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Abstract. This work is focused on the extension and assessment of the monotonicity-preserving
scheme in [3] and the local bounds preserving scheme in [5] to hierarchical octree adaptive mesh re-
finement (AMR). Whereas the former can readily be used on this kind of meshes, the latter requires
some modifications. A key question that we want to answer in this work is whether to move from
a linear to a nonlinear stabilization mechanism pays the price when combined with shock-adapted
meshes. Whereas nonlinear (or shock-capturing) stabilization leads to improved accuracy compared
to linear schemes, it also negatively hinders nonlinear convergence, increasing computational cost.
We compare linear and nonlinear schemes in terms of the required computational time versus accu-
racy for several steady benchmark problems. Numerical results indicate that, in general, nonlinear
schemes can be cost-effective for sufficiently refined meshes. Besides, it is also observed that it is
better to refine further around shocks rather than use sharper shock capturing terms, which usually
yield stiffer nonlinear problems. In addition, a new refinement criterion has been proposed. The
proposed criterion is based on the graph Laplacian used in the definition of the stabilization method.
Numerical results show that this shock detector performs better than the well-known Kelly estimator
for problems with shocks or discontinuities.

Keywords: Adaptive mesh refinement, Shock capturing, Euler equations, Hyperbolic problems, Dis-
crete maximum principle
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1. Introduction

Natural phenomena can develop shock waves in different scenarios. A classical example is the
shock wave generated by an object traveling faster than sound. The numerical modeling of problems
with shocks is still a challenge, especially when the admissible physical solution has some physical
constraints, e.g., positivity or non-negativity, that must be preserved at the discrete level to have
well-posedness; E.g., the fluid density and temperature are positive quantities in a compressible flow.

Several numerical schemes have been proposed so far to approximate this kind of problems by
combining finite volume methods (FVM) or discontinuous Galerkin (dG) finite elements (FEs) for
space discretization with explicit time integrators (see [19, 23, 42, 57]). Explicit time integrators are
only stable under a Courant-Friedrichs-Levy (CFL) restriction over the time step size, which implies to
capture all time scales. Thus, explicit methods are not suitable for problems in which the smallest time
scales are not of interest. For instance, the fastest time scales at a confined plasma in a nuclear fusion
reactor are not of engineering interest whereas explicit time integration is unaffordable in practical
simulations [32].

Implicit monotonicity-preserving (or at least positivity-preserving) methods are still scarce. As
proved by Godunov [25], linear monotonicity-preserving schemes can be at most first-order accurate.
For scalar problems (and under some mesh restrictions), Burman and Ern [18], Barrenechea and co-
workers [12, 13], Kuzmin and co-workers [35, 38, 44], and Badia and Hierro [6, 7] have proposed nonlin-
ear schemes that preserve monotonicity and can presumably attain higher order accuracy.1 However,
these properties come at the cost of solving a very stiff nonlinear problem [33]. The authors [3, 4] have
proposed differentiable schemes that improve the nonlinear convergence behavior of previous methods.

For hyperbolic systems of equations, numerical methods are less well developed. For explicit time
integration, Guermond and Popov [28] have recently proposed a continuous Galerkin (cG) FE scheme
that preserves positivity of density and energy under certain CFL-like condition. More recently,
Kuzmin [34] has extended the previous work to monolithic convex limiting. This allows one to use im-
plicit time integration while preserving positivity. Another approach is flux corrected transport (FCT)
[38, 45]. The schemes in [47, 48] combine the diffusion operators in FCT with novel shock-detection
techniques to obtain a nonlinear monolithic scheme. Those methods have been shown experimentally
to be robust, but lack of a theoretical analysis. Besides, this strategy also yields very stiff nonlinear
problems. Differentiable schemes for compressible flows have been proposed in [5] to alleviate (but not
eliminate) this problem.

Shocks are non-smooth and localized and thus suitable for AMR [21, 58]. AMR allows one to
increase the mesh resolution only in the vicinity of shocks or discontinuities. In brief, the AMR
process can be divided into two main ingredients. On the one hand, to estimate the error at each
element. On the other hand, to decide which elements need to be refined or coarsened. This iterative
process provides a mesh locally adapted to the features of the problem at hand. As a result, it is a
nonlinear approximation scheme which tries to minimize the error for a target computational cost.
In some situations, the optimal order of convergence can be achieved even for solutions with limited
regularity using AMR [21], whereas convergence is limited by the regularity of the solution for uniform
mesh refinements.

In this context, a key question is whether it is computationally more effective to consider a nonlinear
high-order scheme (with the nonlinear convergence issues) or a cheaper linear (first-order) scheme in
a more refined mesh. The motivation of this work is to shed light on this issue. First, we adapt the
schemes developed in [3, 5] to hierarchical octree AMR [9, 55]. Next, we propose a refinement criterium
that relies on information already present in the stabilization technique; nonlinear stabilization methods
include a shock detector to activate the artificial diffusion only close to discontinuities. We propose to
use a modification of the shock detector in [3] to drive the AMR process.

This paper is structured as follows. First, we introduce the problem, its discretization, and mono-
tonicity properties for scalar problems and hyperbolic systems in Sect. 2. Then, the stabilization

1In this work, schemes with nonlinear stabilization are also referred to as high-order and linear stabilization schemes
as low or first-order.
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techniques are introduced in Sect. 3. Sect. 4 is devoted to the AMR strategy. We introduce the non-
linear solvers in Sect. 5. Finally, we show numerical experiments in Sect. 6 and draw some conclusions
in Sect. 7.

2. Preliminaries

2.1. Continuous problem. Let us consider an open bounded and connected domain, Ω ⊂ Rd, where
d is the number of spatial dimensions. Let ∂Ω be the Lipschitz continuous boundary of Ω. The
conservative form of a first order hyperbolic problem reads

∂tu+ ∇ · f(u) = g, in Ω× (0, T ],
uβ(x, t) = ūβ(x, t), on Γβin × (0, T ], β = 1, ...,m,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where u = {uβ}mβ=1 are m ≥ 1 conserved variables, f is the physical flux, ūβ(x, t) are the boundary
values for the βth-component of u, u0(x) are the initial conditions, and g(x, t) is a function defining the
body forces. Note that the flux, f : Rm → Rm×d, is composed of f = {f i}di=1, where f i : Rm → Rm
is the flux in the ith spatial direction. We denote by f ′ : Rm → Rm×m×d the flux Jacobian. Let
n ∈ Rd be any direction vector. Since the system is hyperbolic, the flux Jacobian in any direction is
diagonalizable and has only real eigenvalues, i.e., f ′(u) ·n =

∑d
i=1 f

′
i(u)ni is diagonalizable with real

eigenvalues {λβ}mβ=1. These eigenvalues might have different multiplicities and different signs. Hence,
for a given direction n, each characteristic variable might be convected forward (along n) or backwards
(along −n). Therefore, it is convenient to define inflow and outflow boundaries for each component.
The inflow boundary for component β is defined as Γβin

.= {x ∈ ∂Ω : λβ(f ′(u) · n∂Ω) ≤ 0}, where
n∂Ω is the unit outward normal to the boundary and λβ is the βth-eigenvalue of the flux Jacobian.
We define the outflow boundary as Γβout

.= ∂Ω\Γβin. We refer the reader to [23, 29, 57] for a detailed
discussion on boundary conditions for hyperbolic problems. In the present study, we will also consider
the steady counterpart of (1), which is obtained by dropping the time derivative term and the initial
conditions.

In this work, we work with both scalar convection equations and Euler equations. Taking m = 1
and f(u) .= vu with v a divergence-free convection field, we recover the well known scalar transport
problem. On the other hand, Euler equations for ideal gases are recovered by defining m = d+ 2 and

u
.=

 ρ
m
ρE

 , f
.=

 m
m⊗ v + pI
v(ρE + p)

 , and g
.=

 0
b

b · v + r

 ,

where ρ is the density, E is the total energy, p is the pressure, m = {m1, . . . ,md}, where mi = ρvi, is
the momentum, v = {v1, . . . , vd} is the velocity, b = {b1, . . . , bd} are the body forces, r is an energy
source term per unit mass, and I is the identity matrix of dimension d × d. In addition, the system
is equipped with the ideal gas equation of state p = (γ − 1)ρı, where ı = E − 1

2‖v‖
2 is the internal

energy and γ is the adiabatic index.

2.2. Discretization. The discretization used in this work is able to adapt its local size to the features
of the problem at hand. In particular, it is a hierarchically refined octree–based hexahedral mesh [55].
This type of discretizations are constructed hierarchically. At every step of the refinement process,
marked cells are refined into four (eight) cells in 2D (3D). The adaptation of the mesh to the problem
at hand is achieved by only marking for refining a targeted amount of cells. This results in a mesh with
different refinement levels at different regions. Hanging nodes appear at the interface between cells at
different refinement levels. These are nodes that only belong to the cells at a higher refinement level
(see Fig. 1). In our case, the meshes used are 2:1 balanced. This restriction implies that there can only
be a difference of one refinement level between neighboring cells. This restriction is a trade-off between
implementation complexity and performance gain that has been adopted by many AMR codes [55].

