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Abstract

Objective—Physicians classify patients into those with or without a specific disease. 

Furthermore, there is often interest in classifying patients according to disease etiology or subtype. 

Classification trees are frequently used to classify patients according to the presence or absence of 

a disease. However, classification trees can suffer from limited accuracy. In the data-mining and 

machine learning literature, alternate classification schemes have been developed. These include 

bootstrap aggregation (bagging), boosting, random forests, and support vector machines.

Study design and Setting—We compared the performance of these classification methods 

with those of conventional classification trees to classify patients with heart failure according to 

the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure 
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with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict 

the probability of the presence of HFPEF with that of conventional logistic regression.

Results—We found that modern, flexible tree-based methods from the data mining literature 

offer substantial improvement in prediction and classification of heart failure sub-type compared 

to conventional classification and regression trees. However, conventional logistic regression had 

superior performance for predicting the probability of the presence of HFPEF compared to the 

methods proposed in the data mining literature.

Conclusion—The use of tree-based methods offers superior performance over conventional 

classification and regression trees for predicting and classifying heart failure subtypes in a 

population-based sample of patients from Ontario. However, these methods do not offer 

substantial improvements over logistic regression for predicting the presence of HFPEF.

Keywords

Boosting; classification trees; Bagging; random forests; classification; regression trees; support 
vector machines; regression methods; statistical methods; prediction; heart failure

1. Introduction

There is an increasing interest in using classification methods in clinical research. 

Classification methods allow one to assign subjects to one of a mutually exclusive set of 

states. Accurate classification of disease states (disease present/absent) or of disease etiology 

or subtype allows subsequent investigations, treatments, and interventions to be delivered in 

an efficient and targeted manner. Similarly, accurate classification of disease states permits 

more accurate assessment of patient prognosis.

Classification trees employ binary recursive partitioning methods to partition the sample into 

distinct subsets [1-4]. While their use is popular in clinical research, concerns have been 

raised about the accuracy of tree-based methods of classification and regression [2,4]. In the 

data mining and machine learning literature, alternatives to and extensions of classical 

classification trees have been developed in recent years. Many of these methods involve 

aggregating classifications over an ensemble of classification trees. For this reason, many of 

these methods are referred to as ensemble methods. Ensemble-based methods include 

bagged classification trees, random forests, and boosted trees. Alternate classification 

methods include support vector machines.

In patients with acute heart failure (HF) there are two distinct subtypes: HF with preserved 

ejection fraction (HFPEF) vs. HF with reduced ejection fraction (HFREF). The distinction 

between HFPEF and HFREF is particularly relevant in the clinical setting. While the 

treatment of HFREF is based on a multitude of large randomized clinical trials, the 

evidence-base for the treatment of HFPEF is much smaller, and more focused on related 

comorbid conditions [5]. While the overall prognosis appears to be similar within the two 

subtypes of HF, there are important differences in cause-specific mortality, which would be 

relevant in risk stratification and disease management [6]. The diagnosis of HFREF vs. 

HFPEF is ideally made using results from echocardiography. While echocardiography 

should ideally be done in all HF patients at some point in their clinical care, this test is not 
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always performed even in high resource regions, and treatment decisions may need to be 

made before echocardiographic data are available. In one US Medicare cohort, more than 

one-third of HF patients did not undergo echocardiography in hospital [7].

The current study had two objectives. First, to compare the accuracy of different methods 

for classifying HF patients according two disease sub-types: HFPEF vs. HFREF, and for 

predicting the probability of patients having HFPEF in a population-based sample of HF 

patients in Ontario, Canada. Second, to compare the accuracy of the prediction of the 

presence of HFPEF using methods from the data-mining literature with that of conventional 

logistic regression.

