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Abstract
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete
element analysis (DEA) is a computationally efficient method to estimate cartilage contact
stresses. Previous applications of DEA have underestimated cartilage stresses and yielded
unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric
joint geometry. The study objectives were to: 1) develop a DEA model of the hip joint with
subject-specific bone and cartilage geometry, 2) validate the DEA model by comparing DEA
predictions to those of a validated finite element analysis (FEA) model, and 3) verify both the
DEA and FEA models with a linear-elastic boundary value problem. Springs representing
cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral
cartilage thickness and joint space in the FEA model. Material properties and boundary/loading
conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution
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times for DEA and FEA models were ~7 seconds and ~65 minutes, respectively. Irregular,
complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact
areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending
stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6 MPa) and
average contact stresses (3.0–3.7 MPa) than FEA (6.2–9.8 and 2.0–2.5 MPa, respectively). DEA
overestimated stresses due to the absence of the Poisson’s effect and a direct contact interface
between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-
specific bone geometry and cartilage thickness were used. This DEA method may have
application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as
acetabular reorientation during peri-acetabular osteotomy.
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Hip; cartilage; cartilage mechanics; contact stress; discrete element analysis; finite element
analysis; computational modeling

2. INTRODUCTION
Chronic exposure of elevated cartilage contact stresses has been shown to predict the onset
and progression of osteoarthritis (OA) in the hip (Harris, 1986; Maxian et al., 1995; Mavcic
et al., 2008). Thus, methods to quantify hip joint cartilage contact stresses are clinically
relevant and necessary to improve our understanding of hip OA. For example, the magnitude
and distribution of cartilage contact stress could be used to quantify mechanical differences
between normal and pathologic hips, generate preoperative surgical plans, and predict long-
term prognosis following surgical treatment. However, direct measurement of cartilage
contact stresses and contact area in-vivo is currently not possible.

Computational modeling is an alternative to direct in-vivo measurement of cartilage contact
stresses. Both finite element analysis (FEA) (Brown and DiGioia, 1984; Anderson et al.,
2005; Bachtar et al., 2006; Chegini et al., 2009; Gu et al., 2011; Henak et al., 2011) and
discrete element analysis (DEA) (Genda et al., 2001; Tsumura et al., 2005; Yoshida et al.,
2006; Armiger et al., 2009; Chao et al., 2010) have been used to estimate hip cartilage
contact stresses. FEA models of the hip can predict cartilage contact stresses consistent with
experimental data when subject-specific bone and cartilage geometry are used and bones are
modeled as deformable (Anderson et al., 2008; Henak et al., 2011). However, the
construction and analysis of FEA models are time-intensive and computationally expensive.
Thus, many published FEA models simplify the complex geometry of the hip joint by
assuming spherical geometry (Bachtar et al., 2006; Chegini et al., 2009) or constant cartilage
thickness (Gu et al., 2011). Models that assume ideal geometry underestimate peak cartilage
contact stresses by 60%, average cartilage contact stresses by 21%, and overestimate contact
area by 25% (Anderson et al., 2010).

DEA (i.e. rigid body spring method) is a computationally efficient method for calculating
cartilage stresses. Using DEA, bones are modeled as rigid bodies and cartilage is represented
as an array of springs (Li et al., 1997; Volokh et al., 2007; Chao et al., 2010). Cartilage
contact stress is quantified based on spring deformation. Previous DEA models have
assumed concentric hip joint geometry and constant cartilage thickness (Genda et al., 1995;
Genda et al., 2001; Armand et al., 2005; Yoshida et al., 2006) or cartilage thickness equal to
the distance between the acetabulum and femoral head (Tsumura et al., 2005). These
assumptions for DEA underestimate cartilage stress and predict unrealistic, simplified
contact patterns (Genda et al., 2001; Armand et al., 2005; Yoshida et al., 2006; Armiger et
al., 2009) when compared to experimentally measured contact stress magnitudes and
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complex contact patterns (Brown and Shaw, 1983; Afoke et al., 1987; von Eisenhart et al.,
1999). However, it is possible that DEA could provide realistic predictions of hip cartilage
contact stress if subject-specific bone and cartilage thickness were incorporated. The study
objectives were to: 1) develop a DEA model of the hip joint with subject-specific bone and
cartilage geometry, 2) validate the DEA model by comparing DEA predictions to those of a
validated FEA model, and 3) verify both the DEA and FEA models with a linear-elastic
boundary value problem.

