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In this paper we want to propose practical numerical methods to solve a class of initial-boundary

problem of space-time fractional advection-diffusion equations. To start with, an implicit method

based on two-sided Grünwald formulae is proposed with a discussion of the stability and consis-

tency. Then, the preconditioned generalized minimal residual (preconditioned GMRES) method

and the preconditioned conjugate gradient normal residual (preconditioned CGNR) method,

with an easily constructed preconditioner, are developed. Importantly, because the resulting

systems are Topelitz-like, the fast Fourier transform can be applied to significantly reduce the

computational cost. Numerical experiments are implemented to show the efficiency of our pre-

conditioner, even with cases of variable coefficients.
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1. Introduction

This article is concerned with numerical approaches for solving the initial-boundry value

problem of the space-time fractional advection-diffusion equation (STFDE) [1]:



























∂αu(x, t)

∂tα
= −d+(x, t)Dβ

a,xu(x, t)− d−(x, t)D
β
x,bu(x, t)+

e+(x, t)D
γ
a,xu(x, t) + e−(x, t)D

γ
x,bu(x, t) + f(x, t),

u(x, 0) = φ(x), a ≤ x ≤ b,

u(a, t) = u(b, t) = 0, 0 < t ≤ T,

(1)

where α, β ∈ (0, 1], γ ∈ (1, 2], a < x < b, and 0 < t ≤ T . Here, the parameters α, β and

γ are the order of the STFDE, f(x, t) is the source term, and diffusion coefficient functions

d±(x, t) and e±(x, t) are non-negative under the assumption that the flow is from left to right.

The STFDE can be regarded as generalizations of classical advection-diffusion equations with

the first-order time derivative replaced by the Caputo fractional derivative of order α ∈ (0, 1],

and the first-order and the second-order space derivatives replaced by the two-sided Riemman-

Liouville fractional derivatives of order β ∈ (0, 1] and of order γ ∈ (1, 2]. Namely, the time

fractional derivative in (1) is the Caputo fractional derivative of order α [2] denoted by

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, ψ)

∂ψ

dψ

(t− ψ)α
, (2)

and the left-handed (Dα
a,x) and the right-handed (Dα

x,b) space fractional derivatives in (1) are

the Riemann-Liouville fractional derivatives of order α [2, 3] which are defined by

Dα
a,xu(x, t) =

1

Γ(m− α)

∂m

∂xm

∫ x

a

u(s, t)

(x− s)α−m+1
ds, (3a)

and

Dα
x,bu(x, t) =

(−1)m

Γ(m− α)

∂m

∂xm

∫ b

x

u(s, t)

(s− x)α−m+1
ds, (3b)

where Γ denotes the gamma function, and m is an integer satisfying m − 1 < α ≤ m. Truly,

when α = β = 1 and γ = 2, the above equation reduces to the classical advection-diffusion

equation.

The study of fractional calculus can be traced to late 17th century [4, 3, 5], but it was not

until late 20th century that fractional differential equations (FDEs) become important due to its

wide applications in finance [6, 7, 3, 8], physics [9, 10, 11, 12, 13, 14, 15], image processing [16],

and even biology [17]. Though analytic approaches, such as the Fourier transform method,

the Laplace transform methods, and the Mellin transform method, have been proposed to seek

closed-form solutions [2], there are very few FDEs whose analytical closed-form solutions are
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available. Therefore, the research on numerical approximation and techniques for the solution

of FDEs has attracted intensive interest; see [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and references

therein. Importantly, traditional methods for solving FDEs tend to generate full coefficient

matrices, which incur computational cost of O(N3) and storage of O(N2) with N being the

number of grid points [27].

To optimize the computational complexity, a shifted Grünwald discretization scheme with

the property of unconditional stability was proposed by Meerschaet and Tadjeran [21, 22] to

approximate the FDE. Later, Wang et al. [27] discovered that the linear system generated by

this discretization has a special Toeplitz-like coefficient matrix, or, more precisely, this coefficient

matrix can be expressed as a sum of diagonal-multiply-Toeplitz matrices. This implies that

the storage requirement is O(N) instead of O(N2), and the complexity of the matrix-vector

multiplication only requires O(N logN) operations by the fast Fourier transform (FFT) [28, 29,

30]. Upon using this advantage, Wang et al. proposed the CGNR method having computational

cost of O(N log2N) to solve the linear system and numerical experiments show that the CGNR

method is fast when the diffusion coefficients are very small, i.e., the discretized systems are

well-conditioned [31].

However, the discretized systems become ill-conditioned when the diffusion coefficients are

not small. In this case, the CGNR method converges slowly. To overcome this shortcoming,

preconditioning techniques have been introduced to improve the efficiency of the CG method

with the total complexity being O(N logN) operations at each time step [32, 33]. For the

same reason, we propose two preconditioned iterative methods, i.e., the preconditioned GMRES

method and the preconditioned CGNR method, and observe results related to the acceleration

of the convergence of the iterative methods, while solving (1).

This paper is organized as follows. In section 2, we give an implicit difference method

for (1) and prove that this scheme is unconditionally stable, convergent and uniquely solvable.

In section 3, we propose the preconditioned GMRES method and the preconditioned CGNR

method to solve (1) by exploring the matrix representation of the implicit difference scheme.