2. Methods for classification and prediction

In this section, we describe the different methods that will be used for classification and 

prediction. For classification, we restrict our attention to binary classification in which 

subjects are classified as belonging to one of two possible categories. Our case study will 

consist of patients with acute HF, which is further classified as HF with preserved ejection 

fraction (HFPEF) and HF with reduced (HFREF). By prediction we mean prediction of the 

probability of an event or of being in a particular state. In our case study, this will be the 

predicted probability of having HFPEF. We consider the following classification methods: 

classification trees, bagged classification trees, random forests, boosted classification trees, 

and support vector machines. For prediction, we consider the following methods: logistic 

regression, regression trees, bagged regression trees, random forests, and boosted regression 

trees.

2.1 Classification and regression trees

Classification and regression trees employ binary recursive partitioning methods to partition 

the sample into distinct subsets [3]. At the first step, all possible dichotomizations of all 

continuous variables (above vs. below a given threshold) and of all categorical variables are 

considered. Using each possible dichotomization, all possible ways of partitioning the 

sample into two distinct subsets is considered. That binary partition that results in the 

greatest reduction in impurity is selected. This process is then repeated iteratively until a 

predefined stopping rule is satisfied. For classification, a subject's class can be determined 

using the status that was observed for the majority of subjects within that subset to which the 

given subject belongs (i.e. classification by majority vote). For prediction, the predicted 

probability of the event for a given subject can be estimated using the proportion of subjects 

who have the condition of interest amongst all the subjects in the subset to which the given 

subject belongs.

Advocates for classification and regression trees have suggested that these methods allow 

for the construction of easily interpretable decision rules that can be easily applied in clinical 

practice. Furthermore, it has been suggested that classification and regression tree methods 

are adept at identifying important interactions in the data [8-10] and in identifying clinical 

subgroups of subjects at very high or very low risk of adverse outcomes [11]. Advantages of 

tree-based methods are that they do not require the specification of the parametric nature of 

the relationship between the predictor variables and the outcome. Additionally, assumptions 
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of linearity that are frequently made in conventional regression models are not required for 

tree-based methods.

We grew classification and regression trees using the tree function from the tree package for 

the R statistical programming language [12,13]. In our study we used the default criteria in 

the tree package for growing regression trees: at a given node, the partition was chosen that 

maximized the reduction in deviance; the smallest permitted node size was 10; and a node 

was not subsequently partitioned if the within-node deviance was less than 0.01 of that of 

the root node. Once the initial regression tree had been grown, the tree was pruned. The 

optimal number of leaves was determined by identifying the tree size that minimized the tree 

deviance when 10-fold cross-validation was used in the derivation sample.

2.2 Bagging classification or regression trees

Bootstrap aggregation or bagging is a generic approach that can be used with different 

classification and prediction methods [4]. Our focus is on bagging classification or 

regression trees. Repeated bootstrap samples are drawn from the study sample. A 

classification or regression tree is grown in each of these bootstrap samples. Using each of 

the grown regression trees, classifications or predictions are obtained for each study subject. 

Finally, for each study subject, a prediction is obtained by averaging the predictions 

obtained from the regression trees grown over the different bootstrap samples. For each 

study subject, a final classification is obtained by a majority vote across the classification 

trees grown in the different bootstrap samples. We used the bagging function from the ipred 

package for the R statistical programming language to fit bagged regression trees [14]. All 

parameter values were set to the default values in the bagging function. In our application of 

bagging, we used 100 bootstrap samples.

2.3 Random forests

The Random Forests approach was developed by Brieman [15]. The Random Forests 

approach is similar to bagging classification or regression trees, with one important 

modification. When one is growing a classification or regression tree in a particular 

bootstrap sample, at a given node, rather than considering all possible binary splits on all 

candidate variables, one only considers binary splits on a random sample of the candidate 

predictor variables. The size of the set of randomly selected predictor variables is defined 

prior to the process. When fitting random forests of regression trees, we let the size of the set 

of randomly selected predictor variables be ⌊p / 3 ⌋, where p denotes the total number of 

predictor variables and ⌊ ⌋ denotes the floor function. When fitting random forests of 

classification trees, we let the size of the set of randomly selected predictor variables be √p 

(these are the defaults in the R implementation of random forests). We grew random forests 

consisting of 500 regression or classification trees. Predictions or classifications are obtained 

by averaging predictions across the regression trees or by majority vote across the 

classification trees, respectively. We used the randomForest function from the 

RandomForest package for R to estimate random forests [16]. All parameter values were set 

to their defaults.
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2.4 Boosting

One of the most promising extensions of classical classification methods is boosting. 