Hanging nodes need to be treated carefully in the case of working with conforming FE discretizations.
Otherwise, associating a regular degree of freedom (DOF) to a hanging node may lead to discontinuities
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Figure 1. Example of a mesh with hanging nodes.

in the approximated solution. To preserve continuity of the FE space, hanging DOFs values are
not included in the assembled system of equations but obtained by interpolating the values of the
neighboring regular DOFs. For more details in the definitions of these conformity constraints we refer
the reader to [8–10].

Let Th be a hierarchical octree-based partition of Ω. Consider a Lagrangian (nodal) FE space on
top of this mesh. The set of all nodes in the FE space is represented with Ñh. For every node i ∈ Ñh,
xi stands for the node coordinates. We can split Ñh into two subsets, namely the set of hanging
nodes N hg

h and the set of conforming nodes Nh
.= Ñh\N hg

h . We denote by N .= card(Nh) the total
number of conforming nodes. The set of nodes belonging to a particular element K ∈ Th is defined as
Nh(K) .= {i ∈ Nh : xi ∈ K}. Moreover, Ωi is the macroelement composed by the union of elements
that contain node i, i.e., Ωi

.=
⋃
K∈Th, xi∈K K. To simplify the discussion below, we abuse notation

and use i for both the node and its associated index.
We restrict the present work to first order FEs and define the FE space as follows. We define

V h
.=
{
vh ∈ (C0(Ω))m : vh|K ∈ (Q1(K))m∀K ∈ Th

}
, where Q1(K) is the space of polynomials of

partial degree less than or equal to one. Furthermore, we define the space V h0
.= {vh ∈ V h : vh(x) =

0 ∀x ∈ Γin}. The functions vh ∈ V h can be constructed as a linear combination of the basis {ϕi}i∈Ñh

and nodal values vi, where ϕi is the shape function associated to the node i. Hence, vh =
∑
i∈Ñh

ϕivi.
We use standard notation for Sobolev spaces. The L2(ω) scalar product is denoted by (·, ·)ω for

ω ⊂ Ω. However, we omit the subscript for ω ≡ Ω. The L2 norm is denoted by ‖ · ‖.
The method of lines is applied in combination with the FE spaces described above for the spatial

discretization. We approximate the solution u ≈ uh =
∑
i∈Ñh

ϕiui. In addition, we make use of the
group–FEM approximation [24]. Hence, fluxes are discretized in the same FE space as the unknown, i.e.
f ≈ fh =

∑
i∈Ñh

ϕif(ui). For simplicity in the exposition, we use the Backward Euler (BE) scheme
for the time discretization; higher order time discretizations can be achieved using strong stability
preserving (SSP)–Runge Kutta (RK) methods (see [26]). In the latter case, a CFL-like condition must
be satisfied to enjoy the monotonicity properties in Sect. 2.3 (see [37, 41]).

The semi-discrete Galerkin FE approximation of the weak form of (1) reads: find uh ∈ V h such
that uβh = ūβh on Γβin, uh = u0h at t = 0, and

(∂tuh,vh)− (uh,f ′h(uh) : ∇vh) + (uh,nΓout · f
′
h(uh)vh)Γout = (g,vh), for all vh ∈ V h0,

where uβh and u0h are admissible FE approximations of the boundary and initial conditions uβ and
u0. In this context, we consider admissible any approximation that satisfies the maximum principle,
i.e., it does not introduce new extrema. Notice that boundary conditions are strongly imposed. For
transonic, or complex problems, this strategy might lead to convergence issues. However, in the present
paper we use this strategy for the sake of simplicity. As previously mentioned, we refer the reader to
[23, 29, 57] for a detailed discussion on boundary conditions for hyperbolic problems. Note that the
double contraction is applied as f ′h(uh) : ∇vh =

∑
k,γ f

′
h(uh)βγk vh γ,k.
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As commented above, we need to apply constraints to all hanging DOFs to keep conformity. The
value of the hanging DOF needs to be equal to the value of the interpolation of the unknown at the
neighboring coarser elements. That is, given i ∈ N hg

h and one of its neighboring (coarse) FE K ∈ Th,
vi =

∑
j∈Nh(K) ϕj(xi)vj . In general, we will represent this constraint with vi =

∑
j∈M(i) Cijvj , where

M(i) is the set of DOFs constraining DOF i, and Cij
.= ϕj(xi). It is also useful to defineM(i), which

is the set of DOFs constraint by i. For details of the implementation of this kind of constraints see
[8–10].

Finally, to obtain the fully discrete problem, we consider a partition of the time domain (0, T ] into
nts sub-intervals (tn, tn+1] of length ∆tn+1. Then, at every time step n = 0, . . . , nts − 1, the discrete
problem consists in solving

MδtUn+1 + KUn+1 = G, (2)
where Un+1 .= [un+1

1 , ...,un+1
N ]T is the vector of nodal values at time tn+1, δt(U) .= ∆t−1

n+1(Un+1−Un),
and ∆tn+1

.= (tn+1 − tn). The m×m-matrices relating nodes i, j ∈ Nh are given by

Mβγ
ij

.= (ϕj , ϕi)δβγ + Mβγ
ij ,

Kβγ
ij

.= −(ϕjδβξ,f ′k(un+1
j )ξη · ∂kϕiδηγ) + (ϕjδβξ, nk · f ′k(un+1

j )ξηϕiδηγ)Γout + Kβγ
ij ,

Gβ
i
.= (gβ , ϕi) + Gβ

i ,

where Einstein summation applies, β, γ, ξ, η ∈ {1, . . . ,m} are the component indices, δβγ is the Kro-
necker delta, and M, K, and G are the terms arising from applying the conformity constraints in the
mass, flux and body forces terms.

2.3. Stability properties. Finally, let us review some concepts required for discussing the stabiliza-
tion method used in the subsequent sections. Let us recall some definitions used for scalar problems.

Definition 2.1 (Local discrete extremum). The function vh ∈ Vh has a local discrete minimum (resp.
maximum) on i ∈ Nh if ui ≤ uj (resp. ui ≥ uj) ∀j ∈ Nh(Ωi).

Definition 2.2 (Local discrete maximum principle (DMP)). A solution uh ∈ Vh satisfies the local
discrete maximum principle if for every i ∈ Nh

min
j∈Nh(Ωi)\{i}

uj ≤ ui ≤ max
j∈Nh(Ωi)\{i}

uj .

Definition 2.3 (LED). A scheme is local extremum diminishing if, for every ui that is a local discrete
maximum (resp. minimum),

dui
dt ≤ 0,

(
resp. dui

dt ≥ 0
)
,

is satisfied.

One possible strategy to satisfy the above properties consists in designing a scheme that yields a
positive diagonal mass matrix and a stiffness matrix that satisfies∑

j

Aij = 0, and Aij ≤ 0, i 6= j. (3)

In this case, it is possible to rewrite the system as

miδtu
n+1 +

∑
j∈Nh(Ωi)\{i}

Aij(un+1
j − un+1

i ) = 0, ∀ i ∈ Nh.

As shown in [41], such a scheme is local extremum diminishing (LED). Moreover, for the steady scheme
obtained by dropping the transient term, property (3) leads to solutions that satisfy the local DMP
[20].

Stability properties for hyperbolic systems can be based on the extension of the above to hyperbolic
systems in characteristic variables. In this direction, we define local bounds preserving schemes as
follows.
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Definition 2.4. The discrete scheme∑
j

Mijδtu
n+1
i +

∑
j 6=i

Aij(un+1
j − un+1

i ) = 0

is said to be local bounds preserving if M is diagonal with positive entries (i.e., Mij = miδijIm×m),
Aij has non-positive eigenvalues for every j 6= i, and

∑
j Aij = 0.

Unfortunately, to the best of our knowledge, satisfying this definition does not ensure positivity
of density, internal energy, or non-decreasing entropy. In any case, numerical schemes based on this
definition have shown good numerical behavior [36, 39, 43, 48].

Several stabilization strategies have been defined based on the previous ideas. One of the most
simple strategies consists in adding a scalar artificial diffusion term proportional to the spectral radius
of Aij [36, 46]. This strategy is usually called Rusanov artificial diffusion, since the scheme results in
the Rusanov Riemann solver for linear FEs in one dimension [36, 57]. Without any special treatment,
the resulting scheme is only first order accurate. The key for recovering high-order convergence is to
modulate the action of the artificial diffusion term, and restrict its action to the vicinity of discon-
tinuities. In the present work, our stabilization term for systems of equations is based on Rusanov
artificial diffusion and a differentiable shock detector recently developed for scalar problems [3, 15].