Finally, we present numerical experiments to show the efficiency of our numerical approaches in

section 4 and provide concluding remarks in section 5.

2. Implicit difference method

In this section, we present an implicit difference method for solving (1) by discretizing the

STFDE defined by (1). Unlike the approach given by Liu et al. in [1], we use henceforth two-

sided fractional derivatives to approximate the Riemann-Liouville derivatives in (3). We want

to show that, by two-sided fractional derivatives, this method is also unconditionally stable and

convergent.
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2.1. Discretization of the STFDE

To start with, let m and n be two positive integers, and let h = (b− a)/m and τ = T/n be

the sizes of time step and spatial grid, respectively. Then the spatial and temporal partitions

can be defined by

xi = a+ ih, i = 0, 1, . . . ,m; tj = j∆t, j = 0, 1, . . . , n,

and for convenience, we shall denote henceforth

d
(j)
+,i = d+(xi, tj), d

(j)
−,i = d−(xi, tj), e

(j)
+,i = e+(xi, tj),

e
(j)
−,i = e−(xi, tj), f

(j)
i = f(xi, tj), ∆tu(xi, tj) = u(xi, tj+1)− u(xi, tj).

Upon utilizing the forward difference formula, it is known that the time fractional derivative

for 0 < α < 1 can be approximated by [1],

∂αu(xi, tk+1)

∂tα
=

1

Γ(1− α)

∫ tk+1

0

∂u(xi, s)

∂s

ds

(tk+1 − s)α

=
1

Γ(1− α)

k
∑

j=0

(

(

1

τ
∆tu(xi, tj) +O(τ)

)
∫ tj+1

tj

(tk+1 − s)−αds

)

+O(τ2−α)

=
τ−α

Γ(2− α)

k
∑

j=0

aj∆tu(xi, tk−j) +O(τ2−α), (4)

where aj = (j + 1)1−α − j1−α, j = 0, 1, . . . , n. Also, the Riemann-Liouville derivatives in (3)

can be approximated by adopting the Grünwald estimates and the shifted Grünwald estimates

(see [21, Remark 2.5]) for parameters β and γ, respectively, i.e.,

D(β)
a,xu(xi, tk+1) =

1

hβ

i
∑

j=0

g
(β)
j u(xi−j , tk+1) +O(h), (5a)

D
(β)
x,bu(xi, tk+1) =

1

hβ

m−i
∑

j=0

g
(β)
j u(xi+j , tk+1) +O(h), (5b)

D(γ)
a,xu(xi, tk+1) =

1

hγ

i+1
∑

j=0

g
(γ)
j u(xi−j+1, tk+1) +O(h), (5c)

D
(γ)
x,bu(xi, tk+1) =

1

hγ

i+1
∑

j=0

g
(γ)
j u(xi+j−1, tk+1) +O(h), (5d)

where

g
(β)
0 = 1, g

(β)
j =

(−1)j

j!
β(β − 1) · · · (β − j + 1), j = 1, 2, . . . ,

g
(γ)
0 = 1, g

(γ)
j =

(−1)j

j!
γ(γ − 1) · · · (γ − j + 1), j = 1, 2, . . . .
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Let

ω1 =
Γ(2− α)τα

hβ
, ω2 =

Γ(2− α)τα

hγ
, ω3 = Γ(2− α)τα,

and u
(j)
i represent the numerical approximation of u(xi, tj). Using (4) and (5), we shall see that

the solution of (1) can be approximated by the following implicit difference method :

u
(k+1)
i + ω1

(

d
(k+1)
+,i

i
∑

j=0
g
(β)
j u

(k+1)
i−j + d

(k+1)
−,i

m−i
∑

j=0
g
(β)
j u

(k+1)
i+j

)

− ω2

(

e
(k+1)
+,i

i+1
∑

j=0
g
(γ)
j u

(k+1)
i−j+1

+e
(k+1)
−,i

m−i+1
∑

j=0
g
(γ)
j u

(k+1)
i+j−1

)

= u
(k)
i −

k
∑

j=1
aj
(

u
(k−j+1)
i − u

(k−j)
i

)

+ ω3f
(k+1)
i ,

(6)

where i = 1, . . . ,m − 1; k = 0, . . . , n − 1, and the boundary and initial conditions can be

discretized as follows:

u
(0)
i = φ(xi), i = 0, . . . ,m; u

(k)
0 = u(k)m = 0, k = 1, . . . , n.

2.2. Analysis of the implicit difference method

To analyze the stability and convergence of the implicit difference method given above, we

first let U
(k)
i be the approximation solution of u

(k)
i in (6), and let ξ

(k)
i = U

(k)
i − u

(k)
i , i =

1, . . . ,m− 1; k = 0, . . . , n− 1, be the error satisfying the equation

ξ
(k+1)
i + ω1

(

d
(k+1)
+,i

i
∑

j=0
g
(β)
j ξ

(k+1)
i−j + d

(k+1)
−,i

m−i
∑

j=0
g
(β)
j ξ

(k+1)
i+j

)

− ω2

(

e
(k+1)
+,i

i+1
∑

j=0
g
(γ)
j ξ

(k+1)
i−j+1

+e
(k+1)
−,i

m−i+1
∑

j=0
g
(γ)
j ξ

(k+1)
i+j−1

)

= ξ
(k)
i −∑k

j=1 aj
(

ξ
(k−j+1)
i − ξ

(k−j)
i

)

.