Boosting is a method for combining “the outputs from several ‘weak’ classifiers to produce 

a powerful ‘committee’” [4]. A ‘weak’ classifier has been described as one whose error rate 

is only slightly better than random guessing [4]. Breiman has suggested that boosting 

applied with classification trees as the weak classifiers is the “best off-the-shelf” classifier in 

the world [4].

When focusing on classification, we used the AdaBoost.M1 algorithm proposed by Freund 

and Schapire [17]. Boosting sequentially applies a weak classifier to series of reweighted 

versions of the data, thereby producing a sequence of weak classifiers. At each step of the 

sequence, subjects that were incorrectly classified by the previous classifier are weighted 

more heavily than subjects that were correctly classified. The classifications from this 

sequence of weak classifiers are then combined through a weighted majority vote to produce 

the final prediction. The reader is referred elsewhere for a more detailed discussion of the 

theoretical foundation of boosting and its relationship with established methods in statistics 

[18,19]. The AdaBoost.M1 algorithm for boosting can be applied with any classifier. 

However, it is most frequently used with classification trees as the base classifier [4]. Even 

using a ‘stump’ (‘stump’ is a classification tree with exactly one binary split and exactly two 

terminal nodes or leaves) as the weak classifier has been shown to produce substantial 

improvement in prediction error compared to a large classification tree [4]. Given the lack of 

consensus on optimal tree depth, we considered four versions of boosted classification trees: 

using classification trees of depth one, two, three, and four as the base classifiers. For each 

method we used sequences of 100 classification trees. We used the ada function from the 

ada package for R for boosting classification trees, which implements the AdaBoost.M1 

algorithm [20].

Generalized boosting methods adapt the above algorithm for use with regression, rather than 

with classification [4,21]. We considered four different base regression models: regression 

trees of depth one, regression trees of depth two, regression trees of depth three, and 

regression trees of depth four. These have also been referred to as regression trees with 

interaction depths one through four. For each method, we considered sequences of 10,000 

regression trees. We used the gbm function from the gbm package for boosting regression 

trees [22].

2.5 Support vector machines

Support vector machines (SVMs) are based on the fact that with an appropriate function to a 

sufficiently high dimension, data from two categories can always be separated by a 

hyperplane [23]. A SVM is the separating hyperplane that maximizes the distance from the 

nearest subjects with and without the outcome. Subjects are then classified according to 

which side of the hyperplane they lie on. Readers are referred elsewhere for a more 

extensive treatment of SVMs [4,23]. We used the svm function from the e1071 package for 

R [24].
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2.6 Logistic regression

Finally, conventional logistic regression can be used to obtain predicted probabilities of 

being in a particular state or of the occurrence of a specific outcome. Unlike the methods 

described above, logistic regression results in only a predicted probability of an event, and 

not a binary classification. We used the lrm function from the Design package for the R 

statistical programming language to estimate the logistic regression models [25].

3. Methods

3.1 Data Sources

The Enhanced Feedback for Effective Cardiac Treatment (EFFECT) Study was an initiative 

to improve the quality of care for patients with cardiovascular disease in Ontario [26,27]. 

The EFFECT study consisted of two phases. During the first phase, detailed clinical data on 

patients hospitalized with HF between April 1, 1999 and March 31, 2001 at 103 acute care 

hospitals in Ontario, Canada were obtained by retrospective chart review. During the second 

phase, data were abstracted on patients hospitalized with HF between April 1, 2004 and 

March 31, 2005 at 96 Ontario hospitals. Data on patient demographics, vital signs and 

physical examination at presentation, medical history, and results of laboratory tests were 

collected for this sample.