Finally, it is also important to define the concept of linearity preservation.

Definition 2.5. Given uh ∈ V h and J the set of conservative variables that are used to detect
inadmissible values of uh, a stabilization scheme is said to be linearity preserving if the stabilization
vanishes at any region such that uβh ∈ P1(Ω) ∀β ∈ J .

3. Nonlinear stabilization

In this section, we describe the additional terms used for the stabilization of problem (2). In
particular, we use the stabilization terms defined in [3] for the scalar problem and [5] for Euler:

Bh(wh;uh,vh) .=
{ ∑

i∈Nh

∑
j∈Nh(Ωi) νij(wh)viuj`(i, j), for m = 1,∑

Ke∈Th

∑
i,j∈Nh(Ke) ν

e
ij(wh)`(i, j)vi · Im×muj , for m > 1, (4)

for any wh, uh, vh ∈ V h. Here, ` is the graph-Laplacian operator defined as `(i, j) .= 2δij − 1 (see
[3, 27]). In the case of a scalar problem, m = 1, the nodal artificial diffusion νij(wh) is defined as

νij(wh) .= max{αi(wh)Kij , 0, αj(wh)Kji} for j ∈ Nh(Ωi)\{i},

νii(wh) .=
∑

j∈Nh(Ωi)\{i}

νij(wh).

We denote by α(wh) the scalar shock detector used for computing the artificial diffusion parameter.
In the case of the Euler equations, the element-wise artificial diffusion νeij(wh) is defined as

νeij(wh) .= max
(
αi(wh)λmax

ij ,αj(wh)λmax
ji

)
+

∑
k∈M(i)

Cki max
(
αk(wh)λmax

kj ,αj(wh)λmax
jk

)
+

∑
k∈M(j)

Ckj max (αi(wh)λmax
ik ,αk(wh)λmax

ki )

+
∑

k∈M(i)∩M(j)

CkiCkjαk(wh)λmax
kk , for j ∈ Nh(Ωi)\{i},

νeii(wh) .=
∑

j∈Nh(Ωi)\{i}

νeij(wh),

(5)

where λmax
ij is the spectral radius of the elemental convection matrix relating nodes i, j ∈ Nh, i.e.,

ρ
(
f ′(uij) · (∇ϕj , ϕi)Ke

)
, where uij is the Roe average between ui and uj (see (7)). Notice that for

νeij and k ∈ N hg
h , λmax

ik is actually the spectral radius of ρ
(
f ′(uij) · (∇ϕk, ϕi)Ke

)
. This is a direct
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consequence of using a FE approximation of the fluxes. As previously discussed, this artificial diffusion
term is based on Rusanov scalar diffusion [38]. It is important to mention that, given any direction
vector n, the eigenvalues f ′(uij) · n of the Roe-averaged flux Jacobian in that direction can be easily
computed as

λ1,..,d = vij · n, λd+1 = vij · n− aij‖n‖, λd+2 = vij · n+ aij‖n‖, (6)
where the velocity vij and sound speed aij are computed using the Roe-averaged values

aij =

√
(γ − 1)

(
Hij −

‖vij‖2
2

)
, vij =

vi
√
ρj + vj

√
ρi

√
ρi +√ρj

, (7)

Hij =
Hi
√
ρi +Hj

√
ρj

√
ρi +√ρj

, Hi = Ei + pi
ρi
, and ρij = √ρiρj .

This property greatly simplifies the computation of ρ
(
f ′(uij) · (∇ϕj , ϕi)Ke

)
.

We denote by αi(wh) the shock detector used for modulating the action of the artificial diffusion
term. The idea behind the definition of this detector is to minimize the amount of artificial diffusion
introduced while stabilizing any oscillatory behavior. We want to ensure that the resulting stabilized
scheme satisfies Def. 2.4 in regions where the local DMP is violated (see Def. 2.2) by a given set of
components. αi(wh) must be a positive real number that takes value 1 when uh(xi) is an inadmissible
value of uh, and smaller than 1 otherwise. To this end, we define

αi(uh) .= max{αi(uβh)}β∈J , ∀i ∈ Nh (8)
where J is the set of components that are used to detect inadmissible values of uh, e.g. density and
total energy in the case of Euler equations. For simplicity, we restrict ourselves to the components of
uh. However, derived quantities such as the pressure or internal energy can be also used. For scalar
equations, since the stabilization is defined for the assembled system, the shock detector αi only needs
to be defined for i ∈ Nh. However, for the elemental definition used for Euler equations, it is also
required for i ∈ N hg

h . In that case, we use the maximum of its constraining nodes, i.e.,

αk(uh) .= max
j∈M(k)

αj(uh) for k ∈ N hg
h .

Let us recall some useful notation from [3] to introduce the scalar shock detector αi(wh). Let rij =
xj − xi be the vector pointing from node xi to xj with i, j ∈ Nh and r̂ij

.= rij

|rij | . Recall that the set
of points xj for j ∈ Nh(Ωi)\{i} define the macroelement Ωi around node xi. Let xsym

ij be the point at
the intersection between ∂Ωi and the line that passes through xi and xj that is not xj (see Fig. 2).
The set of all xsym

ij for all j ∈ Nh(Ωi)\{i} is represented with N sym
h (Ωi). We define rsym

ij
.= xsym

ij −xi.
We define usym

ij as the value of uh at xsym
ij , i.e., uh(xsym

ij ).

Figure 2. usym drawing

Both usym
ij and xsym

ij are only required to construct a linearity preserving shock detector. Let us
define the jump and the mean of a linear approximation of component β of the unknown gradient at



MONOTONICITY-PRESERVING FE SCHEMES WITH AMR FOR HYPERBOLIC PROBLEMS 8

node xi in direction rij as
r

∇uβh

z

ij

.=
uβj − u

β
i

|rij |
+
usym,β
ij − uβi
|rsym
ij |

, (9)

{{
|∇uβh · r̂ij |

}}
ij

.= 1
2

(
|uβj − u

β
i |

|rij |
+
|usym,β
ij − uβi |
|rsym
ij |

)
. (10)

In the present work, for each component in J , we use the same shock detector developed in [3]. Let
us recall its definition

αi(uβh) .=




∣∣∣∣∑j∈Nh(Ωi)

r
∇uβh

z

ij

∣∣∣∣∑
j∈Nh(Ωi) 2

{{∣∣∣∇uβh · r̂ij
∣∣∣}}

ij


q

if
∑
j∈Nh(Ωi)

{{∣∣∣∇uβh · r̂ij
∣∣∣}}

ij
6= 0

0 otherwise

, (11)

where q > 1 is a parameter that minimizes the amount of artificial diffusion introduced. We know
from [3, Lm. 3.1] that (11) gets values between 0 and 1, and it is only equal to one if uβh(xi) is a local
discrete extremum. Since the linear approximations of the unknown gradients are exact for uβh ∈ P1,
the shock detector vanishes when the solution is linear. Thus, it is also linearly preserving for every
component in J . This result follows directly from [3, Th. 4.5].

The shock detector is properly defined for any interior node. However, uβij might not seem easy to
compute for nodes at the boundary. For nodes at Dirichlet boundaries, xi ∈ Γin, the shock detector
is set to 0, since the value of the unknown is fixed. For weak Dirichlet boundary conditions, we refer
the reader to [4], where appropriate definitions are developed such that monotonicity and linearity are
preserved. In the case of xi ∈ Γout, xsym

ij might lay on top of node xi for some directions. Hence, the
second fraction in (9) and (10) becomes undefined. In these cases, this term is dropped and we use

r
∇uβh

z

ij

.=
uβj − u

β
i

|rij |
and

{{
|∇uβh · r̂ij |

}}
ij

.= 1
2

(
|uβj − u

β
i |

|rij |

)
.

This definition still ensures that the shock detector takes value 1 for extreme values at xi (see [3, Lm.
3.1]). However, linearity preservation in the direction normal to Γout is lost unless the unknown is
constant in that direction.

The final stabilized problem in matrix form reads as follows. Find uh ∈ V h such that uβh = uβh on
Γβin, uh = u0h at t = 0, and

M(un+1
h )δtUn+1 + Kij(un+1

h )Un+1 = G (12)
for n = 1, ..., nts, where

Mij(un+1
h ) .= [1−max (αi,αj)] Mij + δij

∑
k∈Nh

max(αi, αk)Mik,

ML
i =

∑
j Mij , and Kij(un+1

h ) .= Kij + Bij , where Bij is the stabilization matrix that takes the form

Bij(wh) .=
{
νij(wh) `(i, j), for m = 1,∑
Ke∈Th

νeij(wh) `(i, j)Im×m, for m > 1, .

Let us show that adapted non-conforming meshes do not jeopardize any of the stability properties
defined in Sect. 2.3 and proved for conforming meshes in [4, 8].