(7)

Correspondingly, assume E(k+1) =
[

ξ
(k)
1 , ξ

(k)
2 , . . . , ξ

(k)
m−1

]⊤
, k = 0, . . . , n − 1. It is obvious

upon inspection that the method given by (6) is stable, once we can show that

‖E(k+1)‖∞ ≤ ‖E(0)‖∞.

To this purpose, the following results given in [21, 22, 27] are required.

Lemma 2.1. The coefficients aj , g
(β)
j , g

(γ)
j , for j = 1, 2, . . . , satisfy

1. 1 = a0 > a1 > a2 > · · · > aj → 0, as j → ∞,

2. g
(β)
0 = 1, g

(β)
j < 0, for j = 1, 2, . . . , and

∑∞
j=0 g

(β)
j = 0,

3. g
(γ)
1 = −γ < 0, g

(γ)
j > 0, for j 6= 1, and

∑∞
j=0 g

(γ)
j = 0.

4. g
(β)
j = O(j−(β+1)) and g

(γ)
j = O(j−(γ+1)).
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We do want to note that Lemma 2.1 implies that

k
∑

j=0

g
(β)
j > 0 and

k+1
∑

j=0

g
(γ)
j < 0, for k = 0, 1, . . .

This observation also gives rise to the certification of the stability of the method given by (6).

Theorem 2.2. The implicit difference method (6) for time-space fractional diffusion equation

is unconditionally stable, that is,

‖E(k+1)‖∞ ≤ ‖E(0)‖∞, 0 ≤ k ≤ n− 1. (8)

Proof: First, without loss of generality, we may assume that the diffusion coefficient functions

d+(x, t) = d+, d−(x, t) = d−, e+(x, t) = e+ and e−(x, t) = e− are constants in our proof.

Suppose that k = 0, and let ξ
(1)
ℓ = ‖E(1)‖∞ := max

1≤i≤m−1
|ξ(1)i |. Then

|ξ(1)ℓ | ≤
[

1 + ω1

(

d
(k+1)
+,ℓ

ℓ
∑

j=0

g
(β)
j + d

(k+1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j

)

− ω2

(

e
(k+1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j + e

(k+1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j

)

]

|ξ(1)ℓ |

≤ |ξ(1)ℓ |+ ω1

(

d
(1)
+,ℓ

ℓ
∑

j=0

g
(β)
j |ξ(1)ℓ−j |+ d

(1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j |ξ(1)ℓ+j |

)

− ω2

(

e
(1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j |ξ(1)ℓ−j+1|+ e

(1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j |ξ(1)ℓ+j−1|

)

≤
∣

∣

∣

∣

ξ
(1)
ℓ + ω1

(

d
(1)
+,ℓ

ℓ
∑

j=0

g
(β)
j ξ

(1)
ℓ−j + d

(1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j ξ

(1)
ℓ+j

)

− ω2

(

e
(1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j ξ

(1)
ℓ−j+1 + e

(1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j ξ

(1)
ℓ+j−1

)

∣

∣

∣

∣

= |ξ(0)ℓ | ≤ ‖E(0)‖∞.

Here, the second and third inequalities are true due to the fact given in Lemma 2.1 and the

triangle inequality on absolute value. Now suppose that for some integer k ≥ 0, the result is

established, i.e.,

‖E(j)‖∞ ≤ ‖E(0)‖∞, for j ≤ k.

As we did earlier for k = 0, let ξ
(k+1)
ℓ = max

1≤i≤m−1
|ξ(k+1)
i |. By Lemma 2.1, it can be seen that

|ξ(k+1)
ℓ | ≤

∣

∣

∣

∣

ξ
(k+1)
ℓ + ω1

(

d
(k+1)
+,ℓ

ℓ
∑

j=0

g
(β)
j ξ

(k+1)
ℓ−j + d

(k+1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j ξ

(k+1)
ℓ+j

)

−ω2

(

e
(k+1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j ξ

(k+1)
ℓ−j+1 + e

(k+1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j ξ

(k+1)
ℓ+j−1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

ξkℓ −
k
∑

j=1

aj
(

ξk−j+1
ℓ − ξk−j

ℓ

)

∣

∣

∣

∣

=

∣

∣

∣

∣

k
∑

j=1

(aj−1 − aj)ξ
(k−j+1)
ℓ + akξ

(0)
ℓ

∣

∣

∣

∣

≤ ‖E(0)‖∞.
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Truly, the preceding result, which follows from the assumption that the coefficient functions

are constant, does not provide complete results. In fact, it can be seen that the above proof

requires only the properties of non-negatives of the coefficient functions. Thus, the result for

non-constant ones can be proved similarly.

Our next theorem is to analyze the convergence of the implicit method given in (6). To this

end, recall that u(xi, tj), i = 1, . . . , n − 1; j = 0, . . . , n − 1, denotes the exact solution of (1) at

mesh point (xi, tj) and u
(j)
i , i = 1, . . . , n − 1; j = 0, . . . , n − 1, represents the solution of (6).