In the EFFECT study, detailed clinical data were available on 9,943 and 8,339 patients 

hospitalized with a diagnosis of HF during the first and second phases of the study, 

respectively. After excluding subjects with missing data on key variables and for whom 

ejection fraction could not be determined, 3,697 and 4,515 subjects were available from the 

first and second phases, respectively, for inclusion in the current study. The first and second 

phases of the EFFECT study will be referred to as the EFFECT-1 and EFFECT-2 samples, 

respectively (these were referred to as the EFFECT Baseline sample and the EFFECT 

Follow-up sample, respectively, in the original EFFECT publication [27]).

For the purposes of our analyses, only participants with available left ventricular ejection 

fraction (LVEF) assessment by cardiac imaging were included. Participants were classified 

as having HFPEF (LVEF > 45%) or HFREF (LVEF ≤ 45%). This distinction is clinically 

relevant, as the treatment for HFPEF and HFREF are distinct: whereas the treatment of 

HFREF with beta-blockers, ACE inhibitors, and aldosterone blockers is well-substantiated, 

the treatment of HFPEF is much less defined, and focuses more on underlying co-morbid 

conditions [5].

As candidate variables for classifying HF subtype or for predicting the presence of HFPEF, 

we considered 34 variables denoting demographic characteristics, vital signs, presenting 

signs and symptoms, results of laboratory investigations, and previous medical history. 

These variables are listed in Table 1.

In each of the two samples, the Kruskal-Wallis test and the Chi-squared test were used to 

compare continuous and categorical baseline characteristics, respectively, between patients 

with HFPEF and those with HFREF. Furthermore, characteristics were compared between 

patients in the EFFECT-1 sample and those in the EFFECT-2 sample.
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3.2 Comparison of predictive ability of different regression methods

We examined the predictive accuracy of each method using the EFFECT-1 sample as the 

model derivation sample and the EFFECT-2 sample as the model validation sample. Using 

each prediction method, a model was developed for predicting the probability of HFPEF 

using the subjects in the EFFECT-1 sample. We then applied the developed model to each 

subject in the EFFECT-2 sample to estimate that subject's predicted probability of having 

HFPEF. Note that the derivation and validation samples consist of patients from the same 

jurisdiction (Ontario). Furthermore, most acute hospitals that cared for HF patients were 

included in both of these two datasets. However, the derivation and validation samples are 

separated temporally (1999/2000 and 2000/2001 vs. 2004/2005). The study design ensured 

that there was very little overlap in patients between the two study periods.

The tree-based methods considered as candidate variables all 34 variables described in Table 

1. Two separate logistic regression models were fit to predict the probability of the presence 

of HFPEF. First, we fit a logistic regression model that contained all 34 variables as main 

effects. No variable reduction was performed. Restricted cubic splines (cubic splines that are 

linear in the tails) with four knots were used to model the relationship between each 

continuous covariate and the log-odds of having HFPEF [28]. Second, we fit a logistic 

regression model that contained 14 predictor variables that previously had been identified as 

important predictors of HF disease sub-types using data from the Framingham Heart Study 

(age, sex, heart rate, systolic blood pressure, CHD history, history of hypertension, diabetes 

mellitus, current smoker, hemoglobin, eGFR, atrial fibrillation, left bundle branch block, any 

ST elevation, and any T wave inversion) [29].

Predictive accuracy was assessed using two different metrics. First, we calculated the area 

under the receiver operating characteristic (ROC) curve (abbreviated as the AUC), which is 

equivalent to the c-statistic [28,30]. Second, we calculated the Brier Score [28] (mean 

squared prediction error), which is defined as , where N denotes the sample 

size, P̂
i is the predicted probability of the outcome and Yi is the observed outcome (1/0). We 

used the val. prob function from the Design package to estimate these two measures of 

predictive accuracy.

