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ABSTRACT 

In the present work, superparamagnetic iron oxide nanoparticles (SPION) surface-coated with 

3-mercaptopropanoic acid (3-MPA) were prepared and their feasibility for the removal of arsenate from 

dilute aqueous solutions was demonstrated. The synthesized 3-MPA-coated SPION was characterized 

using transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier 

transform infra-red spectrometry (FTIR). Separation efficiency of the coated nanoparticles and the 

equilibrium isotherm of arsenate adsorption were investigated. The obtained results reveal the arsenate 

adsorption to be highly pH-dependent, and the maximum adsorption was attained in less than 60 

minutes. The resulting increase of 3-MPA-coated SPION adsorption capacity to twice the adsorption 

capacity of SPION alone under the same conditions is attributed to the increase of active adsorption 

sites. An adsorption reaction is proposed. On the other hand, efficient recovery of arsenate from the 

loaded nanoparticles was achieved using nitric acid (HNO3) solution, which also provides a 

concentration over the original arsenate solution.  
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HIGHLIGHTS 

• Feasibility of using SPION modified with 3MPA for the removal of As(V). 

• The adsorbent system results in an effective sorption for selective As(V) removal. 

• The adsorption capacity for As(V) is higher comparing with other adsorbent systems. 

• Adsorption mechanism has been proposed as the most suitable considering the results. 
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1. Introduction  
 

Arsenic is a relatively scarce element in the environment atmosphere, water, soil and organisms. 

Usually it exists combined with other elements, for example, with sulphur, oxygen and iron and the 

arsenic species toxicity depends on its oxidation state, being As(-III) the most toxic specie [1]. The 

World Health Organization (WHO) has reduced the Maximum Contamination Level (MCL) from 

50 µg/L to 10 µg/L. Therefore, it is noteworthy that the continuous regulations strengthening make 

necessary the improvement of existing arsenic remediation methods. [2,3]. 

A great variety of water treatment methodologies s such as precipitation [4], oxidation [5], liquid-liquid 

extraction [6,7], ion exchange [8], membrane processes [9], surface complexation [10] and selective 

adsorption [11,12] have been studied for significant reduction or remove arsenic from contaminated 

effluents. 

 

The essence of nanoscience and nanotechnology is the ability to create materials, structures and systems 

which exhibit new properties for novel applications, a combination of the desired properties and 

functionalities is achieved at nanometer scale [13]. Small size gives nanoparticles a high surface area to 

volume ratio, a high surface reactivity, new properties such as magnetic, chemical etc…. In this sense, 

the interaction with different kinds of chemical species offers better kinetics for selective sorption of 

ions from aqueous solutions [14]. Highly reactive nanoparticles such as nanosized sorbents have been 

developed specifically to remediate contamination by heavy metal ion contaminants [15,16]. 

Nanoparticles (10–500 nm) provide an opportunity to deliver these remedial agents to subsurface 

contaminants in situ, and provide access to contamination trapped in the smallest pores in an aquifer 

matrix.  

 

At the nanoscale, inorganic metal oxides are potentially highly efficient agents for binding ions such as 

arsenic or some pollutants and today’s challenge is the translation of these achievements into an 

industrial production environment which requires scale-up to a continuous and safe nanoparticle 
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manufacturing process as reported elsewhere [17-19]. By tailoring the composition of the metal oxides, 

selective adsorption of different ions can be introduced.  The utilization of nanoparticles for the 

recovery of metal ions from industrial wastes or natural water effluents has proved itself as superior new 

process. 

In the present study the feasibility of using SPION coated with 3-mercaptopropionic acid is 

demonstrated for selective sorption of arsenate from aqueous solutions and an adsorption mechanism 

has been proposed as the most suitable considering the obtained results throughout the study. The 

sorption properties were studied under static mode of operation.  

 

2. Experimental section 

2.1. Chemicals and Reagents 

Stock solutions of As(V) were prepared from Na2HAsO4·7H2O (Sigma-Aldrich). Analytical grade 

FeCl2·4H2O, FeCl3·6H2O (Sigma-Aldrich), ammonium hydroxide, toluene, sodium acetate trihydrate, 

acetic acid, nitric acid and sodium hydroxide were used as received. Cu(NO3)2, Ni(NO3)2, Zn(NO3)2, 

NH4Cl, NH4(NO3), K2(SO4) and NaH2(PO4) (Sigma-Aldrich) were used for the cationic and anionic 

selectivity experiments. 3-Mercaptopropionic acid (3-MPA, Sigma-Aldrich) and 

Tetramethylammonium hydroxide (TMAOH, Fluka 25 % in water) were used without further 

purification. High purity water with a resistivity of 18 MΩ cm-1 was used throughout all the 

experiments. 