Let us assume that ψ
(k)
i = u(xi, tk) − u

(k)
i and Ψ(k) = (ψ

(k)
1 , ψ

(k)
2 , . . . , ψ

(k)
m−1)

⊤. Note that, by

construction, Ψ(0) = 0, since u
(0)
i = ψ(xi) = u(xi, 0), i = 1, . . . ,m− 1.

Using this notation, we consider































































ψ
(1)
i + ω1

(

d
(1)
+,i

i
∑

j=0
g
(β)
j ψ

(1)
i−j + d

(1)
−,i

m−i
∑

j=0
g
(β)
j ψ

(1)
i+j

)

− ω2

(

e
(1)
+,i

i+1
∑

j=0
g
(γ)
j ψ

(1)
i−j+1

+e
(1)
−,i

m−i+1
∑

j=0
g
(γ)
j ψ

(1)
i+j−1

)

= R
(1)
i ,

ψ
(k+1)
i + ω1

(

d
(k+1)
+,i

i
∑

j=0
g
(β)
j ψ

(k+1)
i−j + d

(k+1)
−,i

m−i
∑

j=0
g
(β)
j ψ

(k+1)
i+j

)

− ω2

(

e
(k+1)
+,i

i+1
∑

j=0
g
(γ)
j

ψ
(k+1)
i−j+1 + e

(k+1)
−,i

m−i+1
∑

j=0
g
(γ)
j ψ

(k+1)
i+j−1

)

= ψ
(k)
i −

∑k
j=1 aj

(

ψ
(k−j+1)
i − ψ

(k−j)
i

)

+R
(k+1)
i ,

1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1.

(9)

In this way, we can observe from (4) and (5) that

R
(k+1)
i = O

(

(τ2 + ταh)
)

, 1 ≤ i ≤ m− 1; 0 ≤ k ≤ n− 1. (10)

Thus, a way to do the convergence analysis is sufficed to come up with an upper bound of

‖Ψ(k+1)‖∞, k = 0, 1, . . . , n− 1, as follows.

Theorem 2.3.

‖Ψ(k+1)‖∞ ≤ Ca−1
k (τ2 + ταh), k = 0, . . . , n− 1, (11)

for some constant C.

Proof: Corresponding to (10), we shall assume for convenience that there is a positive constant

C such that

|R(k+1)
i | ≤ C(τ2 + ταh), 1 ≤ i ≤ m− 1; 0 ≤ k ≤ n− 1.

Then, the poof is by mathematical induction on k. Let |ψ1
ℓ | = ‖Ψ1‖∞ := max

1≤i≤m−1
|ψ1

i |. Observe

7



from (9) that if k = 0, then we have

|ψ(1)
ℓ | ≤

[

1 + ω1

(

d
(k+1)
+,ℓ

ℓ
∑

j=0

g
(β)
j + d

(k+1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j

)

− ω2

(

e
(k+1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j + e

(k+1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j

)

]

|ψ(1)
ℓ |

≤ |ψ(1)
ℓ |+ ω1

(

d
(1)
+,ℓ

ℓ
∑

j=0

g
(β)
j |ψ(1)

ℓ−j |+ d
(1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j |ψ(1)

ℓ+j|
)

− ω2

(

e
(1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j |ψ(1)

ℓ−j+1|+ e
(1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j |ψ(1)

ℓ+j−1|
)

≤
∣

∣

∣

∣

ψ
(1)
ℓ + ω1

(

d
(1)
+,ℓ

ℓ
∑

j=0

g
(β)
j ψ

(1)
ℓ−j + d

(1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j ψ

(1)
ℓ+j

)

− ω2

(

e
(1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j ψ

(1)
ℓ−j+1 + e

(1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j ψ

(1)
ℓ+j−1

)

∣

∣

∣

∣

= |R(1)
ℓ | ≤ Ca−1

0 (τ2 + ταh),

namely,

‖Ψ1‖∞ ≤ Ca−1
0 (τ2 + ταh),

Suppose that the result is valid for some integer k ≥ 0, i.e.,

‖Ψj‖∞ ≤ Ca−1
k−1(τ

2 + ταh), j = 1, . . . , k − 1. (12)

Let |ψk+1
ℓ | = ‖Ψk+1‖∞ := max

1≤i≤m−1
|ψk+1

i |. It follows that

|ψk+1
ℓ | ≤

∣

∣

∣

∣

ψ
(k+1)
ℓ + ω1

(

d
(k+1)
+,ℓ

ℓ
∑

j=0

g
(β)
j ψ

(k+1)
ℓ−j + d

(k+1)
−,ℓ

m−ℓ
∑

j=0

g
(β)
j ψ

(k+1)
ℓ+j

)

−ω2

(

e
(k+1)
+,ℓ

ℓ+1
∑

j=0

g
(γ)
j ψ

(k+1)
ℓ−j+1 + e

(k+1)
−,ℓ

m−ℓ+1
∑

j=0

g
(γ)
j ψ

(k+1)
ℓ+j−1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

ψk
ℓ −

k
∑

j=1

aj
(

ψk−j+1
ℓ − ψk−j

ℓ

)

∣

∣

∣

∣

=

∣

∣

∣

∣

k
∑

j=1

(aj−1 − aj)ψ
(k−j+1)
ℓ + akψ

(0)
ℓ +R

(k+1)
ℓ

∣

∣

∣

∣

≤
k
∑

j=1

(aj−1 − aj)
∣

∣

∣
ψ
(k−j+1)
ℓ

∣

∣

∣
+
∣

∣

∣
R

(k+1)
ℓ

∣

∣

∣

≤ C

(

ak +

k
∑

j=1

(aj−1 − aj)

)

a−1
k (τ2 + ταh) ≤ Ca−1

k (τ2 + ταh),

since aj−1 − aj > 0, j = 1, . . . , k, and ψ
(0)
ℓ = 0.