We also examined the calibration of the predictions obtained using each method. For each 

method, subjects in the validation sample were divided into ten groups defined by the 

deciles of the predicted probability of the presence of HFPEF. Within each of the ten groups, 

the mean predicted probability of HFPEF was compared with the observed probability of 

having HFPEF.

3.3 Comparison of accuracy of classification for different classification methods

Classification models were developed that considered all 34 variables described in Table 1 

as potential predictor variables. As above, accuracy of classification was assessed using the 

EFFECT-1 sample as the model derivation sample and the EFFECT-2 sample as the model 

validation sample. For each subject in the validation sample, a true HF sub-type was 

observed (HFPEF vs. HFREF) and a classification was obtained (HFPEF vs. HFREF) for 
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each classification method developed in the EFFECT-1 sample. Accuracy of classification 

was assessed using sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) [31].

4. Results

4.1 Description of study sample

Comparisons of baseline characteristics between patients with and without preserved 

ejection fraction in the EFFECT-1 and EFFECT-2 samples are reported in Table 1. In each 

of the EFFECT-1 and EFFECT-2 samples there were statistically significant differences in 

24 of the 34 baseline covariates between subjects with HFPEF and subjects with HFREF. 

Comparisons of baseline characteristics of patients in the EFFECT-1 sample with those of 

patients in the EFFECT-2 sample are reported in Table 2. There were significant differences 

in 20 of the 34 baseline covariates between the two samples. Importantly, the proportion of 

patients with HFPEF was modestly higher in the EFFECT-2 sample than it was in the 

EFFECT-1 sample (31.6% vs. 38.5%). The higher proportion of patients with HFPEF in the 

EFFECT-2 sample could reflect a higher average age and greater prevalence of risk factors 

such as hypertension and atrial fibrillation over time, which are more commonly associated 

with HFPEF.

4.2 Comparison of predictive ability of different regression methods

The predictive accuracy of the different methods for predicting the probability of the 

presence of HFPEF is reported in Table 3. The AUC in the EFFECT-2 sample of the 

different models developed in the EFFECT-1 sample ranged from a low of 0.683 for the 

regression tree to a high of 0.780 for the non-parsimonious logistic regression model. 

Boosted regression trees of depths three and four had AUCs that were very similar to that of 

the non-parsimonious logistic regression model (0.772 and 0.774, respectively). The Brier 

Score in the EFFECT-2 sample of the different models developed in the EFFECT-1 sample 

ranged from a high of 0.2152 for the regression tree to a low of 0.1861 for the non-

parsimonious logistic regression model.

For both measures of predictive accuracy, the use of conventional regression trees resulted 

in predicted probabilities of the presence of HFPEF with the lowest accuracy. A non-

parsimonious logistic regression resulted in the greatest out-of-sample predictive accuracy 

when using the EFFECT-2 sample as the validation sample. Boosted regression trees of 

depth three and four had predictive accuracy that approached that of the non-parsimonious 

logistic regression model.

The calibration of each of the prediction methods is described graphically in Figure 1. While 

all methods tended to under-estimate the probability of the presence of HFPEF, the two 

logistic regression models and the random forests resulted in estimates that displayed the 

best calibration. The under-estimation of the predicted probability of HFPEF or 

miscalibration was most likely due to the differences in the prevalence of HFPEF between 

the two samples. As noted above, the prevalence of HFPEF was modestly higher in the 

EFFECT-2 sample than it was in the EFFECT-1 sample.

