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Abstract
The immune system is characterized by high combinatorial complexity that necessitates the use of
specialized computational tools for analysis of immunological data. Machine learning (ML)
algorithms are used in combination with classical experimentation for the selection of vaccine
targets and in computational simulations that reduce the number of necessary experiments. The
development of ML algorithms requires standardized data sets, consistent measurement methods,
and uniform scales. To bridge the gap between the immunology community and the ML
community, we designed a repository for machine learning in immunology named Dana-Farber
Repository for Machine Learning in Immunology (DFRMLI). This repository provides
standardized data sets of HLA-binding peptides with all binding affinities mapped onto a common
scale. It also provides a list of experimentally validated naturally processed T cell epitopes derived
from tumor or virus antigens. The DFRMLI data were preprocessed and ensure consistency,
comparability, detailed descriptions, and statistically meaningful sample sizes for peptides that
bind to various HLA molecules. The repository is accessible at
http://bio.dfci.harvard.edu/DFRMLI/.

1. Introduction
The immune system is characterized by high combinatorial complexity mandating the use of
specialized computational tools for the analysis of immunological data (Petrovsky and
Brusic, 2002). The immunoinformatics applications include in silico tools such as
computational models, prediction systems, and simulators that complement experimentation
(Pappalardo et al., 2009). Machine learning (ML) in bioinformatics plays an important role,
principally in developing accurate in silico methods for bioinformatics (Baldi and Brunak,
2001; Zhang and Rajapakse, 2009). The applications of ML have proven valuable in
immunology; examples include the analysis of antigens (Lafuente and Reche, 2009), the
analysis of allergenicity (Muh et al., 2009), the study of antibodies and their properties
(David et al., 2010), the design of vaccine protocols (Palladini et al., 2010), and the
classification of immunological profiles (Herz and Yanover, 2007). These developments
help improve practical applications such as discovery, design, and optimization of vaccines.
Vaccine development, however, is a complex task – the selection of components for actual
vaccine formulations requires the analysis of a huge combinatorial space. With a few
exceptions, the effectiveness of vaccines is limited to a subset of pathogens because of the
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variability of pathogens and the variability of immune systems in humans (Brusic and
August, 2004). Many of these vaccines require frequent re-formulation (as with influenza
vaccines) or for some pathogens there is a complete lack of efficient and safe vaccines (such
as dengue, West Nile, or HIV viruses). Finding the best combinations of components for
vaccine formulation requires a significant amount of experimentation, advanced high-
throughput instrumentation and bioinformatics analyses (Bambini and Rappuoli, 2009). The
ML techniques play an increasingly important role both in the selection of suitable targets
(molecules that are combined into vaccines) and in reducing the number of necessary
experiments over the large combinatorial space of possible formulations.

1.1 Combinatorial properties of HLA and HLA-binding peptides
T cells of the immune system continually scan for the presence of foreign antigens that
indicate the possible presence of invading microorganisms (viruses, bacteria, fungi, or
parasites), transformed own cells (tumors), or cells from other organisms (transplants). T
cell-based immune responses involve the recognition of short antigenic peptides presented
by the major histocompatibility complex (MHC) molecules on the surface of target cells. T
cells recognize these peptides (T cell epitopes) through highly specific interactions between
T cell receptors and peptide/MHC complexes (Meuer et al., 1982). Peptides presented by
MHC molecules originate mainly from intracellular (MHC class I) or extracellular (class II)
proteins. Typically, MHC class I mediated activation of cytotoxic T cells results in killing
target cells, while MHC class II mediated activation is involved in regulation of immune
responses. The ability of the immune system to respond to any given antigen varies between
individuals because of differences in their human leukocyte antigen (HLA, human MHC)
genes. Each human individual expresses three to six classical HLA class I molecules
encoded at three loci: A, B, and C, and up to twelve classical HLA class II molecules
encoded at DRA, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, DPA1, and DPB1 loci
(Shiina et al., 2004). HLA genes demonstrate an extensive polymorphism with 4682 protein-
coding variants of HLA class I genes characterized and named as of January 2011
(Robinson et al., 2011). These include 1519 HLA-A, 2069 -B, 1016 -C, and 78 non classical
(HLA-E, -F and -G) proteins. There are 873 -DRB1, and 85 -DRB3/4/5 reported gene
variants. In addition, more than 350 protein variants of HLA-DQ and -DP molecules have
been characterized. Distinct protein-coding HLA alleles identified in US population by high-
resolution typing include 100 HLA-A, 184 -B, 90 -C, 86 -DRB1, and 22 -DQB1 variants
(Maiers et al., 2007). The HLA combination consisting of 1-2 HLA molecules for each
classical locus (A, -B, -C, -DRBA, -DRB1, - DQA1, -DQB1, -DPA1, and -DPB1) and 0-2
molecules from three nonobligatory HLA loci (HLA-DRB3, -DRB4, and DRB5) determines
both the individual’s classical phenotype and the specific repertoire of antigenic targets for
recognition by his/her immune system.

