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Abstract

A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based
on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose–
Einstein and Fermi–Dirac gases are considered. The formulas for the split flux vectors are derived based on the general
three-dimensional distribution function in velocity space and formulas for lower dimensions can be directly deduced. Gen-
eral curvilinear coordinates are introduced to treat practical problems with general geometry. High-order accurate schemes
using weighted essentially non-oscillatory methods are implemented. The resulting high resolution kinetic flux splitting
schemes are tested for 1D shock tube flows and shock wave diffraction by a 2D wedge and by a circular cylinder in ideal
quantum gases. Excellent results have been obtained for all examples computed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, a class of kinetic flux vector splitting (KFVS) schemes have been derived for the ideal quantum
gas dynamics [26] based on the quantum collisionless Boltzmann equation and BGK model [1]. Formulations
in Cartesian coordinates have been derived starting from one- to three-dimensional (in velocity or momentum
space) distribution functions. The derivations of the split flux vectors for the lower dimensions, i.e., less than
three space dimensions, are done based on one- and two-dimensional reduced equilibrium distribution func-
tions. Both Bose–Einstein and Fermi–Dirac gases have been considered. It is well known that the effects of
dimensionality are important attributes that are characteristic of the ideal quantum gases, see [16]. In this
paper, we further extend and generalize the method to general coordinates and adopt a more general three-
dimensional (in velocity space) distribution approach to derive the split flux vectors for the ideal quantum
gas dynamics. The formulas for lower dimensions can be directly deduced. The resulting split flux vectors
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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based on the present approach share the same form as the previous ones but with different orders of boson or
fermion functions.

In statistical mechanics, there are three kinds of equilibrium distributions for a system of N identical par-
ticles, namely, the Maxwell–Boltzmann (MB), Bose–Einstein (BE) and Fermi–Dirac (FD) distributions; the
former one is for classical particles and the later two are for quantum particles. The physical properties of fer-
mion and boson systems are profoundly different at sufficiently low temperature. However, in the classical
limit, both quantum distributions reduce to the Maxwell–Boltzmann distribution. The ideal classical gas
dynamics can be described by the Maxwell–Boltzmann distribution which corresponding to the lowest order
solution of the classical Boltzmann equation when Chapman–Enskog procedure is employed [2]. The conser-
vation laws based on the Maxwell–Boltzmann distribution is the well-known Euler equations of classical gas
dynamics. Analogous to the classical Boltzmann equation, a quantum Boltzmann equation for the transport
phenomenon can be developed for fermions and bosons, see [11]. A formal solution procedure which gener-
alizing the Chapman–Enskog method to solve the quantum Boltzmann equation was given by Uehling and
Uhlenbeck [20] where the first and second approximations of the distribution function and expressions for
the viscosity and heat conductivity coefficients were given. Thus, the corresponding quantum gas dynamics
as governed by the quantum Euler equations and quantum Navier–Stokes equations can also be explored
based on the quantum kinetic theory.

In the past 40 years, extensive theoretical and computational methods have been developed to solve the
Euler equations of classical gas dynamics see [8,19]. A particular class of methods closely related to the
present work are the KFVS of [4,5,17]. More recent works on kinetic numerical methods have been given
by Xu and co-workers [14,21–23]. An interesting explicit scheme for solving the ideal gas dynamics, the
so-called beam scheme has been presented by Sanders and Predergast [18] for solving the equilibrium limit
of the classical Boltzmann equation. In contrast to the beam scheme which was based on the local ther-
modynamic equilibrium solution of the Boltzmann equation, the derivation of KFVS method is based on
the collisionless Boltzmann equation and results a novel method for solving the transport processes gov-
erned by the Euler equations of Newtonian gas dynamics. Both the basic beam scheme and the KFVS
scheme for the classical Euler equations are of first order accuracy and thus numerically diffusive,
although with different degrees of numerical diffusion. However, this numerical diffusion of first order
beam and KFVS (or any upwind) methods can be significantly reduced by the implementation of
higher-order methods. A corresponding beam scheme for ideal quantum gas dynamics has been given
[25]. In this work, we shall adopt and generalize the concept of KFVS scheme to devise a numerical
method for the computation of ideal quantum gas dynamics. We start with the quantum Boltzmann equa-
tion, in which the particles obey the quantum statistics. First, the KFVS scheme for ideal quantum gas
dynamics is derived based on solution of the initial value problem of the collisionless quantum Boltzmann
equation. The main difference between the present work and our previous one [26] lies in the use of three-
dimensional distribution function in velocity space through out here even for derivation of formulas for
lower dimensions. This difference results in that the split flux vectors are expressed in terms of different
orders of the Bose functions or Fermi functions. The present approach allows very systematic derivations
for the split fluxes in various space dimensions. To increase the accuracy, we adopt the weighted essen-
tially non-oscillatory (WENO) method [10] into our basic first order KFVS scheme to yield a class of
high-order KFVS schemes for computing ideal quantum gas dynamical flows. Although there are some
recent works [7,24] in which improvement and refinement of the original WENO method have been made,
however, we are not experimenting it here, since our purpose in this work is not to develop or compare
different WENO methods. In view of the existing extensive works on experimental and computational clas-
sical gas dynamics, the present quantum KFVS schemes can be potentially useful for revealing various
dynamical aspects of ideal quantum gas through mathematical and physical analogies. In addition, this
work also provides a framework for parallel treatment of molecules, electrons, phonons, and photons
in equilibrium carrier transport [3].