Austin et al. Page 8

J Clin Epidemiol. Author manuscript; available in PMC 2015 February 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.3 Comparison of accuracy of classification for different classification methods

The sensitivity, specificity, PPV, and NPV of the different classification methods are 

reported in Table 4. The sensitivity in the EFFECT-2 sample of the different models 

developed in the EFFECT-1 sample ranged from a low of 0.378 for the random forest to a 

high of 0.500 for the boosted classification tree of depth four. Specificity ranged from a low 

of 0.820 for the conventional classification tree and the boosted classification trees of depth 

four to a high of 0.897 for the random forest. PPV ranged from a low of 0.616 for the 

classification tree to a high of 0.696 for the random forest. The NPV ranged from a low of 

0.697 for the random forest to a high of 0.726 for the boosted classification tree of depth 

two.

5. Discussion

Classification plays an important role in modern clinical research. The objective of binary 

classification schemes or algorithms is to classify subjects into one of two mutually 

exclusive categories based upon their observed characteristics. In clinical research, a 

common binary classification is diseased/non-diseased, different disease subtypes, or disease 

etiology. Classification trees are a commonly-used binary classification method. In the data 

mining and machine learning fields, improvements to classical classification trees have been 

developed. Many of these methods involve aggregating classifications across a set of 

classification trees. There is limited research comparing the performance of different 

classification/prediction methods for predicting the presence of disease, disease etiology, or 

disease subtype.

We compared the performance of modern classification and regression methods with 

classification and regression trees to classify patients with HF into one of two mutually 

exclusive categories HFPEF (HF with preserved ejection fraction) vs. HFREF (HF with 

reduced ejection fraction), or to predict the probability of the presence of HFPEF. We found 

that modern classification methods offered improved performance over conventional 

classification trees for classifying HF patients according to disease subtype. Several 

observations warrant comment. First, when focusing on predicting the probability of the 

presence of HFPEF, conventional regression trees had lower predictive accuracy compared 

to all other methods that we examined. Second, logistic regression had the best predictive 

accuracy for predicting the presence of HFPEF. Third, when focusing on classification, 

boosted classification trees of depth four had the highest sensitivity. Fourth, random forests 

had the highest specificity for classifying patients according to disease subtype.

The current study had a very limited focus: comparing the ability of different methods to 

predict or classify disease subtype in patients hospitalized with HF in Ontario. Our 

conclusions about the relative performance of different classification and prediction methods 

should be restricted to this patient population and to this specific classification scheme (i.e. 

HFPEF vs. HFREF). Readers should not conclude that logistic regression will have superior 

predictive ability compared to ensemble-based methods in all settings and for all conditions 

or outcomes. However, recent studies in patients with cardiovascular disease merit 

discussion. A recent study which examined the predictive ability of ensemble-based 

methods for predicting the probability of short-term mortality in patients hospitalized with 
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either acute myocardial infarction or with HF found that ensemble methods resulted in 

improved predictive accuracy compared to conventional regression trees [32]. However, 

ensemble-based methods did not result in improved predictive performance compared to 

conventional logistic regression. In a different study focusing on classifying patients with 

HF according to mortality outcomes, boosted classification trees were found to result in 

minor to modest improvement in accuracy of classification compared to conventional 

classification trees [33].

Comparisons similar to the above have been conducted by other authors. Wu et al., 

comparing the performance of logistic regression, boosting, and support vector machines to 

predict the subsequent development of HF, found that the former two methods had 

comparable performance, while the latter method had the poorest performance [34]. Maroco 

et al., compared ten different classifiers for predicting the evolution of mild cognitive 

impairment to dementia [35]. They concluded that random forests and linear discriminant 

analysis had the best performance for predicting progression to dementia. While these two 

studies focused on disease incidence, a third study compared three methods for predicting 

survival in patients with breast cancer [36]. They found that a decision tree resulted in the 

greatest accuracy, followed by artificial neural networks, with logistic regression resulting in 

the lowest accuracy. In an extensive set of analyses, Caruana and Niculescu-Mizil compared 

the performance of ten prediction/classification algorithms on 11 binary classification 

problems using eight performance metrics [37]. They found that bagged trees, random 

forests, and neural networks resulted in the best average performance across the different 

metrics and datasets. In general, they found that conventional classification trees and logistic 

regression had inferior performance to the best-performing methods. In a related study, 

Caruana et al. examined the effect of dimensionality (i.e. the number of available predictor 

variables) on the relative performance of different classification algorithms [38]. They found 

that as dimensionality increases, the relative performance of the different algorithms 

changes. They also observed that random forests tended to perform well across all 

dimensions.