3. METHODS
High resolution CT image data (512×512, 320 mm field of view, in-plane resolution
0.625×0.625 mm, 0.6 mm slice thickness) of a 25 year old male cadaveric hip provided
baseline geometry (cortical bone and cartilage surfaces) for both the DEA and previously
validated subject-specific FEA model (Anderson et al., 2008).

3.1 Discrete Element Analysis Implementation
A custom C++ program was written to perform DEA. A Newton solver was used to
determine the position of the femur such that the sum of the spring forces balanced the
applied force. As the DEA method requires rigid bones, both the pelvis and femur were
modeled as rigid, triangulated surfaces with position dependent cartilage thickness values
assigned to each node. Nodal cartilage thicknesses were computed as the distance between
cartilage and cortical bone surfaces projected along the surface normal vector. Cartilage was
represented by a distribution of compressive springs generated in the region of the femoral
head underlying the acetabulum in each loading scenario. One end of the spring was
attached at the center of each triangle on the acetabulum and the other was determined by
projecting the point along the acetabular surface normal onto the femoral head. The initial
spring length was calculated as a distance between starting and projection points, and was
defined as the sum of acetabular and femoral cartilage thickness and gap distance at the
corresponding location of the FEA model (Fig. 1). Since the spring attachment at the femur
did not necessarily terminate directly at a femur surface node, femoral cartilage thicknesses
were interpolated from neighboring nodes. The springs resisted compressive forces (spring
length less than the sum of acetabular and femoral cartilage thickness) but not tensile forces
(Fig. 1). The force generated by compression of an individual spring was calculated
according to Hooke’s law:

(1)

where Δxi is the spring compression distance, ki is spring stiffness, and ni is the local
surface normal. The spring stiffness ki depended on Young’s modulus and Poisson’s ratio (E
= 11.85 MPa, v = 0.45) (Genda et al., 2001; Yoshida et al., 2006):

(2)

Here, Ai is a triangular element area and hi is the sum of acetabular and femoral cartilage
thicknesses. The spring forces (Eq. (1)) that balance the applied force are a nonlinear
function of femur position. Newton’s method determined the position of the femur so that
spring forces balanced the applied force. The initial condition was the initial position of the
femur and pelvis, positioned according to in-vivo kinematic data (Bergmann et al., 2001).
Newton’s method was used to calculate the root of the residual function, defined as the
difference between the user input force and the sum of the spring forces. The updated
position of the femur was calculated at each Newton-iteration and projection points of
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springs on the femoral head were re-generated following each update to account for the new
position of the femur. To maintain the appropriate kinematic position, rotation of the femur
was restricted, and therefore, moments were not balanced. Contact stresses were calculated
from the spring force and triangular element area where each spring was attached. A
convergence study determined the number of springs necessary.

3.2 Finite Element Analysis
Triangular shell elements defined bone geometry (Anderson et al., 2008), and were assumed
rigid to correspond with DEA model assumption. Cartilage was represented using
hexahedral elements as a neo-Hookean hyperelastic material, and the shear modulus, G, and
bulk modulus, K, were assigned based on the Young’s modulus E and Poisson’s ratio ν used
in the DEA analysis:

(3)

(4)

FEA models were analyzed using NIKE3D (Puso et al., 2007).

3.3 Loading and Boundary Conditions
The pelvis was assumed rigid and fixed in space. The femoral head was modeled as rigid but
free to translate in all three axes (rotations constrained). Loading conditions and geometric
orientation of the femur relative to the pelvis were based on published data for in-vivo hip
loads (Bergmann et al., 2001). Walking (W), descending stairs (DS), and ascending stairs
(AS) for the average subject in (Bergmann et al., 2001) were analyzed; 800 N bodyweight
was assumed. Force was applied to the geometric center of the femoral head, determined as
the center of a sphere fit to the femoral head using a least squares optimization.