The paper is organized as following. We first describe the elements of quantum Boltzmann transport equa-
tion in Section 2. The basic kinetic flux splitting method is derived in Section 3 for the bosons and fermions.
General curvilinear coordinates are introduced to treat general geometries. Treatment of boundary conditions
is also outlined. In Section 4, the weighted ENO method is implemented to yield a class of high-order flux
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vector splitting methods. In Section 5, numerical experiments in one and two space dimensions are given to
illustrate the methods. Lastly, some concluding remarks are given in Section 6.

2. Collisionless quantum Boltzmann equation

In this section, elements of the semi-classical Boltzmann transport equation appropriate for the develop-
ment of present work are briefly outlined. Following Kadanoff and Baym [11], we consider the quantum Boltz-
mann equation
o

ot
þ~u � r~x �rV ð~x; tÞ � r~u

� �
f ð~x;~u; tÞ ¼ df

dt

� �
collision

; ð1Þ
where~u is the particle velocity, V is the externally applied field and f ð~x;~u; tÞ is the distribution function which
represents the average density of particles with velocity~u at the space–time point~x, t. The (df/dt)collision denotes
the collision term. A formal solution procedure which generalizing the Chapman–Enskog method to solve Eq.
(1) was given by Uehling and Uhlenbeck [20]. In recent years, the development of numerical methods for solv-
ing the quantum Boltzmann equation has become an active research subject, see [6]. A recent review on the
numerical methods for the dynamics and transport of atomic quantum gases has been given (see [13] and
the references therein). The major mathematical difficulty of solving Eq. (1) is due to the nonlinear collision
term. Here, we consider only the cases where the collision term can be neglected and demand that
df
dt

� �
collision

¼ 0: ð2Þ
This corresponds to two important special cases. One is the free molecular flow (where the mean free path of
the gas system is very large or infinite) and the other is the equilibrium flow (where the mean collision time is
infinitely short). The solution to Eq. (1) for the equilibrium flow is given by
f ð~x;~u; tÞ ¼ f0 ¼
m4

h3

1

exp k ~u� ~U
� �2 � l

� .
kBT

�
þ h
¼ m4

h3

1

z�1 exp k ~u� ~U
� �2

� �
þ h

; ð3Þ
where k = m/2kBT and h = +1 denotes the Fermi–Dirac statistics and h = �1 the Bose–Einstein statistics. The
equilibrium distribution is an important reference state since most transport phenomena in gases originate
from its slightly deviation from the equilibrium state. To complete the equilibrium solution we have to deter-
mine the unknown functions, namely, the gas temperature, T ð~x; tÞ, the mean velocity, ~Uð~x; tÞ ¼ ðU ; V ;W Þ, and
the chemical potential, l, or fugacity, z = exp(l/kBT), which appear in Eq. (3). These flow parameters can be
determined by making use of the conservation laws for number of particles, momentum, and energy. These
conservation laws can be obtained by multiplying Eq. (1) by 1,~u, and~u2=2, and then integrating the resulting
equations over the particle velocity space ~u ¼ ðu; v;wÞ. The integrals of the collision terms in all three cases
vanish automatically and we have the differential conservation laws for the conserved macroscopic quantities,
i.e., the density q, momentum q~U , and energy density q� as follows:
oq
ot
þr~x � q~U ¼ 0; ð4Þ

oq~U
ot
þr~x �

Z
~u~uf ð~x;~u; tÞd~u ¼ �qr~xV ; ð5Þ

oq�
ot
þr~x �

Z
~u
~u2

2
f ð~x;~u; tÞd~u ¼ �q~U � r~xV ; ð6Þ
where ðq; q~U ; q�Þ are the moments of /a ¼ ð1;~u;~u2=2Þ and for the equilibrium case, they can be explicitly cal-
culated as
qð~x; tÞ ¼
Z

f0ð~x;~u; tÞd~u ¼
m

K3
Q3

2
ðzÞ; ð7Þ
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qð~x; tÞ~Uð~x; tÞ ¼
Z
~uf0ð~x;~u; tÞd~u ¼

m

K3
Q3

2
ðzÞ~U ; ð8Þ

qð~x; tÞ�ð~x; tÞ ¼
Z
~u2

2
f0ð~x;~u; tÞd~u ¼

3

2

m

bK3
Q5

2
ðzÞ þ 1

2

m

K3
Q3

2
ðzÞ~U 2 ¼ 1

c� 1
P ð~x; tÞ þ 1

2
qð~x; tÞ~U 2; ð9Þ
where K ¼ h
ffiffiffiffiffiffiffiffi
k=p

p
=m is the thermal wavelength, P ð~x; tÞ is the gas pressure and c is the ratio of specific heats.