There are several limitations to the current study. First, as noted above, our conclusions are 

limited to the relative performance of methods for classification/prediction of disease 

subtype in patients hospitalized with HF. Our conclusions are not intended to be generalized 

to other patient populations or to other outcomes and conditions. Second, for some of the 

prediction and classification methods, we used the default settings in the given statistical 

software package for estimating the given model (e.g. regression trees). Similarly for 

random forests, we used the default setting for the size of the random sample of predictor 

variables that was considered at each split of a given tree. However, for other methods, no 

such default specification existed. In particular, for boosted classification and regression 

trees, there is limited research on the optimal depth of the fitted trees. Furthermore, it is 

possible that the optimal tree depth may vary across settings and outcomes. Due to limited 

research on optimal tree depth, we grew four different sets of boosted trees, with tree depths 

of 1, 2, 3, and 4. For this reason, concluding that boosted trees had the best performance 

amongst the different modern prediction methods risks resulting in an incorrect conclusion 

since comparable tuning parameters were not varied for the other prediction methods. Our 

finding that boosted trees of depth four tended to have superior performance compared to 
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boosted trees of other depths merits replication in other datasets, in other settings, and for 

other outcomes. However it should be noted that boosted trees of this depth performed well 

for predicting cardiovascular mortality in an earlier study [32].

In summary, we found that modern, flexible tree-based methods from the data mining and 

machine learning literature offer substantial improvement in prediction and classification of 

HF sub-type compared to conventional classification and regression trees. However, 

conventional logistic regression was able to more accurately predict the probability of the 

presence of HFPEF amongst patients with HF compared to the methods proposed in the data 

mining and machine learning literature.
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What is new?

Key finding

• Modern data mining and machine learning methods offer advantages for 

predicting and classifying heart failure (HF) patients according to disease 

subtype: HF with preserved ejection fraction (HFPEF) vs. HF with reduced 

ejection fraction (HFREF), compared to conventional regression and 

classification trees.

• Conventional logistic regression performed at least as well as modern methods 

from the data mining and machine learning literature for predicting the 

probability of the presence of HFPEF in patients with HF.

What this adds to what was known?

• Boosted trees, bagged trees, and random forests do not offer an advantage over 

conventional logistic regression for predicting the probability of disease subtype 

in patients with HF.

What is the implication, what should change now?

• Conventional logistic regression should remain a standard tool in the analyst's 

toolbox when predicting disease subtype in patients with HF.

• Analysts interested in classifying HF patients according to disease subtype 

should use ensemble-based methods rather than conventional classification 

trees.
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Figure 1. Calibration of prediction methods in EFFECT Follow-up sample
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Table 2
Comparison of EFFECT-1 and EFFECT-2 samples

Variable EFFECT-1 Sample
(N=3,697)

EFFECT-2 Sample
(N=4,515)

P-value

HFPEF 1,168 (31.6%) 1,739 (38.5%) <.001

Age (years) 75.0 (68.0-82.0) 77.0 (68.0-83.0) <.001

Male 1,970 (53.3%) 2,329 (51.6%) 0.124

Heart rate on admission (bpm) 94.0 (77.0-112.0) 91.0 (74.0-110.0) <.001

Systolic blood pressure on admission (mm Hg) 147.0 (126.0-170.0) 144.0 (124.0-166.0) <.001