The majority of naturally processed HLA class I binding peptides are 8-11 amino acids long
(Rammensee et al., 1999). These result from antigen processing pathways of target antigens
(self, of foreign), including proteasome/TAP and a number of alternative pathways
(Petrovsky and Brusic, 2004). Peptides that bind HLA Class II molecules are usually 12-20
amino acids long. They bind HLA class II molecules through a 9-mer binding core with
flanking residues extending from the binding core outside of the HLA binding groove (Stern
et al., 1994). It was proposed that flanking residues of HLA class II associated patterns
reflect conserved antigen processing patterns (Godkin et al., 2001).

The total number of possible 8, 9, 10, and 11-mer peptides (search space for HLA class I
binding peptides) is 2.16×1014. The number of all possible 9-mer peptides (search space for
binding cores of HLA class II binding peptides) is 5.12×1011. The current theoretical
number of HLA A-B-C-DRB1-DQB1 haplotypes, based on the number of characterized
alleles, is 9.83×1013. Taking into account only HLA alleles observed and confirmed by
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high-resolution typing in the US population the theoretical number of HLA A-B-C-DRB1-
DQB1 haplotypes is 3.13×109, while the current number of observed haplotypes was 7,987
as of 2007 (Maiers et al., 2007). The theoretical number of possible haplotypes is an
overestimate since some of the combinations of HLA alleles are not possible due to linkage
disequilibrium (Miretti et al., 2005). However, the actual observed number represents a
gross underestimate – in our ongoing study (data not shown) of seven individuals only two
of fourteen A-B-C-DRB1-DQB1 haplotypes were present within the list of 7987 observed
haplotypes (Figure 1). These numbers indicate both the enormous combinatorial complexity
of HLA/peptide interactions, as well as the discrepancy between the current information
available from experiments and expected from theoretical analysis. Furthermore, the data
available for the US population are not necessarily representative of the broad human
population. Together, these data indicate a huge combinatorial space to be considered for
vaccine development and clinical applications, such as transplant matching, drug
development, and design of clinical trials.