 

2.2. Characterization techniques for the adsorbent system 

SPION and nanoparticle composites (NPCs) synthesized by functionalization of SPION with 3-MPA 

were imaged with transmission electron microscopy (HR-FEG-TEM, JEOL JEM-2100, Tokyo, Japan). 

TEM-EDX for chemical composition determination was applied for the nanoparticles in dry form. The 

stability and the homogeneity of the SPION suspension in hydrodynamic mode were determined by 
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dynamic light scattering (DLS, Delsa Nano C, Beckman Coulter, Brea, CA, USA). thermogravimetric 

analysis (TGA, Q5000, TA instruments, New Castle, DE, USA) was employed to measure the weight 

variation and determine if the particles were loaded with the reagent. Fourier transform infra-red (FTIR, 

Nicolet Instruments model Avatar-100 equipped with ATR diamond at 303 K, Madison, WI, USA) was 

used to verify the interaction between SPION, 3-MPA and their bonding before and after the adsorption 

process [20-22]. 

 

2.3. Synthesis of adsorbent materials 

The synthesis procedure of SPION (~ 10 nm) and 3-MPA-coated SPION has been described elsewhere 

[23]. A stock solution of iron(III) in chloride medium was prepared by dissolving the salt with a 

deoxygenated 0.2 mol/L HCl aqueous solution. This solution was added to a deoxygenated solution of 

0.7 mol/L NH4OH under mechanical stirring. After a few minutes, the appropriate salt of iron(II) in 2:1 

ratio was added to avoid the partial oxidation of Fe(II). The particles were aged in the solution for about 

45 min under mechanical stirring and nitrogen bubbling, decanted by magnetic settling, and washed 

with deoxygenated water several times. A known amount of the synthesized particles was mixed with 

3-MPA solution (150 mM) in toluene using a rotary shaker for 24 hours. After phase separation using 

magnetic settlement, the particles were washed with toluene three times to remove the excess of 3-MPA 

deposited on the surface of the particles. The particles were dried at room temperature (23 °C).  FT-IR 

was used to check whether the reagent was bound to the surface of the particles, in a wavenumber range 

4000-600 cm-1 [24,25]. TGA analysis was carried out with heating rate of 10 ºC/min in nitrogen until 

900 ºC [26,27]. 

 

2.4. Adsorption and Desorption Experiments 

The adsorption experiments were performed by mixing a known amount of 3-MPA-coated SPION with 

aqueous solutions of As(V) in 0.2 M Acetic acid/Acetate medium using a rotary shaker at room 

temperature (23 °C). The pH of the solution was controlled using either HNO3 or NaOH standardized 
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solutions and confirmed by pH measurements (pH-meter, Crison, Barcelona, Spain). After mixing, the 

aqueous phase was separated from the solid phase by magnetic settlement and centrifugation at 14000 

rpm (Genofuge 16 M, Techne, Prinston, NJ, USA). The concentration of metal ions in the supernatant 

was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES, iCAP 6000, 

Thermo Fisher, Waltham, MA, USA). As(V) adsorption was calculated by mass balance and the effect 

of different parameters, such as time, pH and initial As(V) concentration were recorded. The dissolution 

of iron oxide was monitored by determining the concentration of iron in aqueous solutions.  

In the desorption experiments, 10 mL of the elution solution (HNO3 or NaCl) was added to an 

accurately-measured quantity of 3-MPA-coated SPION loaded with As(V). After 60 minutes of contact 

at temperature 23 °C, the aqueous and the solid phases were separated by centrifugation and the 

concentration of As(V) in the supernatant was measured. 

The total adsorption capacity was expressed as mmol of Arsenate (or other metal in case of selectivity 

experiments) per gram of adsorbent system.        