In the above, QmðzÞ denotes the quantum integration function of order m which is defined by
QmðzÞ ¼
GmðzÞ; for Bose gas;

F mðzÞ; for Fermi gas;

	
ð10Þ
where GmðzÞ denotes the Bose–Einstein integral and F mðzÞ denotes the Fermi–Dirac integral of order m,
respectively:
GmðzÞ �
1

CðmÞ

Z 1

0

xm�1

z�1 ex � 1
dx ¼

X1
l¼1

zl

lm ; ð11Þ

F mðzÞ �
1

CðmÞ

Z 1

0

xm�1

z�1 ex þ 1
dx ¼

X1
l¼1

�ð�zÞl

lm ; ð12Þ
and C(m) is gamma function.
Other higher-order moments such as stress tensor and the heat flux vector can also be defined. For the local

equilibrium solution, one can obtain these macroscopic quantities in closed form in terms of Bose or Fermi
functions [9,15]. In the following derivation of the KFVS method, the equilibrium state will serve only as
the initial state for the free gas evolution according to the collisionless Boltzmann equation. We also neglect
the external potential V ð~xÞ here which can be included as that done in [26].

3. The quantum KFVS scheme

In this section, the basic KFVS scheme is derived based on the collisionless Boltzmann equation for a quan-
tum gas. To illustrate the method, we first consider the flow problems in one space dimension where
ð~U ¼ ðU ; 0; 0ÞÞ. Divide the space into a number of uniform cells. Each cell occupies a small space

x 2 xi�1
2
; xiþ1

2

h i
, where xi+1/2 denotes the cell interface between cells i and i + 1, and the cell center is located

at xi. With the initial mass, momentum and energy densities given inside each cell i:
Wi ¼ ðqi; qiU i;qi�iÞ; ð13Þ

and the fugacity z can be obtained from Eqs. (7) and (9) through the following relation:
2ðq�Þ � h2

2pm5=3

� �
q

Q3
2
ðzÞ

 !5=3

Q5
2
ðzÞ � ðqUÞ2

q
¼ 0: ð14Þ
Once we have obtained the fugacity, the temperature (or k) can be calculated. We can then define an equilib-
rium state f0 for the quantum gas, which is
f0 ¼
m4

h3

1

z�1 exp½kððu� UÞ2 þ v2 þ w2Þ� þ h
: ð15Þ
It is noted that the distribution function is in three-dimensional velocity space (u,v,w) and the integration over
the velocity space to obtain the macroscopic flow variables is done in three-dimensional manner.

The initial value problem of the collisionless Boltzmann equation in one space dimension is described by
of
ot
þ u

of
ox
¼ 0 ð16Þ
with the initial condition around the cell interface at x = xi+1/2
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f ðx; u; v;w; t ¼ 0Þ ¼
f0;i; x 6 xiþ1

2
;

f0;iþ1; x > xiþ1
2
:

(
ð17Þ
The solution of the above initial value problem, f(x,u,v,w, t) at xi+1/2 and time t, becomes
f xiþ1
2
; u; v;w; t

� �
¼

f0;i; u P 0;

f0;iþ1; u < 0:

	
ð18Þ
From the above distribution function, the numerical fluxes for the mass, momentum and energy across the cell
interface can be constructed, which are
F iþ1
2
¼

F q

F qU

F q�

0B@
1CA

iþ1
2

¼
Z Z Z

uwaf xiþ1
2
; u; v;w; t

� �
dudvdw

¼
Z Z Z

uP0

uwaf0;i du dvdwþ
Z Z Z

u<0

uwaf0;iþ1 dudvdw ¼ F þi þ F �iþ1; ð19Þ
where wa stands for the moments wa = (1,u,u2/2).
It is noted that even for the one-dimensional problems, the integration here is done with respect to u, v, and

w spaces instead of just one-dimensional integration as given previously [26] where the reduced distribution
function in lower dimension was used.

The detailed expressions of the split fluxes can be directly obtained and they are
F � ¼
F �q
F �qU

F �q�

0BB@
1CCA ¼

qUa�ðUÞ � qbðUÞ
Pc�ðUÞ þ UðqUa�ðUÞ � qbðUÞÞ

5
2
PUc�ðUÞ � 2PdðUÞ þ 1

2
U 2ðqUa�ðUÞ � qbðUÞÞ

0B@
1CA; ð20Þ
where the functions a±(U), b(U), c±(U) and d(U) are defined by
a�ðUÞ ¼ 1