While high-throughput methods for quantitative analysis of peptide binding to HLA
molecules have been developed (e.g. Jiang and Boder, 2010; Harndahl et al., 2011, this
issue; Montero-Julian, 2011, this issue), they are limited to a small number of common HLA
alleles. These methods can support mapping of hundreds to thousands of peptides making
them suitable for T cell epitope mapping within complete proteomes of individual small
viruses. A comprehensive mapping of T cell epitopes for a given human individual for a
single small virus variant, such as influenza, requires the analysis of more than 100,000
peptide/HLA combinations. If we analyze a single virus variant for clinically relevant HLA
alleles, as defined in (Maiers et al., 2007), there will be roughly 5 million peptide/HLA
combinations. If we consider multiple variants of viruses, as well as the variation of HLA,
the peptide space to be studied (search space) exceeds billions of possible assays. The gap
between the experimental high-throughput methods and the size of the search space is
addressed by the use of computational prediction methods for alleles and supertypes (Zhang
et al., 2011a, this issue). Predictions of peptide/HLA binding have reached a very high level
of accuracy for several HLA molecules, such as HLA-A*0201 (9 and 10-mers) (Zhang et
al., 2011b, this issue; Lin et al., 2008a; Lin et al., 2008b). However, there is an urgent need
for further improvement of in silico prediction tools in this area. At the moment we do not
have reliable computational tools for prediction of peptide binding to the majority of known
HLA molecules. For HLA class I binding peptides, the validated and accurate prediction
models are lacking for all 8-mer and 11-mer and for majority of 9-mer and 10-mer peptides.
For HLA class II binding peptides, the validated prediction models for HLA-DR are at best
of marginal performance (Lin et al., 2008b) and are completely lacking for HLA-DQ, and
DP. Although significant progress has been made and in silico tools were shown to be as
accurate as biochemical binding assays (Zhang et al., 2011b), this only applies to a small set
of HLA molecules. To enable full coverage of HLA targeted peptides we need further
development and a systematic approach that will cover the diversity of HLA molecules and
the variety of peptide lengths. Furthermore, recent studies have provided evidence that sets
of naturally processed peptides identified by elution and mass spectrometry (Johnson et al.,
2009; Fissolo et al., 2009; Wahl et al., 2010) do not fully correspond to peptides that are
identified by biochemical binding assays. A significant proportion of the eluted peptides
lack canonical binding motifs determined by binding assays.

The ability to precisely determine the properties of HLA-associated peptides is of critical
importance for understanding the immune responses and for practical applications such as in
transplantation (Ofran et al., 2010), vaccine and therapeutics development (Sette and
Rappuoli, 2010; Cohen et al., 2010), or de-immunization of therapeutic proteins (De Groot
et al., 2005). Combinatorial properties of the HLA, antigen processing and presentation
constraints, diversity of experimental methods for their study, and the importance of HLA-
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associated peptides for vaccine development make this field ideal for systematic application
of ML methods rather than ad hoc solutions. However, systematic application of ML
methods requires the common standards: unified nomenclature, quality control of the data,
mapping of data from multiple sources to a common scale, and error and bias correction.
ML repositories provide a link between application domains and the ML community, and
are essential for both standardization and advanced tools development.

1.2 Machine learning repositories
General ML repositories provide a variety of data sets for the empirical analysis of various
machine learning algorithms. Specialized ML repositories contain quality-controlled data
sets from specific applications domains. The principal users of general ML repositories are
computer scientists who develop, refine, and optimize ML algorithms, and analyze their
behavior and properties under various conditions. These data sets allow performance
comparison of an algorithm under different conditions and comparison of different
algorithms across multiple data sets. Understanding the theoretical aspects of ML algorithms
is important for the development of ML applications but alone it is not sufficient for the
development of domain-specific applications. Such applications require precise tuning of
ML algorithms to exclude domain-specific peculiarities of data types and models, but at the
same time capture limitations, exceptions, and adequate level of complexity of the domain.
An example of general ML repository is the UCI Machine Learning Repository (Frank and
Asuncion, 2010). The UCI ML Repository is a collection of databases, domain theories, and
data generators principally for use by the ML community for the development, analysis, and
assessment of ML algorithms. It serves as a primary source of data sets for research,
development and education in the ML field. Examples of data sets and repositories for ML
are shown in Table 1.