 

2.5. Selectivity Experiments 

Two different experiments were performed to study the selectivity of the adsorbent. In one, solutions of 

As(V) containing metal ions such as Cu(II), Ni(II) and Zn(II) in molar ratios 1:1 and 1:2 (As(V): metal 

ions) were treated in order to know if the adsorbent system can be used for As(V) removal in the 

presence of metals. In the other, solutions of As(V) containing 0.25 mol L-1 of Cl-, NO3
-
 , SO4

2- or PO4
3- 

(ratio 20:1 respect of As(V) total in solution) were treated to observe the behaviour of the absorbent 

system in the presence of interfering anions. The experiments were performed in the same way as the 

adsorption experiments by mixing a known amount of 3-MPA-coated SPION with the solutions using 

rotary shaker at room temperature (23 °C). The pH of the solution was controlled using either HNO3 or 

NaOH standardized solutions and confirmed by pH measurements (pH-meter, Crison, Barcelona, 

Spain). After mixing, the aqueous phase was separated from the solid phase and the concentration of 

metal ions in the supernatant was determined by ICP‐AES. 
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3. Results and discussion 

3.1. Characterization of adsorbent material 

The amount of 3-MPA coated on the surface of SPION was determined from the percentage mass loss 

measured by thermogravimetric analysis (TGA/DTG). As shown in Fig. 1, the TGA curve for SPION 

shows a mass loss over 100–350 °C of about 8%. This is most likely due to the loss of adsorbed water 

and dehydration of internal OH groups. However, for 3-MPA-coated SPION, the TGA curve shows two 

mass loss steps. The first mass loss step over 100–180 ºC might be due to the loss of residual water 

adsorbed physically in the sample. The second mass loss over 200–800 ºC was due to the decomposition 

of 3-MPA. Based on the TGA data, the amount of 3-MPA coated on the surface of SPION is determined 

to be 3.7 mmol/g.  

 

The TEM image of 3-MPA-coated SPION is shown in Fig. 2a. A review of the actual existing literature 

highlights an optimal particle size range between 8-20 nm for adsorption applications. As it can be 

observed, the main nanoparticle size obtained by using the described synthesis method has an average 

size about 15-20 nm [28-30]. Energy Dispersive X-ray (EDX) analysis data (Fig. 2b) show that the main 

compositions of the sample are Fe, O, and S. The presence of sulphur in the sample is a confirmation of 

the coating process [31,32]. 

 

In order to confirm the coating of the SPION surface with 3-MPA, FT-IR spectrum of SPION, 3-MPA-

coated SPION, and 3-MPA were obtained Fig. 3. The FTIR spectrum of 3-MPA (Fig. 3a) has two 

important functional groups: thiol (SH) and carboxylic (COOH) showing a broad O-H stretch band at 

3114-2917 cm-1 [33]. The vibration  of the –SH group present two peaks at 2664 and 2571 cm-1 (slightly 

observed in 3-MPA-coated SPION). The –COOH group has a stretching vibration of C=O at 1714 cm-1 

and the stretching vibration for C-O at 1267 cm-1 [34,35].  Finally, a band at 951 cm-1 is attributed to O-

H out of plane wagging [36].  
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In the spectrum of SPION (Fig. 3b), the band at 732 cm-1 is attributed to the Fe-O vibrations [33]. In the 

FTIR spectrum of the 3-MPA coated SPION (Fig. 3c), there are also new bands at 1521 cm-1 and 1386 

cm-1, which are assigned to asymmetric and symmetric stretching vibrations of COO- group and the 

band attributed to C=O for the carboxyl group and S-H groups of MPA lose intensity [34]. A reasonable 

conclusion would therefore be that the binding of 3-MPA to SPION occurs primarily through the 

carboxylic group rather than through the SH group.  

 

3.2. Proposed mechanism of 3MPA-SPION interaction 

Taking into account the results obtained from the TGA and FT-IR analysis, a proposed structure for 

3MPA-coated SPION at acidic pH can be illustrated below [37]: 

Fe OH2
+

OH

SH

O

O

SH

O
Fe

H3O+

     (1) 

 
where Fe  represents the SPION.  

The presence of a good leaving group such as OH2
+ on the SPION surface when producing the 

functionalization, is a key factor to this reaction leading an increase in the amount of functionalized Fe 

atoms on the SPION surface. In this sense, the TGA results corroborate the high degradation of organic 

compounds between 200 and 800 ºC and the TEM-EDX showed quantitatively corresponding amount 

of sulphur.  

 

3.3. Sorption-desorption properties of As(V) on 3MPA-SPION. 

This section includes results of different parameters, i.e., contact time, pH, and As(V) concentration 

affecting the adsorption process as well as its selectivity against most common interfering ions. The 

As(V) desorption process is also described. 

3.3.1. Effect of the contact time 
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In these experiments the effect of contact time on the adsorption of As(V) was studied. The experiments 

were carried out using 10 mg 3-MPA coated SPION at room temperature (23 ºC) and solution pH 4.0 

with the contact time varying in the range of 10-360 min. The results obtained are presented in Fig. 4. 