2
1�

eQ3
2
ðsðUÞ; zÞ
Q3

2
ðzÞ

 !
; ð21Þ

bðUÞ ¼ 1

2
ffiffiffiffiffiffi
pk
p

eeQ 2ðsðUÞ; zÞ
Q3

2
ðzÞ ; ð22Þ

c�ðUÞ ¼ 1

2
1�

eQ5
2
ðsðUÞ; zÞ
Q5

2
ðzÞ

 !
; ð23Þ

dðUÞ ¼ 1

2
ffiffiffiffiffiffi
pk
p

eeQ 3ðsðUÞ; zÞ
Q5

2
ðzÞ ; ð24Þ
where sðUÞ ¼
ffiffiffi
k
p

U and eQmðs; zÞð eeQ mðs; zÞÞ ¼ eG mðs; zÞðeeG mðs; zÞÞ for a Bose gas and eQmðs; zÞð eeQ mðs; zÞÞ ¼eF mðs; zÞðfeF mðs; zÞÞ for a Fermi gas, where
eG mðs; zÞ ¼
X1
l¼1

erf
ffiffi
l
p

s
� � zl

lm ; ð25Þ

eF mðs; zÞ ¼
X1
l¼1

erf
ffiffi
l
p

s
� ��ð�zÞl

lm ; ð26Þ

eeG mðs; zÞ ¼
X1
l¼1

expð�ls2Þ zl

lm ; ð27Þ
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feF mðs; zÞ ¼
X1
l¼1

expð�ls2Þ�ð�zÞl

lm : ð28Þ
Using the above numerical fluxes, the flow variables qi, qi, Ui, and qi�i inside each cell can be updated as:
Wnþ1
i ¼Wn

i �
Dt
Dx

F ð1Þ
iþ1

2

� F ð1Þ
i�1

2

� �
; F ð1Þ

iþ1
2

¼ F þi þ F �iþ1; ð29Þ
where n is the time step number, Dt is the time step size, and Dx is the mesh size.
The time step size can be chosen by Courant–Friedrichs–Lewy (CFL) stability condition:
r 6
1

maxðjU j þ 3CÞ ; ð30Þ
where C is the local speed of sound
C ¼
ffiffiffiffiffiffi
c

P
q

s
: ð31Þ
The corresponding formulas for two and three space dimensions in Cartesian coordinates can be similarly
derived as above with the mean velocity vector ~Uðx; y; tÞ ¼ ðU ; V ; 0Þ and ~Uðx; y; z; tÞ ¼ ðU ; V ;W Þ,
respectively.

To treat general geometries, one usually casts the equations in curvilinear coordinates. Here, we derive the
formulas for the split fluxes in two space dimensions in (n,g) curvilinear coordinates. Divide the computa-
tional domain into uniform rectangular cells (with Dn = Dg = 1) and denote each cell as (i, j). Define the unit
normal and the contravariant velocities as:
n̂x; n̂y

� �
¼ ðnx; nyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
x þ n2

y

q ; ĝx; ĝy

� �
¼
ðgx; gyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
y

q ; ð32Þ

bU ¼ n̂xU þ n̂yV ; bV ¼ ĝxU þ ĝyV : ð33Þ

Then the split fluxes in the generalized coordinates (n,g) are given, respectively, by
bF � ¼
bF �qbF �qUbF �qVbF �q�

0BBBBB@

1CCCCCA ¼
q bU a�ð bU Þ � qbð bU Þ

n̂xPc�ð bU Þ þ Uðq bU a�ð bU Þ � qbð bU ÞÞ
n̂yPc�ð bU Þ þ V ðq bU a�ð bU Þ � qbð bU ÞÞ

5
2
P bU c�ð bU Þ þ 2Pdð bU Þ þ 1

2
ðU 2 þ V 2Þðq bU a�ð bU Þ � qbð bU ÞÞ

0BBBB@
1CCCCA; ð34Þ

bG� ¼
bG�qbG�qUbG�qVbG�q�

0BBBBB@

1CCCCCA ¼
qbV a�ðbV Þ � qbðbV Þ

ĝxPc�ðbV Þ þ UðqbV a�ðbV Þ � qbðbV ÞÞ
ĝyPc�ðbV Þ þ V ðqbV a�ðbV Þ � qbðbV ÞÞ

5
2
P bV c�ðbV Þ þ 2PdðbV Þ þ 1

2
ðU 2 þ V 2ÞðqbV a�ðbV Þ � qbðbV ÞÞ

0BBBB@
1CCCCA; ð35Þ
where expressions of a±, b, c±, and d are given in Eqs. (21)–(24).
Using the above split fluxes, the conservative flow variables, W = (q,qU,qV,q�)i,j inside each cell (i, j) can

be updated as:
Wnþ1
i;j ¼Wn

i;j �
Dt
Dn

bF ð1Þ
iþ1

2;j
� bF ð1Þ

i�1
2;j

� �
� Dt

Dg
bGð1Þ

i;jþ1
2

� bGð1Þ
i;j�1

2

� �
; ð36Þ
where
bF ð1Þ
iþ1

2;j
¼ bF þi;j þ bF �iþ1;j;

bGð1Þ
i;jþ1

2

¼ bGþi;j þ bG�i;jþ1: ð37Þ
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The corresponding split fluxes for three space dimensions in curvilinear coordinates (n,g,f) can be similarly
derived and they are given in Appendix A.

At this stage, we have completed the description of the first-order KFVS scheme for the quantum gas.
Before ending this section, a brief descriptions regarding to the boundary conditions used are given below.