It has been shown in [1] that

lim
k→∞

a−1
k

kα
=

1

1− α
. (13)

By (11) and (13), we immediately have the following result, which demonstrates the convergence

of our implicit method.
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Corollary 2.4. Let u
(k)
i , i = 1, . . . ,m− 1; k = 1, . . . , n be the numerical solution computed by

the implicit difference method (6). Then, there exists a constant C such that

|u(xi, tk)− u
(k)
i | ≤ C(τ2−α + h), i = 1, . . . ,m− 1; k = 1, . . . , n. (14)

We remark that the above approach used to analyze the stability and convergence is simply

a follow-up used by Liu et al. in [1]. Our focus in this work is to apply the efficient CGNR

method and GMRES method to solve the linear system arised from (6) in terms of suitably

constructed preconditioners.

3. Preconditioned iterative methods

Before moving into the investigation of preconditioning techniques, the matrix representation

of (6) should be elaborated first. To facilitate our discussion, we use Im−1 to denote the identity

matrix of order m− 1. For 1 ≤ j ≤ n− 1, let

u(j) = [u
(j)
1 , u

(j)
2 , . . . , ujm−1]

⊤, f (j) = [f
(j)
1 , f

(j)
2 , . . . , f

(j)
m−1]

⊤,

D
(j)
+ = diag(d

(j)
+,1, ..., d

(j)
+,m−1), D

(j)
− = diag(d

(j)
−,1, ..., d

(j)
−,m−1),

E
(j)
+ = diag(e

(j)
+,1, ..., e

(j)
+,m−1), E

(j)
− = diag(e

(j)
−,1, ..., e

(j)
−,m−1),

and u(0) = (φ
(0)
1 , φ

(0)
2 , · · · , φ(0)m−1)

⊤. Let Gβ and Gγ be two Toeplitz matrices defined by

Gβ =





















g
(β)
0 0 · · · · · · 0

g
(β)
1 g

(β)
0 0 · · · 0

... g
(β)
1 g

(β)
0

. . .
...

...
. . .

. . .
. . . 0

g
(β)
m−2

. . .
. . .

. . . g
(β)
0





















, Gγ =



























g
(γ)
1 g

(γ)
0 0 · · · 0 0

g
(γ)
2 g

(γ)
1 g

(γ)
0 0 · · · 0

... g
(γ)
2 g

(γ)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g
(γ)
m−2

. . .
. . .

. . . g
(γ)
1 g

(γ)
0

g
(γ)
m−1 g

(γ)
m−2 · · · · · · g

(γ)
2 g

(γ)
1



























.

Upon substitution, we see that (6) is equivalent to a matrix equation of the form

(Im−1 +A(k+1))u(k+1) = b(k+1), (15)

where

b(k+1) =

k
∑

j=1

(ak−j − ak−j+1)u
(j) + aku

(0) + ω3f
k+1

and

A(k+1) = ω1(D
(k+1)
+ Gβ +D

(k+1)
− G⊤

β )− ω2(E
(k+1)
+ Gγ + E

(k+1)
− G⊤

γ ). (16)
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Now we can define the corresponding matrix equation of (6). An intuitive question to ask is

whether the matrix equation is uniquely solvable. Before answering this, we make an interesting

observation of the following result.

Theorem 3.1. The matrix Im−1+A
(k+1) in (15) is a nonsingular, strictly diagonally dominant

M -matrix.

Proof: Let a
(k+1)
ij be the (i, j) entry of the matrix A(k+1) in (15). Note that we have from (15),

a
(k+1)
ii −

m−1
∑

j=1,j 6=i

|a(k+1)
ij |

= ω1

(

d
(k+1)
+,i + d

(k+1)
−,i

)

g
(β)
0 − ω1

(

d
(k+1)
+,i

i−1
∑

j=1
g
(β)
j + d

(k+1)
−,i

m−i−1
∑

j=1
g
(β)
j

)

−ω2

(

e
(k+1)
+,i + e

(k+1)
−,i

)

g
(γ)
1 − ω2

(

e
(k+1)
+,i

i
∑

j=0,j 6=1

g
(γ)
j + e

(k+1)
−,i

m−i
∑

j=0,j 6=1

g
(γ)
j

)

≥ ω1

(

d
(k+1)
+,i + d

(k+1)
−,i

)

g
(β)
0 − ω1

(

d
(k+1)
+,i + d

(k+1)
−,i

) ∞
∑

j=1
g
(β)
j

−ω2

(

e
(k+1)
+,i + e

(k+1)
−,i

)

g
(γ)
1 − ω2

(

e
(k+1)
+,i + e

(k+1)
−,i

) ∞
∑

j=0,j 6=1

g
(γ)
j = 0.