Corollary 3.1 (DMP). The solution of the discrete problem (12) with m = 1 and using the shock
detector (11) satisfies the local DMP in Def. 2.2 if g = 0 and, for every control point i ∈ Nh such that
ui is a local discrete extremum, it holds:

Kij(uh) ≤ 0, ∀ j ∈ Nh(Ωi)\{i},
∑

j∈Nh(Ωi)

Kij(uh) = 0.
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Moreover, the resulting scheme is linearity-preserving as defined in Def. 2.5, i.e., Bij(uh) = 0 for
uh ∈ P1(Ωi).

Proof. The stabilization scheme for scalar problems is defined on the assembled system. Hence, the
modifications introduced in the assembly procedure do not affect the reasoning in the proof of [4, Thm.
5.2]. �

Lemma 3.1 (Local bounds preservation). Consider uh ∈ V h with component β in the set of tracked
variables J . The stabilized problem (12), with G = 0, is local bounds preserving as defined in Def. 2.4
at any region where uβh has extreme values.

Proof. If component β ∈ J of uh has an extremum at xi, we know from [3, Lm. 3.1] that αi(uβh) = 1.
Moreover, it can be checked from (8) that αi(uh) = 1. In this case, Mij(uh) = δij

∑
j Mij . Hence,

Mij(uh) = 0 for j 6= i and Mii(uh) = mi. Therefore, we can rewrite the system as follows

mi∂tui +
∑

j∈Nh(Ωi)\{i}

Kij(uij)(uj − ui) =

mi∂tui +
∑

j∈Nh(Ωi)\{i}

∑
Ke∈Th

[
(f ′(uij)) ·

(
(∇ϕj , ϕi)Ke

+
∑

k∈M(j)

Ckj(∇ϕk, ϕi)Ke

+
∑

k∈M(i)

Cki(∇ϕj , ϕk)Ke

+
∑

k∈M(i)∩M(j)

CkiCkj(∇ϕk, ϕk)Ke

)
− νeijIm×m

]
(uj − ui) = 0.

We need to prove that the eigenvalues of Kij(uij) are non-positive. To this end, let us show that the
following inequality holds

∑
Ke∈Th

(
ρ
(
f ′(uij) · (∇ϕj , ϕi)Ke

)
+

∑
k∈M(j)

Ckj ρ
(
f ′(uij) · (∇ϕk, ϕi)Ke

)
+

∑
k∈M(i)

Cki ρ
(
f ′(uij) · (∇ϕj , ϕk)Ke

)
+

∑
k∈M(i)∩M(j)

CkiCkj ρ
(
f ′(uij) · (∇ϕk, ϕk)Ke

) )
≥ ρ(f ′(uij) · (∇ϕj , ϕi)).

One can observe from (6) that ρ
(
f ′(uij) · (∇ϕj , ϕi)Ke

)
= |vij ·ceij |+aij‖ceij‖, where ceij = (∇ϕj , ϕi)Ke

.
We have that

cij = (∇ϕj , ϕi) =
∑

Ke∈Th

ceij +
∑

k∈M(j)

Ckjc
e
ik +

∑
k∈M(i)

Ckic
e
kj +

∑
k∈M(i)∩M(j)

CkiCkjc
e
kk

 .
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Thus, ∑
Ke∈Th

( ∣∣vij · ceij∣∣+ ∑
k∈M(j)

Ckj |vij · ceik|

+
∑

k∈M(i)

Cki
∣∣vij · cekj∣∣

+
∑

k∈M(i)∩M(j)

CkiCkj |vij · cekk|
)
≥ |vij · cij | ,

and ∑
Ke∈Th

(
aij‖ceij‖+

∑
k∈M(j)

Ckjaij‖ceik‖+
∑

k∈M(i)

Ckiaij‖cekj‖

+
∑

k∈M(i)∩M(j)

CkiCkjaij‖cekk‖
)
≥ aij‖cij‖.

Therefore,
∑
e ρ(Ke

ij(uij)) ≥ ρ(Kij(uij)). Moreover, by definition (see (5)),

νeij ≥ ρ
(
f ′(uij) · (∇ϕj , ϕi)Ke

)
+

∑
k∈M(j)

Ckj ρ
(
f ′(uij) · (∇ϕk, ϕi)Ke

)
+

∑
k∈M(i)

Cki ρ
(
f ′(uij) · (∇ϕj , ϕk)Ke

)
+

∑
k∈M(i)∩M(j)

CkiCkj ρ
(
f ′(uij) · (∇ϕk, ϕk)Ke

)
for j 6= i.

Furthermore, one can infer from (4) that ρ(Be
ij(uij)) ≥ ρ(Ke

ij(uij)), where Be
ij(uij) and Ke

ij(uij)
are the elemental stabilization and stiffness matrices, respectively. Hence, ρ(Bij(uij)) ≥ ρ(Kij(uij)).
Finally, since Kij = Kij + Bij and Bij =

∑
e Be

ij = −
∑
e ν

e
ijIm×m for all j 6= i. Then, the maximum

eigenvalue of Kij(uij) is non-positive, which completes the proof. �

Notice that it is essential to apply properly the constraints at the flux FE approximation, i.e.,
f ′(uk) =

∑
i∈M(k) Ckif

′(ui). Otherwise, it is not possible to formally prove local bound preservation.
However, experimental results in the present work show that using f ′(uk) does not affect the overall
performance of the scheme.

3.1. Differentiable stabilization. In the case of steady, or implicit time integration, differentiability
plays a role in the convergence behavior of the nonlinear solver. This is especially important if one
wants to use Newton’s method. The authors show in [3–5] that nonlinear convergence can be improved
after few modifications to make the scheme twice-differentiable. In this section, we introduce a set of
regularizations applied to all non-differentiable functions present in the stabilized scheme introduced
above. In order to regularize these functions, we follow the same strategy as in [3–5]. Absolute values
are replaced by

|x|1,εh
=
√
x2 + εh, |x|2,εh

= x2
√
x2 + εh

,

where εh is a small positive value. Note that |x|2,εh
≤ |x| ≤ |x|1,εh

. Next, we also use the smooth
maximum function

max σh
(x, y) .=

|x− y|1,σh

2 + x+ y

2 ≥ max(x, y),

where σh is a small positive value. In addition, we need a smooth function to limit the value of any
given quantity to one. To this end, we use

Z (x) .=
{

2x4 − 5x3 + 3x2 + x, x < 1,
1, x ≥ 1.
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The set of twice-differentiable functions defined above allows us to redefine the stabilization term
introduced in Sect. 3. In particular, we define

B̃h(wh;uh,vh) .=
{ ∑

i∈Nh

∑
j∈Nh(Ωi) ν̃ij(wh)viuj`(i, j), for m = 1,∑

Ke∈Th

∑
i,j∈Nh(Ke) ν̃

e
ij(wh)`(i, j)vi · Im×muj , for m > 1, (13)

where

ν̃ij(wh) .= max σh

(
max σh

(
αεh,i(wh)Kij , αεh,j(wh)Kji

)
, 0
)

for j ∈ Nh(Ωi)\{i},

ν̃ii(wh) .=
∑

j∈Nh(Ωi)\{i}

ν̃ij(wh),

and
ν̃eij(wh) .= max σh

(
αεh,i(wh)λmax

ij ,αεh,j(wh)λmax
ji

)
+

∑
k∈M(i)

Cki max σh

(
αεh,k(wh)λmax

kj ,αεh,j(wh)λmax
jk

)
+

∑
k∈M(j)

Ckj max σh
(αεh,i(wh)λmax

ik ,αεh,k(wh)λmax
ki )

+
∑

k∈M(i)∩M(j)

CkiCkjαεh,k(wh)λmax
kk , for j ∈ Nh(Ωi)\{i},

ν̃eii(wh) .=
∑

j∈Nh(Ωi)\{i}

ν̃eij(wh).

Let us note that λmax
ij needs to be regularized as λmax

ij =
∣∣vij · ceij∣∣1,εh

+ c‖ceij‖. The shock detector is
also regularized as follows:

αεh,i(uh) .= max σh
{αεh,i(u

β
h)}β∈J .

Notice that the regularized maximum has only been defined for two arguments. However, for |J | > 2,
one can chain several times the regularized functions, i.e., max σh

(max σh
(...)). In the case of the

component shock detector we recall the definition in [3, Eq. 18]

αεh,i(u
β
h) .=

Z


∣∣∣∣∑j∈Nh(Ωi)

r
∇uβh

z

ij

∣∣∣∣
1,εh

+ ζh

∑
j∈Nh(Ωi) 2

{{∣∣∣∇uβh · r̂ij
∣∣∣
2,εh

}}
ij

+ ζh



q

, (14)

where ζh is a small value for preventing division by zero. Finally, the twice-differentiable stabilized
scheme reads: find uh ∈ V h such that uβh = uβh on Γβin, uh = u0h at t = 0, and

M̃(un+1
h )δtUn+1 + K̃ij(un+1

h )Un+1 = G for n = 1, ..., nts, (15)

where

M̃ij(un+1
h ) .= [1−max σh

(αεh,i,αεh,j)] Mij + δij
∑
k∈Nh

max σh
(αi, αk)Mik,

K̃ij(un+1
h ) .= Kij(un+1

h ) + B̃ij(un+1
h ),

and B̃ij is the regularized stabilization matrix that takes the form

B̃ij(wh) .=
{
ν̃ij(wh) `(i, j), for m = 1,∑
Ke∈Th

ν̃eij(wh) `(i, j)Im×m, for m > 1.