For the problems considered in this work, two types of boundary conditions, far field and solid wall, are
encountered. For inviscid flow, the zero normal velocity boundary condition is warranted on a solid wall.
To be specific, we use the problem of shock wave reflection by a cylinder as example in which the cylinder
wall is at j = 1 and the outer far field boundary at j = J. Due to the finite computational domain used, a
non-reflecting boundary condition at the far field boundary needs to be employed. The upwinding feature
of the basic flux vector splitting scheme provides a natural way to achieve this. At the far field boundary,
we have
W�
i;J ¼Wn

i;J � Dt bGþi;J � bGþi;J�1

� �
: ð38Þ
At the cylinder surface, we have
W�
i;1 ¼Wn

i;1 � Dt bG�i;2 � bG�i;1� �
: ð39Þ
The above boundary integration only partially updates the state vector since the information carried by the
positive (for j = 1) eigenvalues is not counted and additional conditions are needed to supplement in order
to completely update the state vector at the new time level. The boundary conditions on the cylinder
(j = 1) are as follow:
bV nþ1
g � 2cnþ1

g
¼ bV �g � 2c�

g
; ð40Þ

P nþ1

ðqnþ1Þgþ1
¼ P �

ðq�Þgþ1
; ð41Þ

bU nþ1
g ¼ bU �

g; ð42Þ
and the surface tangency condition
bV nþ1
g ¼ 0; ð43Þ
where bV g ¼ bV =jrgj and bU g ¼ ðgxU � gxV Þ=jrgj.
For two-dimensional problem, we have g = 1 when the equation of state is used [15].
A simple way to satisfy the zero normal velocity condition on the wall is to use the reflection principle, i.e.,

q; qbV and � are taken to be symmetric and q bU is antisymmetric across the cell interface, with bU and bV being
the local normal and tangential components of the velocity vector. In this way, the values of the state vector in
any number of dummy cells can be specified.

4. Implementation of WENO schemes

We shall give the detailed expressions for the numerical flux in one dimension only (say, n-direction) and
the expressions for the g-direction can be similarly defined. For the purpose of implementing high-order meth-
ods we can further express the basic quantum KFVS scheme (without external potential) defined by Eq. (29) in
terms of numerical flux as follows:
Wnþ1
i ¼Wn

i � r F N
iþ1=2 � F N

i�1=2

� �
; ð44Þ
where the numerical flux F N
iþ1=2 for the basic first order KFVS scheme is given in Eq. (29).

The above scheme is of first-order accuracy and thus is very diffusive. In practical applications we need
high-order methods. In this section, we adopt the weighted essentially non-oscillatory interpolation method
[12,10] to the basic first order quantum KFVS scheme to result in a class of high resolution methods for com-
puting of quantum ideal gas dynamical flows. In recent years, some works such as mapped WENO [7] and
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anti-diffusion WENO [24] have been developed, which improve and refine the original WENO method.
Although we can also implement these new WENO variants, however, we are not experimenting it here.
The numerical flux is further expressed as:
F N
iþ1=2 ¼ F Nþ

iþ1=2 þ F N�
iþ1=2: ð45Þ
Here, we consider a fifth-order accurate (r = 3) WENO scheme for the spatial difference of numerical fluxes.
The WENO scheme for r = 3, denoted as WENO3, can be expressed as:
F Nþ
iþ1=2 ¼ xþ0

2

6
F þi�2 �

7

6
F þi�1 þ

11

6
F þi

� �
þ xþ1 �

1

6
F þi�1 þ

5

6
F þi þ

2

6
F þiþ1

� �
þ xþ2

2

6
F þi þ

5

6
F þiþ1 �

1

6
F þiþ2

� �
;

ð46Þ

xþk ¼
aþk

aþ0 þ aþ1 þ aþ2
; k ¼ 0; 1; 2; ð47Þ

aþ0 ¼
1

10ð�þ ISþ0 Þ
2
; aþ1 ¼

6

10ð�þ ISþ1 Þ
2
; aþ2 ¼

3

10ð�þ ISþ2 Þ
2
; ð48Þ

ISþ0 ¼
13

12
ðF þi�2 � 2F þi�1 þ F þi Þ

2 þ 1

4
ðF þi�2 � 4F þi�1 þ 3F þi Þ

2
;

ISþ1 ¼
13

12
ðF þi�1 � 2F þi þ F þiþ1Þ

2 þ 1

4
ðF þi�1 � F þiþ1Þ

2
;

ISþ2 ¼
13

12
ðF þi � 2F þiþ1 þ F þiþ2Þ

2 þ 1

4
ð3F þi � 4F þiþ1 þ F þiþ2Þ

2
:

ð49Þ
The numerical flux for the negative part is given by
F N�
jþ1=2 ¼ x�0 �

1

6
F �i�1 þ

5

6
F �i þ

2

6
F �iþ1

� �
þ x�1

2

6
F �i þ

5

6
F �iþ1 �

1

6
F �iþ2

� �
þ x�2

11

6
F �iþ1 �

7

6
F �iþ2 þ

2

6
F �iþ3

� �
;

ð50Þ

x�k ¼
a�k

a�0 þ a�1 þ a�2
; k ¼ 0; 1; 2; ð51Þ

a�0 ¼
3

10ð�þ IS�0 Þ
2
; a�1 ¼

6

10ð�þ IS�1 Þ
2
; a�2 ¼

1

10ð�þ IS�2 Þ
2
; ð52Þ

IS�0 ¼
13

12
ðF �i�1 � 2F �i þ F �iþ1Þ

2 þ 1

4
ðF �i�1 � 4F �i þ 3F �iþ1Þ

2
;