(17)

At first glance, this implies that the coefficient matrix Im−1 + A(k+1) is strictly diagonally

dominant and (Im−1 + A(k+1))1 > 0, where 1 is a vector of length n − 1 with all entries equal

to one. We observe further that ai,j ≤ 0, for all i 6= j, that is, the matrix Im−1 + A(k+1) is a

Z-matrix. This completes the proof.

With the aid of Lemma 3.1, we can point out quickly that the solution of (15) is unique. More

significantly, since (15) is a matrix representation of (6), we then come up with the following

result.

Corollary 3.2. The difference method (6) is uniquely solvable.

By now, we have completed the proof of the unique solvability of the implicit difference

scheme given in (6). We are now ready to apply the popular and effective iterative methods,

the CGNR and GMRES methods, to solve (15). In section 4, we will see that while solving

large-scale equations, the systems would become nearly singular and ill-conditioned. For such

problems, we apply the preconditioner technique to accelerate the iterative process.

To this purpose, we start by decomposing matrices Gβ and Gγ as

Gβ = Gβ,ℓ + (Gβ −Gβ,ℓ),

Gγ = Gγ,ℓ + (Gγ −Gγ,ℓ),

10



where

Gβ,ℓ =





















g
(β)
0
... g

(β)
0

g
(β)
ℓ−1

. . .

. . .
. . .

g
(β)
ℓ−1 · · · g

(α)
0





















+

























0
. . .

0

g
(β)
ℓ

. . .
∑m−2

j=ℓ g
(β)
j

























,

Gγ,ℓ =





















g
(γ)
1 g

(γ)
0

... g
(γ)
1 g

(γ)
0

g
(γ)
ℓ

. . .
. . .

. . .
. . . g

(α)
0

g
(γ)
ℓ · · · g

(γ)
1





















+

























0
. . .

0

g
(γ)
ℓ+1

. . .
∑m−1

j=ℓ+1 g
(γ)
j

























.

Namely, the matrix A(k+1) can be decomposed as

A(k+1) = A
(k+1)
ℓ +B

(k+1)
ℓ ,

where

A
(k+1)
ℓ = ω1(D

k+1
+ Gβ,ℓ +Dk+1

− G⊤
β,ℓ)− ω2(E

k+1
+ Gγ,ℓ + Ek+1

− G⊤
γ,ℓ),

B
(k+1)
ℓ = A(k+1) −A

(k+1)
ℓ .

Note that from Lemma 2.1, it is easy to show that the Toeplitz matrices Gβ and −Gγ are

M -matrices and strictly diagonally dominant. This implies that the matrices Gβ,ℓ and Gγ,ℓ are

thus strictly diagonally dominant M -matrices, since the matrices Gβ,ℓ and Gγ,ℓ have the same

row sums as Gβ and Gγ , respectively. In this way, the following fact can be realized directly.

Theorem 3.3. The matrix Im−1 + A
(k+1)
ℓ is a nonsingular, strictly diagonally dominant M-

matrix for all ℓ.

In addition, Lemma 2.1 implies that

‖(Im−1 +A(k+1))− (Im−1 +A
(k+1)
ℓ )‖∞

‖Im−1 −A(k+1)‖∞

≤
1
hγ ‖(Dk+1

+ (Gβ −Gβ,ℓ) +Dk+1
−

(Gβ −Gβ,ℓ)
⊤)− (Ek+1

+ (Gγ −Gγ,ℓ) + Ek+1
−

(Gγ −Gγ,ℓ)
⊤)‖∞

1
hβ ‖(D(k+1)

+ Gβ +D
(k+1)
−

G⊤

β )− (E
(k+1)
+ Gγ + E

(k+1)
−

G⊤
γ )‖∞

= O
(

k−β
)

,
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since ‖Gβ − Gβ,ℓ‖∞ = O(k−β), ‖Gγ − Gγ,ℓ‖∞ = O(k−γ), and h = (b − a)/m [33]. Namely,

the relative difference between Im−1 +A(k+1) and Im−1 +A
(k+1)
ℓ can become very small while k

becomes large enough. Observe further that the banded matrix Im−1+A
(k+1)
ℓ is a sparse matrix

consisting of 2ℓ−1 nonzero diagonal entries. With this in hand, an efficient precoditioner for the

linear system (15) is attainable by simply choosing Im−1+A
(k+1)
ℓ . We assume here that the reader

is familiar with the fundamental terminology and iterative approaches of the preconditioned

GMRES and CGNR methods. For a comprehensive understanding of such iterative techniques,

the reader is referred to the monograph [34] written by Saad.

