish
two divisibility results concerning truncated hypergeometric series. Let n > 2 and q > 0 be
integers with 2 | n or 2 ∤ q. We show that

p−1
∑

k=0

(q − p

n
)nk

(1)nk
≡ 0 (mod p3)

and

pn
p−1
∑

k=0

(1)nk
( p
n
− q + 2)nk

≡ 0 (mod p3)

for any prime p > max{n, (q − 1)n+ 1}, where (x)k denotes the Pochhammer symbol defined
by

(x)k =

{

1, k = 0,

x(x + 1) · · · (x+ k − 1), k > 0.

Let n ≥ 4 be an even integer. Then for any prime p with p ≡ −1 (mod n), the first congruence
above implies that

p−1
∑

k=0

( 1
n
)nk

(1)n
k

≡ 0 (mod p3).

This confirms a recent conjecture of Guo.

1. Introduction

The truncated hypergeometric series are defined by

nFn−1

[

a1 a2 · · · an
b1 · · · bn−1

∣

∣

∣

∣

z

]

n

=
n
∑

k=0

(a1)k(a2)k · · · (an)k
(b1)k(b2)k · · · (bn−1)k

zk

k!
,

where

(x)k =

{

1, k = 0,

x(x+ 1) · · · (x+ k − 1), k > 0.
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denotes the so-called Pochhammer symbol (or rising factorial). Clearly, they are truncations of
the original hypergeometric series. In the past few decades, many interesting supercongruences
concerning truncated hypergeometric series have been studied (for example, see [1, 8, 9, 10,
11, 13, 14]).

In 2015, Sun [13] studied some new congruences formally motivated by the well-known limit

lim
n→∞

(

1 +
1

n

)n

= e.

For example, for any prime p > 3, he showed that
p−1
∑

k=0

( 1
p+1

)p+1
k

(k!)p+1
≡ 0 (mod p5); (1.1)

for any prime p > 3 and integer n with p ∤ n, he proved that

p−1
∑

k=0

(1− p

n
)nk

(1)nk
≡

(n− 1)(7n− 5)

36n2
p4Bp−3 (mod p5), (1.2)

where B0, B1, B2, . . . are the well-known Bernoulli numbers (cf. [7]). Clearly, (1.1) is just the
special case of (1.2). Sun also studied a more general form of (1.2) and proposed the following
conjecture which was later confirmed by Meng and Sun [11]: for integers n > 2 and q > 0 with
n even or q odd and primes p > nq we have

p−1
∑

k=0

(q − p

n
)nk

(1)nk
≡ 0 (mod p3). (1.3)

In 2019, Guo and Zudilin [6] developed a unified method called q-microscope to deal with
different q-supercongruences. Since then, by using the q-microscope, a series of challenging
q-supercongruences has been established (see, for example, [3, 4, 5, 6]). In [3], Guo obtained
a q-analogue of the following congruence similar to (1.3): for any integer d ≥ 2 and r ≤ d− 2
such that gcd(r, d) = 1 and for any prime p satisfying p ≡ −r (mod d) with p ≥ d−r, we have

p−1
∑

k=0

( r
d
)dk

k!d
≡ 0 (mod p2).

It is clear that for some r (for example, r = −1), (1.3) implies that the above congruence holds
modulo p3. Noting this, Guo posed the following conjecture.

Conjecture 1.1. Let d ≥ 4 be an even integer. Then, for any prime p with p ≡ −1 (mod d),

p−1
∑

k=0

(1
d
)dk

k!d
≡ 0 (mod p3). (1.4)

If we set q = (p+1)/d in (1.3), then dq > p. Thus (1.3) can not imply (1.4). This is our first
motivation. The following theorem confirms Conjecture 1.1 by establishing the generalization
of (1.3).
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Theorem 1.1. Let n > 2 and q > 0 be integers with 2 | n or 2 ∤ q. Then for any prime

p > max{n, (q − 1)n+ 1} we have

p−1
∑

k=0

(q − p

n
)nk

(1)nk
≡ 0 (mod p3). (1.5)

Remark 1.1. (1.1) ensures that (1.4) holds for d = p+1. For d < p+1, (1.4) follows immediately
by letting n = d and q = (p+ 1)/d in Theorem 1.1.