Corollary 3.2. The scheme in (2) with G = 0 and the differentiable stabilization in (13) is local
bounds preserving, as defined in Def. 2.4, at any region where uβh has extreme values for every β in J .
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Proof. For an extreme value of uβh, since |x|2,εh
≤ |x| ≤ |x|1,εh

the quotient of (14) is larger than one.
Hence, by definition of Z(x), αεh,i is equal to 1. At this point, it is easy to check that ν̃eij ≥ νeij in
virtue of the definition of max σh

. Therefore, ρ(B̃e

ij(uh)) ≥ ρ(Be
ij(uh)), completing the proof. �

Moreover, it is important to mention that the differentiable shock detector is weakly linearly-
preserving as ζh tends to zero. This result follows directly from [3]. In order to obtain a differentiable
operator, we have added a set of regularizations that rely on different parameters, e.g., σh, εh, ζh.
Giving a proper scaling of these parameters is essential to recover theoretic convergence rates. In
particular, we use the following relations

σh = σ|λmax|2L2(d−3)h4, εh = εL−4h2, ζh = L−1ζ,

where σ, ε, and ζ are small positive parameters, d is the spatial dimension of the problem, L is
a characteristic length. The value |λmax| being used is the maximum on the whole domain of the
Euclidean norm. In the case of a scalar problem, it is simply the maximum convection velocity, i.e.
maxx∈Ω |v(x)|.

4. Adaptive mesh refinement

The motivation of an adaptive FE method is to solve (12) up to a certain tolerance (or resolution)
using the minimum number of DOFs. To this end, the solution error (eh = u − uh) is estimated at
each element. With this information at hand, it is possible to iteratively adapt the resolution of the
mesh at certain regions. This process can be divided into two parts: estimating the error at every cell,
and deciding which and how many cells need to be refined or coarsened. This procedure is performed
iteratively until a desired tolerance is achieved or, alternatively, a number of elements is reached. In
the present work, we start with a rather coarse mesh and perform the following steps till reaching a
stopping criterion:

(1) Compute solution uh;
(2) Estimate the error eh;
(3) Select all cells that need to be refinement or coarsened;
(4) Update the mesh, and project the solution to the new mesh.

In some cases, the refinement might be driven by features of the solution instead of a classical error
estimator. For instance, one may decide to refine the regions around discontinuities. In this scenario,
one could use an expression that does not estimate the error, but it allows to concentrate the elements
around discontinuities.

4.1. Error estimators. One of the keys of AMR is the ability to provide a good estimation of the
error. Several error estimators have been proposed to date [1, 22, 30, 31, 59]. These can be classified,
at least, in two main types. Some authors [22, 30, 50, 51, 53] try to compute an upper bound of
the error for every cell. Then, provided a user defined tolerance, one can decide to refine or coarsen
each cell. However, an adjoint problem needs to be solved in order to compute this upper bound
[17, 30]. It is possible to approximate the error bounds without solving an adjoint problem only
for simple cases, see [30]. Therefore, this kind of error estimators increases the computational cost
substantially. Alternatively, one can simply determine the distribution of the error in the mesh and
use this information to drive an adaptivity algorithm. In this scenario, some authors [1, 14, 40, 49,
59, 60] drive the adaptivity process with the solution gradient. In this case, explicit expressions of the
estimated error are possible, requiring less computational resources than the previous option.

In general, the adaptive procedure can be described as follows. Given a finite element solution uh,
the error eh is approximated as eh ≈∇u−∇uh. Then, the reconstruction is used as an approximation
of the exact gradient. This strategy is based on superconvergence of special recovery techniques (see
[60] and refs. in [1, 49]). Kuzmin and co-workers [14, 49] follow [59] to reconstruct an approximation
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of the exact gradient. Kelly et al. [31] proposed a well-known estimator based on gradient recovery:

η2
K
.= hK

24

∫
∂K

s
∂uh
∂n

{2
dΓ,

where ηK is the estimated error at every element, K. In this case, the jump J·K does not correspond with
the linear approximation of the gradient jump J∇(·)Kij defined in (9). Instead, it takes the classical
definition, i.e., JuK = u+ · n+ + u− · n−. The main advantages of this estimator are its simplicity and
its low computational cost. For these reasons, this estimator is used in the present work.

It is worth mentioning that our problems of interest are characterized by exhibiting discontinuities,
where the error concentrates. These regions are susceptible to develop instabilities, and thus, these
are the regions in which the shock capturing is activated. Therefore, it is natural to use the shock
capturing to drive the adaptivity procedure. We propose an indicator based on the graph Laplacian
`(i, j) present in the stabilization term (4). This way, we reuse available information and reduce the
computational overhead associated with the selection of cells to be refined. The indicator reads:

(η̃βK)2 .= hd−2
K

∑
i∈Nh(K)

∑
j∈Nh(Ωi)

(uβi − u
β
j )2,

where β ∈ J is the index of the specific component analyzed. This expression is expected to yield
high values around shocks and low values in smooth regions.

4.2. Refinement strategy. After the error has been estimated for every element (or the indicator
has been computed at every cell), one needs to decide which element needs to be refined and which
one coarsened. If an upper bound of the error is computed, then one may use a given tolerance to
make this decision. However, in the present case this is not available. A classical alternative is to
refine/coarsen a fixed amount of elements at every iteration [9, 11]. In the present study, a 30% of
the elements with higher error estimates (or higher indicator values) are refined whereas a 10% of
the elements with lower values are coarsened. This percentages are arbitrary and other choices are
valid. Notice that using this setting in two dimensions the number of elements is almost doubled at
every iteration. We make use of the parallel nth element algorithm [9, 56] to efficiently determine the
indicator thresholds for refining or coarsening the elements.

5. Nonlinear solver

In this section, we describe the method used for solving the nonlinear system of equations arising
from the scheme introduced above. In particular, we use a hybrid Picard–Newton approach in order
to increase the robustness of the nonlinear solver. Moreover, we also make use of a line–search method
to improve the nonlinear convergence.

We define the residual of the equation (15) at the k-th iteration as

R(uk,n+1
h ) .= M̃(uk,n+1

h )δtUk,n+1 + K̃ij(uk,n+1
h )Uk,n+1 − G.

Hence, the Jacobian is defined as

J(uk,n+1
h ) .=

∂R(uk,n+1
h )

∂Uk,n+1 (16)

= ∆t−1
t+1M̃(uk,n+1

h ) + K̃ij(uk,n+1
h ) + ∆t−1

t+1
∂M̃(uk,n+1

h )
∂Uk,n+1 δtUk,n+1 +

∂K̃ij(uk,n+1
h )

∂Uk,n+1 Uk,n+1.

Therefore, Newton method consists in solving J(uk,n+1
h )∆Uk+1,n+1 = −R(uk,n+1

h ). It is well known
that Newton method can diverge if the initial guess of the solution u0,n+1

h is not close enough to the
solution. In order to improve robustness, we use a line–search method to update the solution at every
time step. The new approximation is computed as Uk+1,n+1 = Uk,n+1 + λ∆Uk+1,n+1, where λ is
obtained using a standard cubic backtracking algorithm.
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As introduced at the beginning of the section, we also use a hybrid approach combining Newton
method with Picard linearization. Picard nonlinear iterator can be obtained removing the last two
terms of (16), i.e., (

∆t−1
t+1M̃(uk,n+1

h ) + K̃ij(uk,n+1
h )

)
∆Uk+1,n+1 = −R(uk,n+1

h ). (17)

Clearly, it is equivalent to(
∆t−1

t+1M̃(uk,n+1
h ) + K̃ij(uk,n+1

h )
)

Uk+1,n+1 = ∆t−1
t+1M̃(uk,n+1

h )Un + G.

Moreover, we modify the left hand side terms in (17); we use αi = 1 for computing these terms while
we use the value obtained from (8) for the residual. Using this strategy, the solution remains unaltered
but the obtained approximations uk,n+1

h for intermediate values of k are more diffusive. Even though
this modification slows the nonlinear convergence, it is essential at the first iterations. Otherwise, the
robustness of the method might be jeopardized.