3.1. Preconditioned GMRES method

The GMRES method, proposed in 1986 in [35], is one of the most popular and effective

methods for solving nonsymmetric linear systems. However, for large sparse systems, one might

try to apply preconditioning techniques to reduce the condition number, and hence improve

the convergence rate. Let P
(k+1)
ℓ := Im−1 + A

(k+1)
ℓ . Our purpose here is to replace the linear

system (15) by the preconditioned linear system

(P
(k+1)
ℓ )−1(Im−1 +A(k+1))u(k+1) = (P

(k+1)
ℓ )−1b(k+1) (18)

with the same solution. We then solve (18) in terms of the left-preconditioned GMRES method

proposed in [33]. To make this work more self-contained, we quote this method as follows:

Preconditioned GMRES(ρ) method

At each time step t(k+1), we choose u0 as initial guess for u(k+1)

Set µ := 0, and compute the LU factorization: P
(k+1)
ℓ = LU

Compute r := b(k+1) − (Im−1 +A(k+1))u(k+1), and assign rt := r

While µ ≤ IterMax and ‖rt‖2/‖b(k+1)‖2 > ǫ do

µ := µ+ 1

Compute rw := U−1L−1r, β := ‖rw‖, v1 := rw/β

Assign j := 0 and V1 := v1

While j ≤ ρ and ‖rt‖2/‖b(k+1)‖2 > ǫ do

j := j + 1

Compute w := U−1L−1(Im−1 +A(k+1))vj

For i = 1, . . . , j do

hi,j = vT
i ∗w

w := w − hi,jvi

Enddo

Compute hj+1,j = ‖w‖2 and vj+1 := w/hj+1,j

12



Assign Vj+1 := [Vj,vj+1] and Hj := [hγ,δ ]1≤γ≤j+1,1≤δ≤j

Compute yj := argmin
y
‖βe1 −Hjy‖2

Compute the residual rt := r− LUVj+1Hjyj

Enddo

r := rt

u(k+1) := u(k+1) + Vjyj

Enddo

Here, IterMax denotes the maximal number of iteration, ǫ denotes the given relative accu-

racy of the residual, ρ denotes that the GMRES method is restarted after ρ iterations, and the

symbols rt and rw represent the current residual of the original linear system (15) and that of

the preconditioned linear system (18), accordingly. Associated with this preconditioned method,

two major portions of the computational work are:

• the computation of w = U−1L−1(Im−1 +A(k+1))vj and

• the computation of rt = r− LUVj+1Hjyj .

We observe from (16) that

A(k+1)v = ω1(D
(k+1)
+ Gβv +D

(k+1)
− G⊤

β v)− ω2(E
(k+1)
+ Gγv + E

(k+1)
− G⊤

γ v),

whereGγ andGβ are two (m−1)−by−(m−1) Toeplize matrices and can be stored only withm−1

and m entries, respectively. This implies that the major work for computing A(k+1)v includes

four Toeplitz matrix-vector multiplications, Gβv, G
⊤
β v, Gγv and G⊤

γ v, which can be obtained by

using the fast Fourier transform (FFT) with only O((m− 1) log(m− 1)) operations [28, 30, 36].

What might be important to note is that based on the specific structure of the matrix Gs,

where s = β or γ, the calculations of Gsv and G⊤
s v can be done simultaneously, by computing

Gβ(v +
√
−1v̂), where v̂ = (vm−1, vm−2, . . . , v1)

⊤.

Since the matrix P
(k+1)
ℓ is banded and strongly diagonally dominant, P

(k+1)
ℓ admits a banded

LU factorization [37, Proposition2.3], i.e.,

P
(k+1)
ℓ = LU, (19)

where L and U are banded with bandwidth ℓ and can be obtain in about O((m−1)ℓ2) operations

when ℓ is small compared to (m−1). This implies that given a vector x of an appropriate size, the

matrix-vector multiplications Lx, Ux, L−1x, and U−1x require only O((m − 1)ℓ) operations.

Thus, the computation of the vector w requires O((m − 1) log(m − 1)) operations, and the

computation of the vector rt requires O((m − 1)(j + ℓ)) operations since Vj+1 and Hj are

matrices of sizes (m− 1)−by−(j + 1) and (j + 1)−by−j.
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3.2. Preconditioned CGNR method

For solving the nonsymmetric linear system (15), one might consider the application of the

conjugate gradient (CG) method to the normal equation

(Im−1 +A(k+1))⊤(Im−1 +A(k+1))u(k+1) = (Im−1 +A(k+1))⊤b(k+1). (20)

This approach is known as CGNR. One disadvantage of applying the CG method directly to

the equation (20) is that the condition number of (Im−1+A
(k+1))⊤(Im−1+A

(k+1)) is the square

of that of Im−1 + A(k+1). Thus, the convergence process of the CGNR method would be very

slow. To accelerate the entire process, we choose (P
(k+1)
ℓ )⊤P

(k+1)
ℓ as the preconditioner for the

normal equation (20).

Note that the main computational works in the preconditioned CGNR method include two

parts [34]. One is the matrix-vector multiplication (Im−1 +A(k+1))⊤(Im−1 +A(k+1))v for some

vector v. The other is the calculation of the solution of the linear system
(

P
(k+1)
ℓ

)⊤
P

(k+1)
ℓ w = z

for some vectors w and z. Of course, like the preconditioned GMRES method, the calculation

of the matrix-vector multiplication (Im−1+A
(k+1))⊤(Im−1+A

(k+1))v can be done efficiently by

applying the fast algorithm, FFT, to the Toeplitz-like structure of the resulting matrix A(k+1)

with O((m − 1) log(m − 1)) operations. Similarly, from (19), we know that the solution of
(

P
(k+1)
ℓ

)⊤
P

(k+1)
ℓ w = z can be obtained with only O((m− 1)ℓ) operations.