3.4 Data Analysis
To facilitate DEA and FEA comparisons, DEA nodal results (defined on triangulated bone
surfaces) were projected onto the articulating (quadrilateral) surface of the FEA cartilage
mesh and interpolated. Interpolation was accomplished by locating the closest point
projection of each quadrilateral node onto the triangular bone surface. The value at the
projection point was interpolated from nodal values using element shape functions.
Predictions of peak contact stress, average contact stress, and contact area were compared
descriptively between DEA and FEA to validate the DEA model, where validation was as
the process of ensuring that a computational model accurately represents the physics of the
real world system (Anderson et al., 2007; Henninger et al., 2010). Cartilage contact stress
was sampled on the surface of the acetabular cartilage, and average contact stress was
calculated for each loading scenario considering all articulating nodes in contact (i.e. nodes
with a positive contact stress). Cartilage contact area was calculated by summing the surface
area of each element in the acetabular cartilage that was in contact with the femoral
cartilage. The acetabular cartilage was divided into anterior, superior, and posterior regions,
where each region contained an equivalent number of elements (Athanasiou et al., 1994).
Both DEA and FEA models were preprocessed using PreView and post-processed using
PostView (www.febio.org).
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3.5 Model Verification
A linear-elastic boundary value problem (Fig. 2) served as verification of the DEA and FEA
models, where verification was defined as determining that a computational model
accurately represents the underlying mathematical model and its solution (American Society
of Mechanical Engineers, 2006; Anderson et al., 2007; Henninger et al., 2010). Specifically,
contact stress predictions were compared to the simplified elasticity solution of an elastic
sphere supported bilaterally by concentric rigid spheres (Bartel et al., 1985; Li et al., 1997).
The model dimensions, constitutive models and loading conditions were comparable to
physiologic hip models. Rigid hemispheres radii were 20 and 24 mm, and the elastic sphere
conformed to the rigid backings and was 4 mm thick, similar to the thickness of two
cartilage layers (Macirowski et al., 1994; Menschik, 1997; Kohnlein et al., 2009). The
simplified elasticity solution described displacement as the differential equations of
equilibrium in spherical coordinates and assumed displacement was confined to the radial
direction (Bartel et al., 1985).

To model the equivalent using FEA, 4 mm thick cartilage was represented with hexahedral
elements as a single layer (10 through the thickness, total of 108,000 elements). The outer
surface cartilage nodes were fixed and the smaller rigid sphere was represented by
hexahedral elements (2 elements through thickness, total of 21,600 elements). Cartilage was
a neo-Hookean, hyperelastic material (E = 11.85 MPa, ν = 0.45, EQ 3,4) and a frictionless
sliding interface was defined between the smaller rigid hemisphere and cartilage layer. An
additional FEA model was generated with a frictionless sliding interface between two
cartilage layers. Here, cartilage was modeled as two separate materials using hexahedral
elements (2 mm thickness each, 5 elements through thickness, total of 54,000 elements for
each cartilage layer). Cartilage layers were tied to rigid bone backings. All FEA models
utilized quarter symmetry and were analyzed in NIKE3D (Puso et al., 2007).

A DEA simulation was analyzed with rigid hemispheres (r = 20 mm, 24 mm) and constant
cartilage thickness of 4 mm. Spring stiffness was determined following material properties
equivalent to the analytical solution and FEA (E = 11.85 MPa, ν = 0.45). A convergence
study determined the number of springs required. A range of forces (100 N – 4000 N) was
applied through the smaller rigid hemisphere to compare predictions across loads in both
FEA and DEA models.

4. RESULTS
4.1 Contact Area

DEA and FEA contact patterns corresponded well and predicted irregular, complex contact
for all three loading scenarios (Fig. 3). For walking and descending stairs, both methods
predicted contact predominantly in the superolateral region. For ascending stairs, contact
was predicted posteriorly (Fig. 3). DEA contact areas were 7.5%, 9.7% and 3.7% less than
FEA contact areas for walking, descending stairs, and ascending stairs, respectively (Fig. 4).
Regional contact areas (anterior, superior, posterior) were consistently reduced in DEA
compared with FEA and averaged 71.1±16.7, 85.8±16.7, and 26.4±1.5 mm2 less than FEA
in walking, descending stairs, and ascending stairs, respectively.

4.2 Contact Stress
DEA contact stress distributions were similar to FEA, but DEA predictions exhibited greater
variation, especially at higher magnitudes of contact stress (Fig. 5). Mean and median
contact stresses averaged 43% and 44% higher in DEA, respectively. Peak contact stresses
for DEA and FEA ranged from 9.8–13.6 and 6.2–9.8 MPa, respectively. Average contact
stresses for DEA and FEA ranged from 3.0–3.7 and 2.0–2.5 MPa, respectively.
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4.3 Verification Results
At a force of 2000 N, DEA and FEA models that analyzed a single layer of cartilage
predicted peak contact stress 0.42% and 2.11% higher than the analytical solution,
respectively (Fig. 6). Contact stress predicted by the FEA model with two layers of cartilage
was reduced compared with the analytical solution and FEA model that analyzed a single
layer of cartilage. The difference in contact stresses was largest at the location of maximum
stress (θ = 0), where DEA predicted a contact stress 18.5% greater than the 2 layer FEA
model. The mean and median contact stresses were 17.1% and 15.7% higher in DEA than
the 2 layer FEA model. Results were consistent over forces varying from 100 – 4000 N, a
range that encompasses loads experienced in-vivo (Bergmann et al., 2001).