In 2016, Deines, Fuselier, Long, Swisher and Tu [1] investigated some congruences for the
truncated hypergeometric series. Especially, for any integer n ≥ 3 and prime p ≡ 1 (mod n),
they conjectured that

p−1
∑

k=0

(1− 1
n
)nk

(1)nk
≡ −Γp

(

1

n

)n

(mod p3) (1.6)

and

pn
p−1
∑

k=0

(1)nk
(1 + 1

n
)nk

≡ −Γp

(

1

n

)n

(mod p3), (1.7)

where Γp(x) is the p-adic Gamma function introduced by Morita (see [12] for details about
p-adic Gamma function). These two conjectures have been proved by the first author and Pan
[14] in 2018. In fact, (1.6) is exactly the case q = (p− 1)/n + 1 in (1.5). This indicates that
the condition p > (q − 1)n+ 1 in (1.4) is the best when p > n.

Our second motivation comes from (1.7). We call (1.7) the dual congruence of (1.6). The
following theorem gives the dual congruence of (1.1).

Theorem 1.2. Under the same conditions of Theorem 1.1, we also have

pn
p−1
∑

k=0

(1)nk
( p
n
− q + 2)nk

≡ 0 (mod p3). (1.8)

Theorems 1.1 and 1.2 will be proved by using the Karlsson-Minton formula in Sections 2–3.

2. Proof of Theorem 1.1

The following identity due to Karlsson and Minton plays a key role in the subsequent proofs.

Lemma 2.1. [2, Eq. (1.9.2)] Let m1, m2, . . . , mr be nonnegative integers and a be any complex

number such that ℜ(−a) > m1 + · · ·+mr. Then we have
∞
∑

k=0

(a)k(b1 +m1)k · · · (br +mr)k
(1)k(b1)k · · · (br)k

= 0.

Lemma 2.2. Under the same conditions of Theorem 1.1, we have

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
q−1 ≡

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
q+k−1 ≡

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
k ≡ 0 (mod p),
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where H
(m)
k =

∑k

j=1 1/j
m denotes the kth harmonic number of order m.

Proof. Set

Υ(x, y) =

p−1
∑

k=0

(1− p)k(q + x)k(q + y)k(q)
n−2
k

(1)n−1
k (1 + x)k(1 + y)k

.

Recall that p > (q − 1)n+ 1. With the help of Lemma 2.1 we have

p−q
∑

k=0

(q)nk
(1)nk

≡ Υ(0, 0) = 0 (mod p).

Clearly, there also holds that

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
q−1 ≡ 0 (mod p). (2.1)

It is easy to check that

d

dx
(a + x)k = (a+ x)k

k−1
∑

i=0

1

a + i+ x
. (2.2)

By (2.2) one can directly verify that

Υ′′

xy(0, 0) =

p−1
∑

k=0

(1− p)k(q)
n
k

(1)n+1
k

(

k−1
∑

i=0

1

q + i
−H

(1)
k

)2

, (2.3)

Υ′′

xx(0, 0) =

p−1
∑

k=0

(1− p)k(q)
n
k

(1)n+1
k





(

k−1
∑

i=0

1

q + i
−H

(1)
k

)2

+H
(2)
k −

k−1
∑

i=0

1

(q + i)2



 . (2.4)

Subtracting (2.3) from (2.4) and noting that Υ(x, y) = 0 we immediately arrive at

p−1
∑

k=0

(1− p)k(q)
n
k

(1)n+1
k

(

k−1
∑

i=0

1

(q + i)2
−H

(2)
k

)

= 0.