IS�1 ¼
13

12
ðF �i � 2F �iþ1 þ F �iþ2Þ

2 þ 1

4
ðF �i � F �iþ2Þ

2
;

IS�2 ¼
13

12
ðF �iþ1 � 2F �iþ2 þ F �iþ3Þ

2 þ 1

4
ð3F �iþ1 � 4F �iþ2 þ F �iþ3Þ

2
:

ð53Þ
It is noted that the present implementation of WENO methods for the KFVS scheme is directly operating on
the split fluxes F± and there is no need to project the state variables to the characteristic space as required by
other approximate Riemann solvers.

In the following, we shall denote KFVS–WENO3 as the KFVS scheme with WENO3 implementation.
5. Numerical experiments

In this section, we report several numerical examples to illustrate the present quantum KFVS methods and
the effects of high-order WENO schemes. Both one- and two-dimensional flows are considered. For two-
dimensional flows, the general coordinates are employed. In the 1D shock tube problem, a diaphragm, which
is located at x = 0.5, separating two regions, each remains at a constant equilibrium state, initially at t = 0.
The macroscopic properties on both sides of the diaphragm are set at different values to present different cases.
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For the 2D shock wave diffraction problem, the initial position of the incident shock wave is arbitrarily
located at certain distance to the left of the wedge or the circular cylinder. The conditions ahead of (state
1) and behind (state 2) a moving shock are related by
ρ
P

P 2

P 1

¼ 2cM2
s � ðc� 1Þ
cþ 1

; ð54Þ

q2

q1

¼ GðP 2=P 1Þ þ 1

Gþ ðP 2=P 1Þ
; ð55Þ

U 2 ¼ Ms 1� ðc� 1ÞM2
s þ 2

ðcþ 1ÞM2
s


 �
c1; ð56Þ
where G = (c + 1)/(c � 1) and c1 = (cP1/q1)1/2.
Initially, when t = 0, the fugacity at state 1 (z1) is assigned, then q1, P1, T1 and �1 can be calculated by the

following equations which are derived from the state equation with an assigned value of Ms and a given value
of c for a particular quantum gas:
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Fig. 1. Quantum shock tube solution, Bose gas: 1st order (s) and WENO3 (h).
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T 1 ¼
Q3=2ðz1Þ
Q5=2ðz1Þc

; q1 ¼ T 3=2
1 Q3=2ðz1Þ; P 1 ¼

q1

c
; ð57Þ

�1 ¼
P 1

cq1

þ 1

2
q1ðU 2

1 þ V 2
1Þ: ð58Þ
The velocity components of state 1 are set to zero, U1 = V1 = 0. The conditions at state 2 are calculated by
Eqs. (54)–(58) and the energy density �2, temperature T2 and fugacity z are given as previous procedure.

Moving shock relations are applied to both sides of the incident shock and the consequent movement of
motion is simulated without imposing any explicit equation of motion for the incident shock.

Example 1 (1D shock tube problem: boson gas). The initial condition is specified as WL =
(qL,qLUL,qL�L) = (1.259, 0.0, 1.458) for 0 < x 6 0.5 and WR = (qR,qRUR,qR�R) = (0.496,0.0,0.382) for
0.5 < x < 1. This corresponds to zL = 0.8 and zR = 0.7 and we assume that lL = lR. The computed density,
temperature, and fugacity profiles are output at time t = 0.25 (dimensionless time) and the CFL number used
is 1. We compare the results of the first order KFVS and high-order KFVS–WENO3 schemes with 200 cells.
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Fig. 2. Quantum shock tube solution, Fermi gas: 1st order (�) and WENO3 (h).
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The expansion fan, contact line, and shock can be easily identified. As can be seen, the effect of high-order
method is clearly depicted. A plot of Bose–Einstein distribution function at several stations at time t = 0.25 is
also shown in Fig. 1d. Here, 21 lines are plotted for 0 6 x 6 1 with equal spacing Dx = 0.05 and the range of u

is �5 6 u 6 5. The distribution function profiles in the near classical limit at most stations are close to a
Gaussian distribution as expected. The accuracy of the present KFVS–WENO3 is about fifth order in smooth
region and third order at critical points similar to the conclusion presented by Henrick et al. The CPU times
for the first order KFVS and KFVS–WENO3 are 9.234 and 94.109 s, respectively, on a 3.2 GHz personal
computer on a 200 uniform grid system.