4.4 Convergence and Computation Time
The DEA convergence study demonstrated that ~20,000 and ~5,000 springs were required to
achieve <5% change in average/peak contact stress and contact area upon further refinement
in the subject-specific hip models and spherical verification model, respectively. The
solution time for each DEA model was ~7 seconds (IBM ThinkPad Intel Core 2 Duo cpu
@2.80 GHz, 3 GB RAM). FEA models required an average solution time of ~65 minutes on
a computing cluster (SUN FIRE X2270 2 cpu/8 core Intel Xeon X5550 @ 2.67GHz (16
cores with HT) 48GB of RAM 1GB network interface).

5. DISCUSSION
The results of this study demonstrated that when subject-specific bone and cartilage
geometry are included in DEA, cartilage contact stress distributions in the hip are consistent
with a validated FEA model. Furthermore, DEA was able to provide general trends for
contact stress magnitudes and yield information about cartilage contact stress profiles.
However, we found that DEA could not reliably predict the true magnitude of contact stress
at specific locations in the hip joint. Despite this limitation, DEA could be a useful tool for
comparative studies (normal vs. pathologic or pre- vs. post-op), where the difference
between groups, rather than the true magnitude of contact stress, is of primary interest. DEA
could also be useful for applications where contact area or contact stress profiles are
important (pre-operative planning or intra-operative surgical tools).

The average increase of 43% and 44% in mean and median cartilage contact stresses (Fig. 5)
in DEA compared to FEA may be partially explained by differences in the model
representations. While FEA models have two deformable cartilage parts in contact, DEA
represents cartilage as a single part, where one spring is attached to bone on each end. The
reduction in contact stresses when two deformable cartilage surfaces contact (i.e., FEA)
compared to springs compressed by rigid materials on either side (i.e., DEA) was
demonstrated in the verification problem, where the difference in cartilage representation
and contact definition resulted in ~16% reduction in average and median contact stresses in
a perfectly concentric model (Fig. 6). Although this does not account for the magnitude of
difference in the hip model (~44%), the incongruency in the hip model likely exacerbates
any differences due to representations of cartilage and the contact interface. Although the
femoral head was free to translate in all directions, the DEA models did not model
deformation in the lateral direction of cartilage, and Poisson’s Effect was effectively
ignored. Therefore, in this way, the true deformation of cartilage is not modeled in DEA.
Conversely, FEA models can model the lateral response of cartilage under compression,
which effectively reduces contact stresses compared to DEA.

Overall, the contact stress distributions corresponded well between DEA and FEA. This is
due to two factors. First, the initial positions of bone and cartilage were identical in FEA and
DEA. Second, subject-specific cartilage thickness was accounted for in DEA by assigning
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spring lengths equivalent to cartilage thickness, based directly on the FEA model. Therefore,
despite differences in contact stress magnitudes, DEA predicted contact stress distributions
that corresponded very well with FEA. In fact, contact areas were within an average of 7%
of FEA. One explanation for this small difference in contact area is as follows: For the FEA
model, the total area available for cartilage contact was simply the area of the cartilage-
cartilage contact interface. However, in the DEA models, a true cartilage-cartilage contact
interface did not exist since a single spring represented both layers of cartilage. For DEA,
the total available contact area was the area of the acetabular cartilage-bone interface in the
FEA model (the acetabular cortical bone served as the spring origin). Regardless, the
difference in available contact area between DEA and FEA was only 15%. Thus, it is the
kinematic position and contact interface geometry (i.e. cartilage thickness) that primarily
dictates the contact stress distribution and area; differences in the approach utilized to model
cartilage deformation and manner in which contact area is calculated is less important.

The magnitude of the difference in contact stress and area between FEA and DEA varied
with respect to the loading scenario analyzed. For example, in the ascending stairs scenario,
DEA cartilage contact stresses were ~20% higher, compared to the ~40% DEA versus FEA
difference in the descending stairs and walking models. The differences in DEA-FEA
agreement among the loading scenarios likely resulted from the inability of DEA to model
the Poisson’s Effect. This becomes apparent in scenarios such as descending stairs and
walking where contact stresses had a high concentration of contact stresses in the
posteroinferior region of the acetabular cartilage (Fig. 3). In contrast, in the ascending stairs
scenario, there was no contact in that region and thus less bias towards higher stress
magnitudes overall.