Data repositories serve an important role – they provide benchmarking data sets for the
development of ML applications including algorithms (search, classification, clustering,
feature extraction, prediction, forecast), mathematical modeling, and quality assessment
metrics. Properly designed ML repositories provide standardized data sets characterized by:

• Consistency – data represent high quality and reproducible measurements

• Comparability – data collected using different methodologies are mutually
consistent and provided at similar scales of measurement

• Detailed description and availability of additional data – provided by availability of
references and detailed description of data sets

• Large number of data points – sufficient number of observations are needed for
statistical assessment of performance of ML algorithms.

2. DFRMLI repository
The lack of high quality data presents a major obstacle to the development of better
computational solutions for immunological applications. A large number of experimentally
verified HLA (and other MHC) binders and non-binders have been discovered and
published in scientific literature and public databases such as SYFPEITHI (Rammensee et
al., 1999) or IEDB (Kim et al., 2011, this issue; Vita et al., 2009). Several benchmark data
sets are also available, including binding peptides to HLA class I (Peters et al., 2006; Lin et
al., 2008a; Lundegaard et al., 2008) or to HLA class II (Lin et al., 2008b; Nielsen and Lund,
2009; Wang et al., 2010). While these databases and datasets are useful for the people
working in immunoinformatics (Brusic and Petrovsky, 2003), they are still not in the format
suitable for use by the mainstream ML community – those who are working in the
development of advanced machine learning algorithms. To bridge the gap between

Zhang et al. Page 4

J Immunol Methods. Author manuscript; available in PMC 2012 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



immunology and ML communities, we designed DFRMLI (Dana-Farber Repository for
Machine Learning in Immunology). We have preprocessed and organized data to ensure
consistency, comparability, detailed descriptions, and statistically meaningful sample sizes.
The repository is accessible at http://bio.dfci.harvard.edu/DFRMLI/ and the front page is
shown in Figure 2.

3. DFRMLI design
The repository is comprised of three parts. The first part “HLA Binding Peptides” provides
information on peptide binding to HLA alleles, which could be used to develop
computational models for HLA binding prediction. The second section “T cell epitopes”
provides a list of experimentally validated T cell epitopes derived from tumor or virus
antigens. It could be used to evaluate the performance of computational models in predicting
T cell epitopes. The third section describes methods used for comparison and scaling of the
data sets.

3.1 HLA binding peptides
This section has two parts: 1. Full records of the MHCPEP database (Brusic et al., 1997) and
2. Curated peptide binding information for selected common HLA variants including
training and validation data sets. The MHCPEP database is now obsolete and has been
replaced by the IEDB (Kim et al., 2011, this issue). The MHCPEP database contains 13,423
peptide sequences known to bind to MHC molecules and is included for historical reasons
i.e. comparison of performance using historical data or lower quality data than currently
available. Information of peptide sequences and MHC specificity is provided in the flat text
format.

The detailed information of peptides binding to representative HLA alleles is listed in the
Part 2 of HLA binding peptides section of DFRMLI. For each allele, the data are divided
into training and validation sets. The recommended use is that training datasets is for
development of computational models for HLA binding prediction and internal cross-
validation, while the validation datasets should be used for model evaluation. The sizes of
these data sets are given in Table 2.