Since n > 2, we have

(1− p)k(q)
n
k

(1)n+1
k

(

k−1
∑

i=0

1

(q + i)2
−H

(2)
k

)

≡ 0 (mod p) for any k ∈ {p− q + 1, . . . , p− 1}.
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By (2.1) we have

p−1
∑

k=0

(1− p)k(q)
n
k

(1)n+1
k

(

k−1
∑

i=0

1

(q + i)2
−H

(2)
k

)

≡

p−q
∑

k=0

(q)nk
(1)nk

(H
(2)
q+k−1 −H

(2)
q−1 −H

(2)
k )

≡

p−q
∑

k=0

(q)nk
(1)nk

(H
(2)
q+k−1 −H

(2)
k ) ≡ 0 (mod p). (2.5)

On the other hand,

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
k =

p−q
∑

k=0

(−1)kn
(

−q

k

)n

H
(2)
k

≡

p−q
∑

k=0

(−1)kn
(

p− q

k

)n

H
(2)
k =

p−q
∑

k=0

(−1)(p−q−k)n

(

p− q

k

)n

H
(2)
p−q−k

≡

p−q
∑

k=0

(−1)(p−q−k)n

(

−q

k

)n

H
(2)
p−q−k

=

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
p−q−k (mod p), (2.6)

where the last step follows from the fact 2 | n or 2 ∤ q.

By a classical result due to Wolstenholme [15], we know that H
(2)
p−1 ≡ 0 (mod p) for any

prime p > 3. It follows that

H
(2)
p−q−k =

p−q−k
∑

j=1

1

j2
=

p−1
∑

j=q+k

1

(p− j)2
≡

p−1
∑

j=q+k

1

j2
≡ −H

(2)
q+k−1 (mod p)

for any prime p > 3 and q + k ≤ p. This together with (2.6) gives that

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
k ≡ −

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
q+k−1 (mod p).

Combining this with (2.5) we immediately get

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
q+k−1 ≡

p−q
∑

k=0

(q)nk
(1)nk

H
(2)
k ≡ 0 (mod p).

The proof of Lemma 2.2 is now complete. �
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Proof of Theorem 1.1. Set

Φ(x, y) =

p−q
∑

k=0

(q − x)k(q − y)n−1
k

(1)nk
and Ψ(x) =

p−q
∑

k=0

(q − x)nk
(1)nk

.

Clearly,

d

dx
(q − x)k = −(q − x)k

k−1
∑

i=0

1

q + i− x
. (2.7)

It follows that
dΨ(x)

dx
= n

∂Φ(x, y)

∂x

∣

∣

y=x
(2.8)

and
d2Ψ(x)

dx2
= n

∂2Φ(x, y)

∂x∂y

∣

∣

y=x
+ n

∂2Φ(x, y)

∂x2

∣

∣

y=x
. (2.9)

By Taylor expansion, we have

Ψ
(p

n

)

= Ψ(0) +
Ψ′(0)

n
p+

Ψ′′(0)

2n2
p2 + · · ·+

Ψ(r)(0)

r!nr
pr + · · · ,

where Ψ′,Ψ′′ and Ψ(r) stand for the first, the second and the rth derivatives of Ψ(x) respectively.
It is easy to see that p ∤ (q+ i) for all i ∈ {0, 1, . . . , p− q− 1}. Thus it is not hard to find that
ordp(Ψ

(r)(0)) ≥ 0 for any nonnegative integer r. As we all know,

ordp(r!) =

∞
∑

i=1

⌊

r

pi

⌋

≤

∞
∑

i=1

r

pi
=

r

p− 1
.

Furthermore, noting that p ≥ 5 we have

ordp

(

pr

r!

)

≥ r −
r

p− 1
≥

3

4
r > 2 for any r ≥ 3.

Since n < p, we know ordp(n) = 0. The above discussion gives

ordp

(

Ψ(r)(0)

r!nr
pr
)

≥ 3 for any r ≥ 3.

So we arrive at

Ψ
(p

n

)

≡ Ψ(0) +
Ψ′(0)

n
p+

Ψ′′(0)

2n2
p2 (mod p3). (2.10)

Via a similar discussion as above, we can also obtain

Φ(p, 0) ≡ Φ(0, 0) + Φ′

x(0, 0)p+
Φ′′

xx(0, 0)

2
p2 (mod p3). (2.11)
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Now combining (2.8)–(2.11) we have

p−1
∑

k=0

(q − p

n
)nk

(1)nk
≡Ψ

(p

n

)

≡Ψ(0) +
Ψ′(0)

n
p+

Ψ′′(0)