The resulting iterative nonlinear solver consists in the following steps. We iterate Picard method in
(17), with the modification described above, until the Euclidean norm of the residual vector is smaller
than a given tolerance. In the present work, we use a tolerance of 10−2. Afterwards, Newton method
with the exact Jacobian in (16) is used until the desired nonlinear convergence criteria is satisfied. We
summarize the nonlinear solver introduced above in Alg. 1.

Input: U0,n+1, tol1, tol2, ε
Output: Uk,n+1, k
k = 1, ε1 = ε
while ‖R(Uk,n+1)‖/‖R(U0,n+1)‖ ≥ tol1 do

Compute αi(Uk,n+1) using (8)
Compute ∆Uk+1,n+1 using (17)
Minimize ‖R(Uk+1,n+1)‖, where Uk+1,n+1 = λ∆Uk+1,n+1 + Uk,n+1, with respect to λ
Set Uk+1,n+1 = λ∆Uk+1,n+1 + Uk,n+1

Update k = k + 1
end
while ‖R(Uk,n+1)‖/‖R(U0,n+1)‖ ≥ tol2 do

Compute αi(Uk,n+1) using (8)
Solve J(Uk,n+1)∆Uk+1,n+1 = −R(Uk,n+1) with J in (16)
Minimize ‖R(Uk+1,n+1)‖, where Uk+1,n+1 = λ∆Uk,n+1 + Uk,n+1, with respect to λ
Set Uk+1,n+1 = λ∆Uk,n+1 + Uk,n+1

Update k = k + 1
end

Algorithm 1: Hybrid Picard–Newton method.

6. Numerical results

In this section, we perform several numerical experiments to assess the numerical scheme introduced
in the previous sections. First, we perform a convergence analysis to assess its implementation. Then,
we use steady benchmark tests to analyze the effectiveness of the high–order scheme in the context of
AMR. In particular, we compare the nonlinear scheme in (15) with its linear (first order) counterpart,
i.e., using αεh,i(uh) ≡ 1.

From previous experience [3, 4, 15, 16], we choose the following regularization parameters: σ = 10−2,
ε = 10−4, and ζ = 10−10. In addition, the density is discontinuous at all shocks and contacts for all
Euler tests below. Therefore, we use J = {1} in (8), i.e., the shock detector is based on the density
behavior in all Euler tests below.
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6.1. Convergence. First, the convergence to a discontinuous solution is analyzed. To this end, we
solve two different problems. On the one hand, the following scalar problem is solved

∇ · (vu) = 0 in Ω = [0, 1]× [0, 1],
u = uD on Γin,

(18)

where v(x, y) .= (1/2, sin−π/3), and inflow boundary conditions uD = 1 on {x = 0} ∩ {y > 0.7} and
y = 1, while uD = 0 at the rest of the inflow boundary. This problem has the following analytical
solution

u(x, y) =
{

1 if y > 0.7 + 2x sin−π/3,
0 otherwise.

For the Euler equations, the problem is the well known compression corner test [2, 38], also known
as oblique shock test [52, 54]. This benchmark consists in a supersonic flow impinging to a wall at an
angle. We use a [0, 1]2 domain with a M = 2 flow at 10◦ with respect to the wall. This leads to two
flow regions separated by an oblique shock at 29.3◦, see Fig. 3.

Figure 3. Compression corner scheme.
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1/h

10−2

10−1

‖u
h
−
u
‖ L

1
(Ω

)

1
1

(a) Scalar transport problem.
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(b) Euler equations.

Figure 4. Convergence of ‖u− uh‖L1(Ω) to a solution with a discontinuity.

Since the solution is not smooth, we expect linear convergence rates in the L1-norm. Fig. 4 shows the
convergence behavior of both problems with uniform mesh refinements. The experimental convergence
rate measured for the scalar transport problem is 0.82, whereas the convergence rate measured is 0.94
for the compression corner test. Therefore, both tests exhibit the expected convergence behavior.
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6.2. Linear discontinuity. For this test, we use again the problem in (18). The purpose of this test
is twofold. On the one hand, we analyze the effectiveness of the proposed indicator. On the other
hand, we compare the effectiveness of the linear and nonlinear stabilization methods. Specifically, this
effectiveness is measured as follows. For a given error, we consider a method more effective if it requires
less computational time, independently of the number of elements required. In addition, we also solve
the problem for successive uniformly refined meshes in order to evaluate the effect of AMR.

For all comparisons, we start with a coarse mesh of 16 × 16 elements, and proceed adapting the
mesh up to a maximum number of elements. For the nonlinear stabilization, we set a maximum of
5 · 104 elements. The maximum number of elements for the low-order method is 2 · 106. The uniform
mesh is refined up to a 1024× 1024 mesh. We use a nonlinear tolerance of ‖∆uh‖/‖uh‖ < 10−4, and
a maximum of 500 iterations.

Fig. 5 shows the evolution of the AMR algorithm for the Kelly error estimator and the proposed
refinement strategy based on the graph Laplacian. The results shown in this picture have been obtained
using the linear stabilization, and the left-most column using the nonlinear one. It can be observed
that both Kelly (ηK) estimator and graph Laplacian (η̃K) indicator refine in the vicinity of the shock.
However, the graph Laplacian operator clearly outperforms Kelly estimator.

Figs. 6–8 compare the effectiveness of the low-order and the high-order stabilization schemes. The
results are obtained for the stabilization parameter q = 1, q = 2, and q = 10, respectively.

At Fig. 7, the nonlinear stabilization is able to converge the nonlinear problem efficiently and the
overhead of solving a nonlinear problem does not strongly affect the overall performance. We note
that for the linear scheme the problem is linear. It can be observed that the convergence rate (against
time) is much higher for the nonlinear scheme. The linear scheme requires less computational time for
coarser meshes but the nonlinear scheme is more effective for tighter accuracies, specially for q > 1.

We can observe in Fig. 8 the convergence problems of the nonlinear stabilization at some steps of the
refinement procedure. Even though using q = 10 improves the accuracy of the method, it also increases
the computational cost since the nonlinear problem is harder to solve. As a consequence, the nonlinear
stabilization needs a very refined mesh to overcome the performance of the linear stabilization.

6.3. Circular discontinuity. We analyze again the effectiveness of the proposed refinement strategy
and the effectiveness of the linear and nonlinear stabilization methods for a slightly more complicated
convective field. For this test, we use (18) with v(x, y) .= (y,−x), and inflow boundary conditions

u(0, y) =

 1 y ∈ [0.15, 0.45],
cos2 ( 10

3 π(y − 0.4)
)

y ∈ [0.55, 0.85],
0 elsewhere.

The analytical solution of this particular configuration consists in the transport of the inflow profile
in the direction of the convection. As a result, the solution at the outflow boundary, corresponding to
y = 0, is u(x, 0) = u(0, x). We start with a coarse mesh of 16 × 16 elements in all cases, and proceed
adapting the mesh up to a maximum number of elements. For the nonlinear stabilization, we set a
maximum of 5 · 104 elements. The maximum number of elements for the linear stabilization is 2 · 106.
We use a nonlinear tolerance of ‖∆uh‖/‖uh‖ < 10−4, and a maximum of 500 iterations.

Figs. 9–11 compare the effectiveness of the linear and nonlinear stabilization. These results use the
stabilization parameter q = 1, q = 2, and q = 10, respectively. In Fig. 10, the high-order scheme is able
to converge efficiently and the overhead of solving a nonlinear problem does not strongly affect the
overall performance. Nevertheless, the low-order scheme usually requires similar computational time
for any given error. However, it can be observed that the convergence rate (in time) using the Kelly
error estimator is slightly higher for the high-order scheme. Actually, it outperforms the low-order
scheme for the finer meshes.

In contrast, we do not observe the significant convergence problems in Fig. 11 even though the linear
stabilization is slightly more efficient for coarse meshes. The convergence rate (in time) is higher for
the nonlinear stabilization and it is actually more efficient for the finer meshes.

Fig. 12 shows the evolution of the AMR algorithm for both ηK and η̃K with the linear stabilization
and η̃K with the nonlinear one. It can be observed that both Kelly (ηK) estimator and graph Laplacian
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Figure 5. Evolution of the mesh refinement process. η̃K with high–order scheme is
used in the left column. Low–order scheme with Kelly estimator is used in the central
column. η̃K with low–order scheme is used in the right column. For the low–order
scheme from top to bottom results have been obtained at refinement step 1, 2, 3, 9,
and 9. For the high–order refinement steps are 1, 2, 3, 5, and 5.
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Figure 6. Time and elements convergence comparison for the transport problem
with a linear discontinuity, q = 1.
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Figure 7. Time and elements convergence comparison for the transport problem
with a linear discontinuity, q = 2.
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Figure 8. Time and elements convergence comparison for the transport problem
with a linear discontinuity, q = 10.

indicator detect the regions that require more resolution. In any case, as in the previous example, the
graph Laplacian operator (η̃K) performs slightly better.