Respiratory rate on admission 24.0 (20.0-30.0) 23.0 (20.0-28.0) <.001

History of hypertension 1,920 (51.9%) 3,048 (67.5%) <.001

Diabetes mellitus 1,293 (35.0%) 1,716 (38.0%) 0.005

Current smoker 545 (14.7%) 539 (11.9%) <.001

History of coronary artery disease 1,684 (45.6%) 2,098 (46.5%) 0.407

Atrial fibrillation 990 (26.8%) 1,371 (30.4%) <.001

Left bundle branch block 585 (15.8%) 649 (14.4%) 0.067

Any ST elevation 441 (11.9%) 204 (4.5%) <.001

Any T wave inversion 1,224 (33.1%) 1,278 (28.3%) <.001

Neck vein distension 2,246 (60.8%) 2,941 (65.1%) <.001

s3 443 (12.0%) 317 (7.0%) <.001

s4 166 (4.5%) 136 (3.0%) <.001

Rales > 50% of lung field 400 (10.8%) 567 (12.6%) 0.015

Pulmonary edema 1,886 (51.0%) 2,792 (61.8%) <.001

Cardiomegaly 1,405 (38.0%) 2,068 (45.8%) <.001

Cerobrovascular disease / transient ischemic attack 568 (15.4%) 758 (16.8%) 0.081

Previous AMI 1,384 (37.4%) 1,682 (37.3%) 0.865

Peripheral arterial disease 508 (13.7%) 610 (13.5%) 0.762

Chronic obstructive pulmonary disease 568 (15.4%) 955 (21.2%) <.001

Dementia 192 (5.2%) 301 (6.7%) 0.005

Cirrhos 35 (0.9%) 32 (0.7%) 0.233

Cancer 414 (11.2%) 478 (10.6%) 0.376

Hemoglobin 12.5 (11.2-13.9) 12.4 (11.0-13.8) 0.035

White blood cell count 9.0 (7.1-11.4) 8.8 (7.0-11.4) 0.105

Sodium 139.0 (136.0-141.0) 139.0 (136.0-141.0) 0.399

Glucose 7.5 (6.0-10.9) 7.3 (6.0-10.1) <.001

Urea 8.1 (5.9-12.0) 8.2 (6.1-11.9) 0.371

Creatinine 105.0 (84.0-140.0) 106.0 (84.0-142.0) 0.679

eGFR (ml/min/1.73 m2) 56.0 (39.3-73.2) 54.8 (39.3-72.0) 0.219

Potassium 4.2 (3.9-4.6) 4.2 (3.9-4.6) 0.236
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Note: Dichotomous variables are reported as N (%), while continuous variables are reported as median (25th percentile – 75th percentile). The 
Kruskal-Wallis test and the Chi-squared test were used to compare continuous and categorical baseline characteristics, respectively, between 
patients in the two phases of the EFFECT sample.
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Table 3

Accuracy of prediction in EFFECT-2 sample.

Prediction method AUC or c-statistic Brier Score

Regression tree 0.683 0.2152

Bagged regression tree 0.733 0.2079

Random forest 0.751 0.1959

Boosted regression tree (depth 1) 0.752 0.2049

Boosted regression tree (depth 2) 0.768 0.1962

Boosted regression tree (depth 3) 0.772 0.1933

Boosted regression tree (depth 4) 0.774 0.1918

Logistic regression (full model) 0.780 0.1861

Logistic regression (simple model) 0.766 0.1914
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Table 4

Sensitivity and specificity of classification in EFFECT-2 sample.

Classification method Sensitivity Specificity Positive predictive value Negative Predictive value

Classification tree 0.462 0.820 0.616 0.709

Bagged classification tree 0.451 0.849 0.653 0.712

Random forest 0.378 0.897 0.696 0.697

Boosted classification tree (depth 1) 0.453 0.876 0.695 0.719

Boosted classification tree (depth 2) 0.491 0.847 0.667 0.726

Boosted classification tree (depth 3) 0.492 0.828 0.642 0.722

Boosted classification tree (depth 4) 0.500 0.820 0.635 0.724

Support vector machines 0.401 0.887 0.690 0.703
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