2n2
p2

=Φ(0, 0) + Φ′

x(0, 0)p+
Φ′′

xy(0, 0) + Φ′′

xx(0, 0)

2n
p2

≡Φ(p, 0) +
Φ′′

xy(0, 0)− (n− 1)Φ′′

xx(0, 0)

2n
p2 (mod p3). (2.12)

Note that (q − 1)(n− 1) = (q − 1)n+ 1− q < p− q. Thus by Lemma 2.1 we have

Φ(p, 0) =

p−q
∑

k=0

(q − p)k(q)
n−1
k

(1)nk
=

∞
∑

k=0

(q − p)k(q)
n−1
k

(1)nk
= 0. (2.13)

In view of (2.7) we also obtain that

Φ′′

xy(0, 0) = (n− 1)

p−q
∑

k=0

(q)nk
(1)nk

(

k−1
∑

i=0

1

q + i

)2

, (2.14)

Φ′′

xx(0, 0) =

p−q
∑

k=0

(q)nk
(1)nk





(

k−1
∑

i=0

1

q + i

)2

−

k−1
∑

i=0

1

(q + i)2



 . (2.15)

Substituting (2.13)–(2.15) into (2.12) we arrive at

p−1
∑

k=0

(q − p

n
)nk

(1)nk
≡

n− 1

2n
p2

p−q
∑

k=0

(q)nk
(1)nk

k−1
∑

i=0

1

(q + i)2
(mod p3).

Finally, Theorem 1.1 follows from Lemma 2.2. �

3. Proof of Theorem 1.2

We need the following lemmas.

Lemma 3.1. Under the same conditions of Theorem 1.1, we have

p−q
∑

k=0

(q)nk
(1)nk

(H
(1)
k −H

(1)
q+k−1) ≡ 0 (mod p), (3.1)

p−q
∑

k=0

(q)nk
(1)nk

(

(H
(1)
k )2 − (H

(1)
q+k−1)

2
)

≡ 0 (mod p). (3.2)
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Proof. Clearly,

p−q
∑

k=0

(q)nk
(1)nk

H
(1)
k =

p−q
∑

k=0

(−1)kn
(

−q

k

)n

H
(1)
k

≡

p−q
∑

k=0

(−1)kn
(

p− q

k

)n

H
(1)
k =

p−q
∑

k=0

(−1)(p−q−k)n

(

p− q

k

)n

H
(1)
p−q−k

≡

p−q
∑

k=0

(−1)(p−q−k)n

(

−q

k

)n

H
(1)
p−q−k

=

p−q
∑

k=0

(q)nk
(1)nk

H
(1)
p−q−k (mod p).

It is well-known (cf. [15]) that H
(1)
p−1 ≡ 0 (mod p2) for any prime p > 3. Thus we have

H
(1)
p−q−k =

p−q−k
∑

j=1

1

j
=

p−1
∑

j=q+k

1

p− j
≡ −

p−1
∑

j=q+k

1

j
≡ H

(1)
q+k−1 (mod p)

provided that q+ k ≤ p. In view of the above, (3.1) holds. Here we shall not give the proof of
(3.2) since it can be verified in a similar way. �

Lemma 3.2. Under the same conditions as the ones in Theorem 1.1, we have

p−q
∑

k=0

(q − p

n
)nk

(1)nk

(

k−1
∑

i=0

1

q + i− p

n

−H
(1)
k

)

≡ 0 (mod p2), (3.3)

p−q
∑

k=0

(q − p

n
)nk

(1)nk

(

k−1
∑

i=0

1

q + i− p

n

−H
(1)
k

)2

≡ 0 (mod p). (3.4)

Proof. Let Υ(x, y) be defined as in the proof of Lemma 2.2. (3.4) follows from (2.3) and the
fact Υ(x, y) = 0 immediately. Below we consider (3.3). It is clear that

0 =Υ′

x(0, 0) =

p−1
∑

k=0

(1− p)k(q)
n
k

(1)n+1
k

(

k−1
∑

i=0

1

q + i
−H

(1)
k

)

≡

p−q
∑

k=0

(q)nk
(1)nk

(1− pH
(1)
k )