As can be seen, the 3-MPA-coated SPION synthesized at low pH exhibit high sorption kinetics for 

As(V) than 3-MPA-coated SPION synthesized at high pH, the 50% of the equilibrium sorption (t1/2) 

being reached in less than 10 minutes. However, to ensure equilibrium, 1 hour contact time was 

maintained during the extraction studies.  

 

3.3.2. Effect of pH 

The adsorption of As(V) ( Ci= 100 mg/L)  using 3-MPA-coated SPION was  investigated by varying the 

solution pH in the range 2-11 (acetic/acetate media). The results obtained (Fig. 5) revealed that the 

adsorption of As(V) by 3-MPA-coated SPION is pH dependent. This is in agreement with the results 

obtained from solvent extraction studies using 3-MPA as extractant [38]. This can be explained by the 

dependence of the As(V) speciation on the pH.  

 

A comparison of the observed pH effect with that obtained by Muñoz et al. [39] revealed similar 

behaviour in the adsorption of As(V) by SPION alone with an adsorption maximum at pH 3.8. This 

similarity supports the conclusion that the arsenic species responsible of the adsorption are the same.  

 

As it is well known, the acidity of arsenate species (pKa1 = 2.2) can be responsible of the observed 

adsorption, since a relatively high proportion of deprotonated species are present at pH value 3.8 of 

highest adsorption. For lower pH values (2.0-3.0), the competition of H+ species for arsenate leads to a 

lower adsorption. On the other hand, at pH > 5.0 the observed decrease on the As(V) adsorption is due 

to the increase of OH- species in suppressing the process (see equation 1).  

 

3.3.3. Effect of Initial As(V) Concentration 
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In these experiments the effect of the initial As(V) concentration on the sorption of As(V) was studied 

in order to estimate the maximum loading capacity of 3-MPA-coated SPION. The initial As(V) 

concentration was in the range of 1.3x10-5 mol/L to 1.3x10-2 mol/L. The relationship between the 

equilibrium aqueous concentration and the equilibrium loading capacity for As(V) is shown in Fig. 6. 

The experimental observations are in good agreement with the Langmuir adsorption model, as follows; 

eL

eL
e Ck

Ckq
q

+
=

1
max            (2) 

that can be written as: 
 

maxmax

1

q

C

kqq

C e

Le

e +=            (3) 

 
where qe is the equilibrium loading capacity (mmol/g), Ce is the equilibrium metal concentration in the 

aqueous phase (mmol/ L), qmax is the maximum loading capacity (mmol/g) corresponding to a 

monolayer coverage, and kL is Langmuir constant (L/mmol). The values of the maximum loading of 

As(V) and Langmuir constant are determined to be 2 mmol/g and 8.3 L/mmol respectively. The 

maximum loading capacity of As(V) corresponded to 54% (molar basis) of the total binding sites (3.7 

mmol 3-MPA/g SPION). The major part of the reagent is likely to be accessible to As(V) ions. 

 

With all parameters optimized, a predicted structure for the compound that exists when As(V) is 

adsorbed on 3-MPA-coated SPION can be described at pH=4, by the predominant specie of As 

(H2AsO4
-) [39,40]:  

 
 
 
 

(4) 
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The observed increase of the solution pH supports the appropriateness of the proposed adsorption 

mechanism by reaction (4).  

 

3.3.4. Selectivity 

3.3.4.1. Selectivity with metal ions 

In order to examine the separation of As(V) from a mixture containing metals, the selective sorption of 

As(V) from a solution containing mixture of Cu(II), Zn(II), and Ni(II) was investigated. The results 

obtained are listed in Table 1. The initial As(V) concentration was 7.5x10-4 mol L-1. The results 

obtained are in agreement with that of solvent extraction studies [41]. It indicates that 3-MPA-coated 

SPION can be used to extract As(V) selectively from aqueous solutions under the experimental 

conditions studied. 

 

3.3.4.2. Selectivity with interfering anions 

Fig. 7 shows the effect of the pH in the adsorption of As(V) in the pH range 2-11 for the 3‐MPA-coated 

SPION for As(V) solutions with or without anions commonly present in waste waters and potentially 

interfering in the As(V) adsorption such as chloride, nitrate, sulphate or phosphate. It should be 

emphasized that the interfering effect of these anions is very significant, given that the As(V)-adsorption 

capacity in the presence of one of these anions is always lower than the loading capacity without them. 