Example 2 (1D shock tube problem: fermion gas). The set up of the problem is the same as Example 1. The
initial condition is specified as WL = (qL,qLUL,qL�L) = (0.639, 0.0, 1.066) for 0 < x 6 0.5 and
WR = (qR,qRUR,qR�R) = (0.283, 0.0,0.293) for 0.5 < x < 1. This corresponds to zL = 0.8 and zR = 0.7 and
we assume that lL = lR. The computed density, temperature, and fugacity profiles are output at time
t = 0.25 (dimensionless time) and the CFL number used is 1. We compare the results that using first order
KFVS and KFVS–WENO3 schemes with 200 cells. As can be seen, the various flow structures can be iden-
tified and the effect of high-order method is clearly depicted. The expected order of accuracy is similar to the
above discussion given at Example 1. A plot of Fermi–Dirac distribution function at several stations at time
t = 0.25 is also shown in Fig. 2d. Here, 21 lines are plotted for 0 6 x 6 1 with equal spacing Dx = 0.05 and the
range of u is �5 6 u 6 5.
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Fig. 3. Quantum shock reflection by a wedge, Bose gas: (a) density, (b) pressure, and (c) fugacity.
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Example 3 (Shock wave diffraction by a 2D wedge: boson gas). We consider a plane moving shock wave
located initially at a certain distance ahead of the inclined wedge with Mach number equal to Ms = 2 and
the fugacity downstream is 0.9. The flow quantities of state 1 and 2 are (q1,U1, �1,T1) =
(1.266, 0.0,1.140, 0.850) and (q2,U2, �2,T2) = (2.894,1.125, 7.244, 1.655), respectively. The computational
domain is divided into two regions. Region 1 is ahead of the wedge with 0.0 6 x 6 1.0 and 0.0 6 y 6 2.0
and region 2 is above the wedge with 1.0 6 x 6 3.0 and y = (x � 1)tanh(x � 1)tanh + 2. The mesh used in
region 1 is (x,y) = (iDx, jDy) and (x,y) = (iDx, (iDx � 1)tanh + jDy) in region 2. The mesh size used is
Dx = Dy = 0.01. Here, the case of wedge angle h = 30� is computed. We use WENO3–KFVS scheme with
CFL = 0.1. In Fig. 3, the density, pressure and fugacity contour are shown for the instant of time t = 0.7
and 41 contour levels are used. The complex Mach reflection pattern is observed in this case and the reflected
shock, the triple shock and Mach stem can be clearly identified.

Example 4 (Shock wave diffraction by a 2D wedge: fermion gas). The initial set up of the problem is the same
as Example 3 with moving shock Mach number Ms = 2 and the downstream fugacity z2 = 0.9. The flow quan-
tities of state 1 and 2 are (q1,U1, �1,T1) = (0.275, 0.0, 0.247,0.534) and (q2,U2,�2,T2) = (0.628,1.125,
1.572,1.144), respectively. The same computational domain and mesh system as Example 3 are employed.
We use WENO3–KFVS scheme with CFL = 0.1. In Fig. 4, the density, pressure and fugacity contour are
shown at time t = 0.7 and 41 contour levels are plotted. The flow patterns are similar to the previous case,
namely, the complex Mach reflection type. All the flow features can be well presented by the present high-
order KFVS method.
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Fig. 4. Quantum shock wave reflection by a wedge, Fermi gas: (a) density, (b) pressure, and (c) fugacity.
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Example 5 (Shock wave diffraction by a 2D cylinder: boson gas). In this problem, we consider a plane shock
wave located initially at a certain distance (here x = �0.7) ahead of the circular cylinder that propagates with
shock Mach number Ms = 2.0 toward the cylinder and experiences transient shock diffraction. A simple cylin-
drical grid system of 181 · 181 was used for half cylinder, consisting of 181 rays around the cylinder and 181
circles between the cylinder surface and outer boundary which is slightly stretched with Drmin = .03. The diam-
eter of the cylinder is 1.0 and the distance between the origin of the cylinder and the outer boundary is 7.0.
First, we report the results for the case of Bose–Einstein gas. The initial conditions are set as Ms = 2.0 and
fugacity z1 = 0.9. The flow quantities of state 1 and 2 are (q1,U1, �1,T1) = (1.266, 0.0, 1.140,0.850) and
(q2,U2, �2,T2) = (2.894,1.125, 7.244, 1.655), respectively. The fugacity in state 2 is z2 = 0.833. In Fig. 5, the
density contours obtained by the KFVS–WENO3 scheme at a series of times are shown. In Fig. 5a, the inci-
dent shock is about to hit the cylinder surface and the density contour is constant on either side of the moving
Fig. 5. Density contours of a shock diffraction by a circular cylinder: Bose gas.
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shock. Fig. 5b–f shows the subsequent development of the diffraction process that covers regular reflection,
transition to Mach reflection, the Mach shocks collision at the wake, and the complex shock on shock inter-
action. The primary incident shock, reflected bow shock, Mach shock, contact discontinuity, and vortex can
be easily identified. It is observed that the complicated flow interaction resulting in Mach shocks, second con-
tact discontinuities, and triple point can all be accurately represented.