(

k−1
∑

i=0

1

q + i
−H

(1)
k

)

=

p−q
∑

k=0

(q)nk
(1)nk

(

k−1
∑

i=0

1

q + i
−H

(1)
k − pH

(1)
k

k−1
∑

i=0

1

q + i
+ p(H

(1)
k )2

)

(mod p2). (3.5)
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Now by Lemmas 2.2, 3.1 and (3.5) we obtain

p−q
∑

k=0

(q − p

n
)nk

(1)nk

(

k−1
∑

i=0

1

q + i− p

n

−H
(1)
k

)

≡

p−q
∑

k=0

(q)nk
(1)nk

(

1− p

k−1
∑

i=0

1

q + i

)(

k−1
∑

i=0

1

q + i
+

p

n

k−1
∑

i=0

1

(q + i)2
−H

(1)
k

)

≡

p−q
∑

k=0

(q)nk
(1)nk





k−1
∑

i=0

1

q + i
−H

(1)
k + pH

(1)
k

k−1
∑

i=0

1

q + i
− p

(

k−1
∑

i=0

1

q + i

)2




≡2

p−q
∑

k=0

(q)nk
(1)nk

(

pH
(1)
k

k−1
∑

i=0

1

q + i
− p(H

(1)
k )2

)

(mod p2). (3.6)

By Theorem 1.1, Lemma 3.1 and (2.3) we have

0 ≡

p−1
∑

k=0

(q)nk
(1)nk

(

k−1
∑

i=0

1

q + i
−H

(1)
k

)2

≡

p−q
∑

k=0

(q)nk
(1)nk

(

Hq+k−1 −Hq−1 −H
(1)
k

)2

≡2

p−q
∑

k=0

(q)nk
(1)nk

(

(H
(1)
k )2 −H

(1)
k

k−1
∑

i=0

1

q + i

)

(mod p). (3.7)

Substituting (3.7) into (3.6), (3.3) follows.
The proof of Lemma 3.2 is now complete. �

Proof of Theorem 1.2. It is easy to check that for any k = 0, 1, . . . , p− 1,

(1)k
( p
n
− q + 2)k

=
(1)p−1

( p
n
− q + 2)p−1

(q − p

n
− p)p−1−k

(1− p)p−1−k

.

Thus

pn
p−1
∑

k=0

(1)nk
( p
n
− q + 2)nk

=
pn(1)np−1

( p
n
− q + 2)np−1

p−1
∑

k=0

(q − p

n
− p)nk

(1− p)nk
.

We first illustrate that the proof of the case q = 1 is trivial. If q = 1, then p ∤ (p/n−q+2)np−1.
Since n ≥ 3, we immediately obtain that

pn
p−1
∑

k=0

(1)nk
( p
n
− q + 2)nk

≡ 0 (mod p3).

Below we suppose that q > 1. Now we have

pn(1)np−1

( p
n
− q + 2)np−1

6≡ 0 (mod p).
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Thus it suffices to show
p−1
∑

k=0

(q − p

n
− p)nk

(1− p)nk
≡ 0 (mod p3). (3.8)

Set

∆(x) =

p−q
∑

k=0

(q − p

n
+ x)nk

(1 + x)nk
.

Via a similar argument as the one in the proof of Theorem 1.1, we have

p−1
∑

k=0

(q − p

n
− p)nk

(1− p)nk
≡∆(−p) ≡ ∆(0)−∆′(0)p+

∆′′(0)

2
p2 (mod p3),

where

∆′(0) = n

p−q
∑

k=0

(q − p

n
)nk

(1)nk

(

k−1
∑

i=0

1

q + i− p

n

−H
(1)
k

)

,

∆′′(0) =

p−q
∑

k=0

(q − p

n
)nk

(1)nk



n2

(

k−1
∑

i=0

1

q + i− p

n

−H
(1)
k

)2

+ n

(

H
(2)
k −

k−1
∑

i=0

1

(q + i− p

n
)2

)



 .

By Theorem 1.1 we have ∆(0) ≡ 0 (mod p3). Then (3.8) follows from Lemmas 2.2 and 3.2.
The proof of Theorem 1.2 is now complete. �
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