But the general tendency of the adsorption capacity to vary with the pH is similar for all interfering 

anions, with an increase of the loading capacity when the pH increase until 4.5 or 5.0 and stabilization 

until pH 11.0. 

Because of the fact that is not existing a parameter that let us the interfering effect quantification of the 

different anions, it can be considered the values of loading capacity at pH 4.0 approximately (pH value 

in the zone where the loading capacity is higher). These values are registered in the Table. 2 with the 

values of the loading capacity decreasing for each anion.   
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Selectivity decreases in the order phosphate >> sulphate ~ nitrate ~ chloride. Therefore, the results show 

that the loading capacity is similar in presence of the all interfering anions except phosphate which 

present an interfering effect more pronounced. The high interfering effect of phosphate in the loading 

capacity of As(V) in all pH ranges is due to the effective competition for the Fe(III) centers of the 

SPION according with the similar affinity of phosphate and arsenate for Fe(III) and due to the major 

concentration of phosphate in ratio with the arsenate concentration [42]. 

As it is presented in the literature [10,43], the comparative of the adsorption results between synthetic 

solution and real water present a greater efficiency for the metal ions removal from synthetic solution 

and this can be attributed to the matrix effect from real water which increase the ionic strength from 

solution as well the ions competition by the zeolite adsorption sites. Then, with the interfering anions, 

ionic strength of real solution has been simulated. 

 
3.3.5. Desorption of As(V) 

Different eluting solutions such as HNO3 and NaCl were employed for the recovery of As(V) from the 

loaded 3-MPA-coated SPION. The adsorption experiments were performed at pH 3.8 and initial As(V) 

concentration of 7.5x10-4 mol L-1. Corresponding results are 97% for 1.0 M HNO3 and 5% for 1.0 M 

NaCl. These results agree with the described pH effect on the adsorption process.  

In addition, in the aqueous phases iron is not observed that means no striping of 3-MPA coated SPION 

is produced. Several 3-MPA-coated SPION samples have been observed by SEM after the desorption 

process and all of them keep their structure with presence of mercaptopropanoic agent on the SPION 

surface. That means that the absorbent material is stable after the treatment and it is ready to be used for 

adsorption – desorption cycles. 

3.3.6. Adsorption capacity comparison with similar adsorbent systems.  

Comparing the obtained results, as shown by Table 3, with similar studies employing other kind of iron 

oxides, a high difference adsorption is observed. To explain this behaviour, it must be taken into 

account that the SPION provide more accessible centres for the arsenate adsorption respect the Fe(III). 
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3-MPA-coated SPION is around twice more effective for As(V) than SPION. SPION functionalization 

provides a more active adsorption sites accessible to both arsenite and arsenate. The most important 

reason for the observed increase of is the decrease of SPION aggregation by a dispersion that leads to a 

higher availability of adsorption positions [10,44-51].  

When the comparison is made with nanoparticles or nanocomposites, something similar happens. The 

three developed systems, non-supported, modified and Sponge loaded SPION present better adsorption 

capacity than the reported results in the literature. 

 

4. Conclusions 

In this study, the feasibility of using 3-MPA-coated SPION has been demonstrated for the removal of 

As(V) from diluted nitrate solutions. The time needed to reach maximum adsorption was attained in less 

than 1 hour and the loading capacity of 3-MPA-coated SPION for As(V) was determined to be 2 

mmol/g (150 mg/g). The adsorption behaviour of As(V) at 23 ºC was similar to Langmuir isotherm. The 

3MPA-coated SPION have been shown to be selective for As(V) against base metals such as Cu(II), 

Zn(II), and Ni(II). FTIR analysis suggested that 3-MPA is bound to the SPION surface through the 

carboxylic group. 

The possibility of combining the superparamagnetic properties of SPION (3-MPA-coated SPION could 

be separated easily with external magnetic field if leaching is produced) with the selectivity of the 

reagent (3-MPA) could result in the development of a more effective sorbent for the selective recovery 

of As(V) from dilute solutions. In this work, sufficiently high loading capacity and high selectivity of 

As(V) were obtained using 3-MPA coated SPION. As a result, this system provides a ligand exchange 

mechanism and efficient way to recover As(V) from dilute aqueous solutions. This system might be 

useful for treatment of process streams of As(V), especially since such streams usually contain low 

concentrations of these metals. 
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The experimental results are obtained at laboratory scale, in a pre-stage of pilot plant and for this reason 

no results at large scale are presented in this paper. Taking into account that it is possible to synthesize 

nanoparticles at industrial level, next step will be developed in this way. 
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