Example 6 (Shock wave diffraction by a 2D cylinder: fermion gas). The initial set up of the problem and the
grid system used are the same as Example 5. For the Fermi–Dirac gas, the initial conditions are set as Ms = 2.0
and fugacity z1 = 0.9. The flow quantities of state 1 and 2 are (q1,U1, �1,T1) = (0.275,0.0,0.247, 0.534) and
(q2,U2, �2,T2) = (0.628, 1.125, 1.572,1.144), respectively. The fugacity in state 2 is z2 = 0.615. In Fig. 6, the
a

c

e f

d

b

Fig. 6. Density contours of a shock diffraction by a circular cylinder: Fermi gas.
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density contours obtained by the KFVS–WENO3 scheme at a series of times are shown. In Fig. 6a, the inci-
dent shock is about to hit the cylinder surface and the density contours is constant on either side of the moving
shock. Fig. 6b–f shows the subsequent development of the diffraction process that covers regular reflection,
transition to Mach reflection, the Mach shocks collision at the wake, and the complex shock on shock inter-
action. The primary incident shock, reflected bow shock, Mach shock, contact discontinuity, and vortex in the
entire diffraction process can be easily identified. It is observed that the complicated flow features can be accu-
rately captured by the present high-order quantum KFVS scheme.
6. Concluding remarks

In this work, the basic first order kinetic flux vector splitting method for ideal quantum gas dynamics has
been derived based on an initial value problem of collisionless quantum Boltzmann equation. The present der-
ivation is systematically done by starting with the general three-dimensional (in velocity or momentum space)
equilibrium distribution function instead of using the reduced distribution function for lower dimensions.
Both Bose–Einstein and Fermi–Dirac gases are considered. The formulations of the split fluxes are given
for one- to three-dimensional problems. The basic first order KFVS scheme is entropy-satisfying and positive
and thus is desirable for shock capturing. General curvilinear coordinates have been introduced to treat gen-
eral geometries. Implementation of weighted essentially non-oscillatory method into the basic first order flux
vector splitting to yield a class of high resolution schemes can be naturally done without using characteristic
projection as in other approximate Riemann solvers. The resulting high-order KFVS schemes have been tested
using 1D shock tube problem, unsteady shock wave diffraction by a 2D wedge, and unsteady shock wave dif-
fraction by a circular cylinder. Accurate resolutions of the flow features in all cases have been obtained. The
present method can provide a viable and robust tool for computing various ideal quantum gas dynamical flow
problems.
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Appendix A

In this appendix, the formulations for the split fluxes in three-dimensional flow problems under curvilinear
coordinates are given. Define the unit normal and the contravariant velocities as:
v̂x; v̂y ; v̂z

� �
¼
ðvx; vy ; vyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y þ v2

z

q ; v ¼ n; g; f; ð59Þ

bU ¼ n̂xU þ n̂yV þ n̂zW ; bV ¼ ĝxU þ ĝyV þ ĝzW ; bW ¼ f̂xU þ f̂yV þ f̂zW : ð60Þ
Then the split fluxes in the generalized coordinates (n,g,f) are given, respectively, by
bF � ¼
bF �qbF �qUbF �qVbF �qWbF �q�

0BBBBBBBB@

1CCCCCCCCA
¼

q bU a�ð bU Þ � qbð bU Þ
n̂xPc�ð bU Þ þ Uðq bU a�ð bU Þ � qbð bU ÞÞ
n̂yPc�ð bU Þ þ V ðq bU a�ð bU Þ � qbð bU ÞÞ
n̂zPc�ð bU Þ þ W ðq bU a�ð bU Þ � qbð bU ÞÞ

5
2
P bU c�ð bU Þ þ 2Pdð bU Þ þ 1

2
ðU 2 þ V 2 þ W 2Þðq bU a�ð bU Þ � qbð bU ÞÞ

0BBBBBBB@

1CCCCCCCA; ð61Þ
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bG� ¼
bG�qbG�qUbG�qVbG�qWbG�q�

0BBBBBBBB@

1CCCCCCCCA
¼

qbV a�ðbV Þ � qbðbV Þ
ĝxPc�ðbV Þ þ UðqbV a�ðbV Þ � qbðbV ÞÞ
ĝyPc�ðbV Þ þ V ðqbV a�ðbV Þ � qbðbV ÞÞ
ĝzPc�ðbV Þ þ W ðqbV a�ðbV Þ � qbðbV ÞÞ

5
2
P bV c�ðbV Þ þ 2PdðbV Þ þ 1

2
ðU 2 þ V 2 þ W 2ÞðqbV a�ðbV Þ � qbðbV ÞÞ

0BBBBBBB@

1CCCCCCCA; ð62Þ

bH � ¼

bH �qbH �
qUbH �qVbH �
qWbH �q�

0BBBBBBBB@

1CCCCCCCCA
¼

q bW a�ð bW Þ � qbð bW Þ
f̂xPc�ð bW Þ þ UðqbV a�ð bW Þ � qbð bW ÞÞ
f̂yPc�ð bW Þ þ V ðqbV a�ð bW Þ � qbð bW ÞÞ
f̂zPc�ð bW Þ þ W ðqbV a�ð bW Þ � qbð bW ÞÞ

5
2
P bW c�ð bW Þ þ 2Pdð bW Þ þ 1

2
ðU 2 þ V 2 þ W 2Þðq bW a�ð bW Þ � qbð bW ÞÞ

0BBBBBBB@

1CCCCCCCA; ð63Þ
where expressions of functions a±, b, c±, and d are given in Eqs. (21)–(24).
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