6.4. Compression corner. Let us consider now the Euler equations. We start with the compression
corner test (see Fig. 3). We analyze the effectiveness of the high-order scheme, and evaluate the
performance of the graph Laplacian indicator. We start with a coarse mesh of 16× 16 elements, and
adapt it up to a maximum number of elements. For the high-order method, we set a maximum of
5 · 103 elements. The maximum number of elements for the low-order method is 5 · 104. We use a
nonlinear tolerance of ‖∆uh‖/‖uh‖ < 10−4 and a maximum of 500 iterations.
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Figure 9. Time and elements convergence comparison for the transport problem
with a circular convection field, q = 1.
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Figure 10. Time and elements convergence comparison for the transport problem
with a circular convection field, q = 2.
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Figure 11. Time and elements convergence comparison for the transport problem
with a circular convection field, q = 10.

In Fig. 13, we depict the refinement evolution for the graph Laplacian indicator (η̃K) for linear and
nonlinear stabilization. As expected, we can observe that for the high-order method the scheme is able
to resolve the shock with less refinement steps. The linear stabilization is able to provide well-resolved
shocks at the final refinement step.

Fig. 14 compares the effectiveness of the low-order and the high-order stabilization schemes for
different values of q. The high-order scheme is able to converge efficiently and the overhead of solving
a nonlinear problem does not affect the overall performance. In this case, the low-order and the high-
order schemes require similar computational time for any given error. Actually, for the finer meshes,
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Figure 12. Evolution of the mesh refinement process. η̃K with high–order scheme is
used in the left column. Low–order scheme with Kelly estimator is used in the central
column. η̃K with low–order scheme is used in the right column. For the low–order
scheme from top to bottom results have been obtained at refinement step 1, 2, 3, 7,
and 7. For the high–order refinement steps are 1, 2, 3, 4, and 4.
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Figure 13. Evolution of the mesh refinement process. η̃K with high–order (right)
and low–order (left) schemes are used. For the low–order scheme from top to bottom
results have been obtained at refinement step 1, 2, 3, 8, and 8. For the high–order
refinement steps are 1, 2, 3, 4, and 4.
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the high-order scheme with either q = 1 or q = 2 already performs better than the low-order scheme.
However, for some meshes the high-order scheme exhibits convergence problems. In the case of q = 10
the cost of converging the nonlinear problem does not compensate the increase in computational cost.
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Figure 14. Time and elements convergence comparison for the compression corner
problem.

6.5. Reflected shock. This benchmark consists in two flow streams colliding at different angles. The
domain has dimensions [0.0, 1.0]× [0.0, 4.1] and a solid wall at its lower boundary. This configuration
leads to a steady shock separating both flow regimes that is reflected at the wall producing a third
different flow state behind it. A sketch of this benchmark test is given in Fig. 15. The flow states at
each region have been collected in Tab. 1.

Table 1. Reflected shock solution values at every region.

Region Density [Kgm−3] Velocity [m s−1] Total energy [J]
a© 1.0 (2.9, 0.0) 5.99075
b© 1.7 (2.62, -0.506) 5.8046
c© 2.687 (2.401, 0.0) 5.6122

Figure 15. Reflected shock scheme.

We analyze the effectiveness of the high-order scheme, and evaluate the performance of the graph
Laplacian refinement strategy. We start with a coarse mesh of 16 × 64 elements and adapt the mesh
till a certain number of elements is reached. For the high-order method, we set a maximum of 104

elements. The maximum number of elements for the low-order method is 3 · 105. We use a nonlinear
tolerance of ‖∆uh‖/‖uh‖ < 10−4 and a maximum of 500 iterations.

Fig. 16 compares the effectiveness of the low-order and the high-order stabilization schemes for
different values of q. The high-order scheme converges efficiently and the overhead of solving a nonlinear



MONOTONICITY-PRESERVING FE SCHEMES WITH AMR FOR HYPERBOLIC PROBLEMS 23

problem does not affect the overall performance. Actually, for the most refined meshes the high-order
method is more efficient than the low-order one. As for the previous problem, Fig. 16 shows that the
high-order scheme can present nonlinear convergence problems at some steps of the refinement process.
However, as the mesh becomes more adapted to the problem this issue is reduced.
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Figure 16. Time and elements convergence comparison for the reflected shock problem.

In Fig. 17 we depict the refinement evolution for the graph Laplacian indicator (η̃K) for the low-order
scheme. In these figures it can be observed how the graph Laplacian strategy is able to concentrate
all the resolution at the shock location. Finally, we can conclude from the lower two figures that both
schemes resolve the shocks properly after the mesh has been refined enough.

7. Conclusions

The stabilization schemes in [3, 5] have been extended and assessed in the AMR context for noncon-
forming hierarchical octree meshes. The work focuses in assessing the effectiveness of linear (first-order)
and nonlinear (higher-order) stabilization. We focus the comparison in terms of accuracy versus com-
putational time.

The results indicate that linear stabilization is more effective for coarse meshes. In this case, the
computational cost required to solve the stiff nonlinear problem due to the nonlinear stabilization does
not compensate the improvement in the accuracy. This is especially evident for linear systems of partial
differential equations (PDEs). On the contrary, as the mesh is refined and properly adapted to the
shocks, nonlinear stabilization pays the price. Even though increasing the value of q in the nonlinear
stabilization (a parameter that makes shocks sharper but hinders nonlinear convergence) improves
accuracy, it turns to be more effective to refine the mesh further for low values of q. Nevertheless, it
is worth mentioning that high-order method might exhibit nonlinear convergence problems for some
meshes.

In addition, a new refinement strategy have been proposed. The proposed indicator is based on the
graph Laplacian used in the definition of the stabilization method. Numerical results show that this
shock detector is able to perform better that the well known Kelly estimator for problems with shocks
or discontinuities.
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Figure 17. Evolution of the mesh refinement process. η̃K with low–order scheme is
used. For the low–order scheme from top to bottom results have been obtained at
refinement step 1, 2, 3, 4, 5, 6, and 7. The lower two figures are the high-order (top)
and low-order (bottom) results at their last refinement step.



MONOTONICITY-PRESERVING FE SCHEMES WITH AMR FOR HYPERBOLIC PROBLEMS 25

References

[1] M. Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis,
Computer Methods in Applied Mechanics and Engineering, 142 (1997), pp. 1–88.

[2] J. D. Anderson Jr., Modern Compressible Flow, McGraw-Hill, 2nd ed., 1990.
[3] S. Badia and J. Bonilla,Monotonicity-preserving finite element schemes based on differentiable

nonlinear stabilization, Computer Methods in Applied Mechanics and Engineering, 313 (2017),
pp. 133–158.

[4] S. Badia, J. Bonilla, and A. Hierro, Differentiable monotonicity-preserving schemes for
discontinuous Galerkin methods on arbitrary meshes, Computer Methods in Applied Mechanics
and Engineering, 320 (2017), pp. 582–605.

[5] S. Badia, J. Bonilla, S. Mabuza, and J. N. Shadid, Differentiable local bounds preserving
stabilization for first order hyperbolic problems, Submitted, (2019).

[6] S. Badia and A. Hierro, On Monotonicity-Preserving Stabilized Finite Element Approxima-
tions of Transport Problems, SIAM Journal on Scientific Computing, 36 (2014), pp. A2673–A2697.

[7] S. Badia and A. Hierro, On discrete maximum principles for discontinuous Galerkin methods,
Computer Methods in Applied Mechanics and Engineering, 286 (2015), pp. 107–122.

[8] S. Badia and A. F. Martín, A tutorial-driven introduction to the parallel finite element library
FEMPAR v1.0.0, (2019).

[9] S. Badia, A. F. Martín, E. Neiva, and F. Verdugo, A generic finite element framework on
parallel tree-based adaptive meshes, Submitted, (2019).

[10] S. Badia, A. F. Martín, and J. Principe, FEMPAR: An Object-Oriented Parallel Finite
Element Framework, Archives of Computational Methods in Engineering, 25 (2018), pp. 195–271.

[11] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data
structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Softw.,
38 (2012), pp. 14:1–14:28.

[12] G. R. Barrenechea, E. Burman, and F. Karakatsani, Edge-based nonlinear diffusion for
finite element approximations of convection-diffusion equations and its relation to algebraic flux-
correction schemes, Numerische Mathematik, (2016), pp. 1–25.

[13] G. R. Barrenechea, V. John, and P. Knobloch, Analysis of Algebraic Flux Correction
Schemes, SIAM Journal on Numerical Analysis, 54 (2016), pp. 2427–2451.

[14] M. Bittl and D. Kuzmin, An hp-adaptive flux-corrected transport algorithm for continuous
finite elements, Computing, 95 (2013), pp. 27–48.

[15] J. Bonilla and S. Badia, Maximum-principle preserving space-time isogeometric analysis,
Computer Methods in Applied Mechanics and Engineering, 354 (2019), pp. 422–440.