The peptide binding information for eight HLA-I alleles (HLA-A*0101, A*0201, A*0301,
A*1101, A*2402, B*0702, B*0801, B*1501) is included. Training dataset were collected
from IEDB (Immune Epitope database) (Kim et al., 2011), CBS (Center for Biological
Sequence analysis, Technical University of Denmark) data set (Nielsen et al., 2003),
MULTIPRED data set (Zhang et al., 2005), or HotSpot Hunter data set (Zhang et al., 2008).
In the training data sets for HLA-I alleles, the numbers of 9-mer peptides range from 99
(HLA-A*0301) to 3087 (HLA-A*0201) and those of 10-mer peptides range from 56 (HLA-
A*0101) to 1316 (HLA-A*0201). Up to five validation datasets per HLA-I allele provide
information of peptides that are not included in the training datasets. They were measured by
iTopia™ Epitope Discovery System (Montero-Julian, 2011, this issue). The first dataset
includes a full overlapping study of 134 9-mer peptides spanning the full length of tumor
antigen survivin (Bachinsky et al., 2005). The second validation dataset includes 42 9-mer
peptides spanning a 50 amino acids long construct containing cytomegalovirus (CMV)
internal matrix protein pp65 9-mer peptides (Lin et al., 2008a). The third validation set
includes 206 overlapping 9-mer peptides spanning tumor-associated antigen 5T4 (Shingler
et al., 2008), as well as a 9-mer data set and a 10-mer data set used in the MLI competition
(Crowe et al., 2011, this issue). The combined validation sets comprising all these datasets
are provided for model validation use.
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The peptide binding information of seven HLA-II alleles (HLA-DRB1*0101, HLA-
DRB1*0301, HLA-DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101, HLA-DRB1*1301,
and HLA-DRB1*1501) is also included. Training datasets for each allele were collected
from the IEDB (Peters et al., 2005) and the benchmark data set (Wang et al., 2010). In the
training data sets, the number of binding peptides is in the range of 30 (HLA-DRB1*1301)
to 3882 (HLA-DRB1*0101). Peptides derived from four protein antigens including bee
venom (30 18-mer peptides), LAGE-1 (17 16-mer to 19-mer peptides), lipocalin (25 16-mer
peptides), and NEF (31 15-mer to 16-mer peptides), are provided as the validation set for
MHC-II binding prediction (Texier et al., 2000; Mandic et al., 2003; Immonen et al., 2005;
and Gahery et al., 2007). Their binding affinities to seven HLA-II molecules were measured
as the concentration of peptides that prevented binding of 50% of the labeled probes.

3.2 T cell epitopes
The repository also provides several lists of T cell epitopes, which could be used to evaluate
the performance of computational models to predict T cell epitopes. A total of 718 T cell
epitopes derived from human tumor antigens are included. They collected from TANTIGEN
(http://cvc.dfci.harvard.edu/tadb/) and are 8-31 amino acids in length and restricted by
multiple HLA class I and class II alleles. Another 44 HLA-A2 restricted T cell epitopes
derived from virus antigens are also provided. All of these T cell epitopes were found to be
both presented by HLA A2 and recognized by T cells. Their capability to stimulate T cell
was verified by various experiments. Information of antigen names, epitope sequences and
references is provided. In addition, we provide the panel of 32 T cell epitopes, 8-12 amino
acids in length, with sequences derived from the Cytomegalovirus, Epstein-Barr Virus and
Influenza Virus (CEF). They are used as standard probes for T cell epitope studies (Currier
et al., 2002; Nielsen et al., 2010).

3.3 Comparison and scaling
Immunological data reported in different studies are measured under different experimental
conditions or with different reference peptides. Some assays measured peptide binding by
measuring radioactive ligand (Sidney et al., 2001) or quantitative enzyme-linked
immunosorbent assay (Sylvester-Hvid et al., 2002), whereas some may be represented by
the percentage of binding affinity relative to control peptides (Bachinsky et al., 2005). The
binding affinities in these studies were measured in different units. It is inappropriate to
simply combine heterogeneous data without any transformation of raw binding affinities. To
solve this problem, proper scaling and data transformation should be performed so that data
generated from different sources could be integrated and compared. To enable inspection
and comparison of predictions for different HLA alleles we scaled all the data to a common
scale, e.g., from 0 to 100 using logarithm and linear transformation.

(1)
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(2)

(3)

where  is the final scaled binding score ranging from 0 to 100, xi is the original
experimental measurements, and yi is an intermediate value to map xi to a slightly different
scale. Equation (1), (2), and (3) are for mapping of measurements of binding affinities
expressed as concentrations (in nM), measurements expressed as relative binding affinity (in
%) to the labeled reference peptide, and measurements used by Multipred and Hotspot
Hunter data sets, onto 0-100 scale. The transformation maps the scale onto intuitive values
where 80-100 represent strong binding, 50-79 moderate to low binding, and 0-49 of no
functional relevance.