4. Numerical experiments

In this section, we present an example to demonstrate the performance of preconditioned

iterative methods versus unconditioned iterative methods. For all methods, the initial values

are chosen to be

v0 =







u(0) := [φ(x1), . . . , φ(xm−1)]
⊤ , k = 1,

2u(k) − u(k−1), k > 1.

as suggested in [27] and the stopping criterion is

‖rj‖2
‖b(k+1)‖2

< 10−7,

where rj is the residual vector after jth iteration.

Example 4.1. Consider the equation (1) with α = 0.8, β = 0.6, and γ = 1.8. The left-sided

and right-sided diffusion coefficients are given by

d+(x, t) = 6(1 + t)x0.6, d−(x, t) = 6(1 + t)(1− x)0.6,

e+(x, t) = 6(1 + t)x1.8, e−(x, t) = 6(1 + t)(1− x)1.8.
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with the spatial interval Ω = (0, 1)× (0, 1) and the time interval [0, T ] = [0, 1]. The source term

and the initial condition are given by

f(x, t) = et
[

6(1 + t)
(

( Γ(4)
Γ(3.4) −

Γ(4)
Γ(2.2)

)(

x3 + (1− x)3
)

−
( 3Γ(5)
Γ(4.4) −

3Γ(5)
Γ(3.2)

)(

x4 + (1− x)4
)

+
( 3Γ(6)
Γ(5.4) −

3Γ(6)
Γ(4.2)

)(

x5 + (1− x)5
)

−
( Γ(7)
Γ(6.4) −

Γ(7)
Γ(5.2)

)(

x6 + (1− x)6
)

)

+ x3(1− x)3
]

and

u(x, 0) = x3(1− x)3.

It can be shown by a direct computation that the solution to the fractional diffusion equation is

u(x, t) = etx3(1− x)3.

Table 1: The average number of iterations for Example 4.1

m = n GMRES(20) PGMRES(20) CGNR PCGNR error

16 8.000 3.063 12.438 3,125 4.6312 × 10−4

32 16.000 3.938 32.594 4.063 2.4162 × 10−4

64 84.969 4.063 100.547 4.813 1.3320 × 10−4

128 231.781 5.055 318.852 4.797 7.5522 × 10−5

256 486.859 6.082 1060.191 5.148 4.5765 × 10−5

Table 2: The required CPU times for Example 4.1

m = n GMRES(20) PGMRES(20) CGNR PCGNR

16 0.0046 0.0310 0.0620 0.0320

32 0.1400 0.0470 0.2810 0.0780

64 1.4510 0.1560 1.7000 0.1870

128 10.9200 0.5930 18.2210 0.7330

256 55.5830 3.7120 162.7550 4.1340

The numerical results were obtained by using MATLAB R2010a on a Lenovo Laptop Intel(R)

Core(TM)2 Duo of 2.20 GHz CPU and 2GB RAM. We set the bandwidth ℓ of the preconditioner

P
(k+1)
ℓ equal to 8 and use “m” and “n” to represent the numbers of the spatial partition and
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Table 3: Condition numbers for relevant matrices for Example 4.1.

m = n 16 32 64 128 256

k
(

Â
)

48.86 162.84 491.07 1.34e+3 3.34e+3

k
(

(P
(1)
8 )−1Â

)

1.05 1.17 1.29 1.47 1.79

k
(

Â⊤Â
)

2.39e+3 2.65e+4 2.41e+5 1.79e+6 1.16e+7

k
((

(P
(1)
8 )⊤P

(1)
8

)−1
Â⊤Â

)

1.88 20.65 193.57 960.76 3.46e+3

the number of the temporal partition, respectively. In Tables 1 and 2, we present the average

numbers of iterations, the errors computed by the sup-norm between the true solution and the

numerical solution at the last time step and the CPU times (seconds) required by GMRES(20),

PGMRES(20), CGNR, and PCGNR methods. We see that the number of iterations and exe-

cution time by the GMRES(20) and the CGNR methods increase dramatically, while those by

the PGMRES(20) and PCGNR are changed little. The phenomena might be explained by the

clustering of the eigenvalues of the relevant coefficient matrices. As an example, see Figure 1 for

the distribution of eigenvalues of matrices Â, Â⊤Â, (P
(1)
8 )−1Â and

(

(P
(1)
8 )⊤P

(1)
8

)−1
Â⊤Â with

m = n = 256. On the other hand, we see in Table 3 that the effect of the preconditioner on

the condition numbers of the relevant matrices. The reader should be able to notice that the

condition number significantly improves with the help of the proposed preconditioner.

5. Conclusion

Determining analytic solutions of FDEs is very challenging and remain unknown for most

FDEs. This paper is to present an implicit approach to solve STFDE with two-sided Grünwald

formulae. More significantly, with the aid of (15), we can ameliorate the calculation skill by

the implementation of efficient and reliable preconditioning iterative techniques, the PGMRES

method and the PCGNR method, with only computational cost of O((m − 1) log(m − 1)).

Numerical results strongly suggest that the efficiency of the proposed preconditioning methods.
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