[16] J. Bonilla, S. Mabuza, J. N. Shadid, and S. Badia, On Differentiable Linearity and Local
Bounds Preserving Stabilization Methods for First Order Conservation Law Systems, in Center for
Computing Research Summer Proceedings 2018, A. Cangi and M. L. Parks, eds., Sandia National
Laboratories, 2018, pp. 107–119.

[17] E. Burman, Adaptive finite element methods for compressible flow, Computer Methods in Applied
Mechanics and Engineering, 190 (2000), pp. 1137–1162.

[18] E. Burman and A. Ern, Nonlinear diffusion and discrete maximum principle for stabilized
Galerkin approximations of the convection-diffusion-reaction equation, Computer Methods in Ap-
plied Mechanics and Engineering, 191 (2002), pp. 3833–3855.

[19] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin Methods for Convection-
Dominated Problems, Journal of Scientific Computing, 16 (2001), pp. 173–261.

[20] R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the
convection-diffusion equation, Computer Methods in Applied Mechanics and Engineering, 110
(1993), pp. 325–342.

[21] L. Demkowicz, Computing with hp-ADAPTIVE FINITE ELEMENTS: One and Two Dimen-
sional Elliptic and Maxwell Problems, vol. 1, CRC Press, oct 2006.

[22] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to Adaptive Methods for



MONOTONICITY-PRESERVING FE SCHEMES WITH AMR FOR HYPERBOLIC PROBLEMS 26

Differential Equations, Acta Numerica, 4 (1995), pp. 105–158.
[23] M. M. Feistauer, J. J. Felcman, and I. I. Straškraba, Mathematical and computational

methods for compressible flow, Oxford University Press, 2003.
[24] C. Fletcher, The group finite element formulation, Computer Methods in Applied Mechanics

and Engineering, 37 (1983), pp. 225–244.
[25] S. Godunov, Finite difference method for numerical computation of discontinuous solutions of the

equations of fluid dynamics, Matematicheskii Sbornik, Steklov Mathematical Institute of Russian
Academy of Sciences, 47(89) (1959), pp. 271–306.

[26] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Dis-
cretization Methods, SIAM Review, 43 (2001), pp. 89–112.

[27] J.-L. Guermond, M. Nazarov, B. Popov, and Y. Yang, A Second-Order Maximum Princi-
ple Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations,
SIAM Journal on Numerical Analysis, 52 (2014), pp. 2163–2182.

[28] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element
approximation for hyperbolic systems, (2015), pp. 1–22.

[29] M. Gurris, Implicit finite element schemes for compressible gas and particle-laden gas flows,
PhD thesis, Technische Universität Dortmund, 2009.

[30] C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based
on a posteriori error estimates, Communications on Pure and Applied Mathematics, 48 (1995),
pp. 199–234.

[31] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska, A posteriori error
analysis and adaptive processes in the finite element method: Part I-error analysis, International
Journal for Numerical Methods in Engineering, 19 (1983), pp. 1593–1619.

[32] A. Kritz and D. Keyes, Fusion Simulation Project Workshop Report, Journal of Fusion Energy,
28 (2009), pp. 1–59.

[33] D. Kuzmin, Linearity-preserving flux correction and convergence acceleration for constrained
Galerkin schemes, Journal of Computational and Applied Mathematics, 236 (2012), pp. 2317–
2337.

[34] , Monolithic convex limiting for continuous finite element discretizations of hyperbolic con-
servation laws, Computer Methods in Applied Mechanics and Engineering, 361 (2020), p. 112804.

[35] D. Kuzmin, S. Basting, and J. N. Shadid, Linearity-preserving monotone local projection
stabilization schemes for continuous finite elements, Computer Methods in Applied Mechanics
and Engineering, 322 (2017), pp. 23–41.

[36] D. Kuzmin, R. Löhner, and S. Turek, Flux-corrected transport, Springer, 2005.
[37] D. Kuzmin and M. Möller, Algebraic Flux Correction I. Scalar Conservation Laws, in Flux-

Corrected Transport, D. D. Kuzmin, P. R. Löhner, and P. D. S. Turek, eds., Scientific Computa-
tion, Springer Berlin Heidelberg, jan 2005, pp. 155–206.

[38] D. Kuzmin, M. Möller, and M. Gurris, Algebraic Flux Correction II. Compressible flows, in
Flux-corrected Transport: Principles, Algorithms, and Applications, 2012, pp. 193–238.

[39] D. Kuzmin, M. Möller, and S. Turek, Multidimensional FEM-FCT schemes for arbitrary
time stepping, International Journal for Numerical Methods in Fluids, 42 (2003), pp. 265–295.

[40] D. Kuzmin, M. Quezada De Luna, C. E. Kees, D. Kuzmin, M. Quezada De Luna, and
C. E. Kees, A partition of unity approach to adaptivity and limiting in continuous finite element
methods, (2018).

[41] D. Kuzmin and S. Turek, Flux Correction Tools for Finite Elements, Journal of Computational
Physics, 175 (2002), pp. 525–558.

[42] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
Cambridge, 2002.

[43] C. Lohmann and D. Kuzmin, Synchronized flux limiting for gas dynamics variables, Journal of
Computational Physics, 326 (2016), pp. 973–990.



MONOTONICITY-PRESERVING FE SCHEMES WITH AMR FOR HYPERBOLIC PROBLEMS 27

[44] C. Lohmann, D. Kuzmin, J. N. Shadid, and S. Mabuza, Flux-corrected transport algorithms
for continuous Galerkin methods based on high order Bernstein finite elements, Journal of Com-
putational Physics, 344 (2017), pp. 151–186.

[45] R. Löhner, An adaptive finite element scheme for transient problems in CFD, Computer Methods
in Applied Mechanics and Engineering, 61 (1987), pp. 323–338.

[46] R. Lohner, Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite
Element Methods, vol. 508, 2004.

[47] S. Mabuza, J. N. Shadid, E. C. Cyr, R. P. Pawlowski, and D. Kuzmin, A linearity
preserving nodal variation limiting algorithm for continuous Galerkin discretization of ideal MHD
equations, Journal of Computational Physics, In press (2020).

[48] S. Mabuza, J. N. Shadid, and D. Kuzmin, Local bounds preserving stabilization for continu-
ous Galerkin discretization of hyperbolic systems, Journal of Computational Physics, 361 (2018),
pp. 82–110.

[49] M. Möller and D. Kuzmin, Adaptive mesh refinement for high-resolution finite element
schemes, International Journal for Numerical Methods in Fluids, 52 (2006), pp. 545–569.

[50] M. Nazarov, J.-L. Guermond, and B. Popov, A posteriori error estimation for the com-
pressible Euler equations using entropy viscosity, tech. rep., 2011.

[51] M. Nazarov and J. Hoffman, An adaptive finite element method for inviscid compressible
flow, International Journal for Numerical Methods in Fluids, 64 (2010), pp. 1102–1128.

[52] F. Shakib, T. J. R. Hughes, and Z. Johan, A new finite element formulation for computa-
tional fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Computer Methods
in Applied Mechanics and Engineering, 89 (1991), pp. 141–219.

[53] E. Süli, A Posteriori Error Analysis and Adaptivity for Finite Element Approximations of Hy-
perbolic Problems, (1999), pp. 123–194.

[54] T. E. Tezduyar and M. Senga, Stabilization and shock-capturing parameters in SUPG for-
mulation of compressible flows, Computer Methods in Applied Mechanics and Engineering, 195
(2006), pp. 1621–1632.

[55] T. Tiankai Tu, D. O’Hallaron, and O. Ghattas, Scalable Parallel Octree Meshing for
TeraScale Applications, in ACM/IEEE SC 2005 Conference (SC’05), IEEE, 2005, pp. 4–4.

[56] A. Tikhonova, G. Tanase, O. Tkachyshyn, N. M. Amato, and L. Rauchwerger, Parallel
Algorithms in STAPL: Sorting and the Selection Problem, tech. rep., 2005.

[57] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed., 2009.
[58] R. Verfurth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford

University Press, 2013.
[59] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practi-

cal engineerng analysis, International Journal for Numerical Methods in Engineering, 24 (1987),
pp. 337–357.

[60] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery anda posteriori er-
ror estimates. Part 1: The recovery technique, International Journal for Numerical Methods in
Engineering, 33 (1992), pp. 1331–1364.


	1. Introduction
	2. Preliminaries
	2.1. Continuous problem
	2.2. Discretization
	2.3. Stability properties

	3. Nonlinear stabilization
	3.1. Differentiable stabilization

	4. Adaptive mesh refinement
	4.1. Error estimators
	4.2. Refinement strategy

	5. Nonlinear solver
	6. Numerical results
	6.1. Convergence
	6.2. Linear discontinuity
	6.3. Circular discontinuity
	6.4. Compression corner
	6.5. Reflected shock

	7. Conclusions
	Acknowledgments
	References