For the assessment of classification accuracy, the commonly used measure is the area under
the ROC curve (AROC) (Swets, 1988). It is convenient because it is calculated using all
decision thresholds and all related decision values. The ROC curve is a plot of true positive
rate TP/(TP+FN) on the vertical axis vs. false positive rate FP/(TN+FP) on the horizontal
axis for the full range of the decision thresholds. The values AROC≥0.9 indicate excellent,
0.9>AROC≥0.8 good, 0.8>AROC≥0.7 marginal and 0.7>AROC poor predictions (Swets,
1988).

To assess the accuracy of binding affinity prediction the Pearson correlation coefficient for
experimental measurements X and a prediction series Y for the studied set of peptides can
be used:

(4)

where xi and  are experimental individual and average affinities; yi and  are individual and
average peptide predictions. The range of correlation coefficient is within −1 to 1, with 1
representing a perfect positive linear relationship, −1 representing a perfect negative linear
relationship, and 0 representing total lack of correlation.

4. Conclusion
Combining experimental and in silico methods enables systematic study of highly
combinatorial problems associated with deciphering immune responses. With the
advancement of experimental technologies, the amount of immunological data produced and
distributed across literature and databases keep increasing exponentially. To fully utilize
these data, advanced computational methods including statistical and ML algorithms must
be used for development of improved bioinformatics tools. However, immunological data,
like other biological data, are usually described qualitatively and these descriptions are often
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ambiguous, presenting a challenge for the mainstream ML developers. The DFRMLI is
designed to bridge this gap through providing a resource of well-defined and annotated
immunological data that could be conveniently used by the ML community. The data was
pre-processed and carefully categorized so that they can be directly used by ML
practitioners. Scaling and comparison transformations were also applied to integrate data
from different sources. DFRMLI has already been used in a number of reported studies (Lin
et al., 2008a; Lin et al., 2008b; Singh and Mishra, 2008; Bordner and Mittelman, 2010). We
plan to expand DFRMLI with other annotated data from the immunological domain.
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Figure 1.
HLA haplotype frequencies in the North American population. The 1st percentile of most
common HLA haplotypes are present in 23.3% of population, the 10th percentile are present
in 52.8% population, and 50th percentile are present in 91% of population. The two most
common North American HLA haplotypes A*0101/B*0801/C*0701/DRB1*0301/
DQB1*0201 and A*0301/B*0702/C*0702/DRB1*1501/DQB1*0602 are present in 2.7%
and 1.4% of the population respectively.
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Figure 2.
The web page of DFRMLI
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Table 1

A representative set of publically available data repositories.

Domain Description URL (http://)

General Databases, domain theories
and data generators for ML mlearn.ics.uci.edu/MLRepository.html

General Time series data sets robjhyndman.com/TSDL

General Datasets for statistics lib.stat.cmu.edu/datasets

General Datasets for statistics and ML trec.nist.gov/data.html

General Datasets for evaluating ML
systems www.cs.utoronto.ca/~delve

General Annual KDD competition www.sigkdd.org/kddcup/index.php

Biology Human genomic splice sites
dataset www.sci.unisannio.it/docenti/rampone

Biology Microarray data sets smd.stanford.edu

Biology Gene expression ML repository gemler.fzv.uni-mb.si

Linguistics Annotated linguistic structures
in naturally occurring texts www.cis.upenn.edu/~treebank

Pattern recognition Database of handwritten digits yann.lecun.com/exdb/mnist

Pattern recognition Face recognition data www.cs.cmu.edu/afs/cs.cmu.edu/user/
avrim/www/ML94/face_homework.html

Space Science Astrophysical data nssdc.gsfc.nasa.gov

World Wide Web knowledge base mirroring the
content of the WWW

www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-11/www/wwkb/
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