The complex spatial distribution of contact stress and the magnitude of stresses predicted in
our study are in contrast with the results of previously reported DEA models of the hip.
Specifically, contact stress patterns in our study did not follow the typical unicentric,
equally-distributed contact patterns seen in previously published DEA studies. Most prior
studies used 2D radiographic measures to define geometry of the bone and cartilage and
assumed a spherical articulating surface (Genda et al., 1995; Genda et al., 2001; Armand et
al., 2005; Yoshida et al., 2006). A few studies have improved the implementation of DEA
by using CT data to model the cartilage-bone interfaces (Tsumura et al., 2005; Armiger et
al., 2009). However, CT images did not visualize cartilage in these prior studies. Thus, the
articulating surface was assumed to be spherical (Armiger et al., 2009) or represented by
cartilage thickness equal to the joint space (Tsumura et al., 2005). The hip joint is not
perfectly spherical (Eckstein et al., 1997; Menschik, 1997; Kohnlein et al., 2009) and
cartilage thickness varies throughout the joint (Eckstein et al., 1997; Shepherd and Seedhom,
1999). Accordingly, FEA and DEA models that simplify the cartilage contact interface can
be expected to underestimate cartilage contact stresses and overestimate contact area
(Anderson et al., 2010; Gu et al., 2011). To obtain cartilage contact stress predictions that
are consistent with in-vitro studies (Brown and Shaw, 1983; Afoke et al., 1987; Anderson et
al., 2008), it is necessary to include subject-specific bone geometry and cartilage thickness
in computational models of the hip.

There are a number of limitations that deserve discussion. The first is the assumption that
bones are rigid. This is a limitation that is inherent in the DEA method. In an FEA model, it
has been previously shown that the rigid bone assumption increases predicted cartilage
contact stresses (Anderson et al., 2010). However, in the present study, rigid bones were
assumed for both FEA and DEA; error as a result of this assumption would be consistent
between modeling approaches. Another inherent limitation of the DEA method is the
representation of two layers of cartilage as a single spring. This simplified representation of
cartilage in DEA limits results to a single force value for each spring, and therefore predicts
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a single value of stress throughout the cartilage thickness, which will be higher than FEA
models that represent cartilage with two parts in contact. The difference in model
representations of cartilage contact complicates the method by which results were compared
between DEA and FEA. In DEA studies, stresses would typically be calculated at the bone
surface where springs are attached. Since the cartilage geometry is often unknown, and there
is no cartilage surface or mesh available, calculating stress at the bone interface is usually
the only option. In our study, contact stress was determined at the articulating cartilage
surface since the cartilage surface geometry was available from the FEA model. In contrast,
FEA models predict stresses throughout the cartilage thickness and are not limited to the
primary result of a force value through the thickness of cartilage. Another potential
limitation in our study is the difference in material models between DEA and FEA. In our
study, the DEA model employed a linear-elastic spring model whereas the FEA model
represented cartilage materials as neo-Hookean. Cartilage was not modeled as linear in FEA
because it is not rotationally invariant (spurious strains are induced by rigid body rotations)
and would therefore provide an inaccurate solution. This is not a problem with DEA because
it models spring deformation as a one dimensional strain problem. Thus, although material
models are not consistent between modeling methods, the authors believe the use of a Neo-
Hookean cartilage material in FEA and linear elasticity for DEA was warranted. Finally,
model predictions and potential extensions of this work should be interpreted with caution
considering the limited number of simulations that were performed on a single cadaveric
hip.

To our knowledge, this is the first implementation of a subject-specific DEA model of the
hip. When subject-specific bone geometry and cartilage thickness were included in the DEA
model, realistic contact stress patterns were predicted. Although advanced imaging, such as
CT or MR arthrography, may not be available to create subject-specific reconstructions of
the hip that include detailed bone geometry and cartilage thickness, it is important to
recognize that DEA models using simplified contact interface geometry will underestimate
cartilage contact stresses, overestimate contact areas and predict unrealistic cartilage contact
stress patterns.

Assuming detailed information is available for bone and cartilage, the new DEA algorithm
presented herein offers a computationally efficient alternative to FEA modeling for the
prediction of contact stresses. Considering the differences in contact area predictions were
small, DEA may be utilized in modeling studies where the contact area and distribution of
cartilage contact stresses, and not the absolute magnitude of contact stress, is of primary
importance. In particular, DEA may be clinically useful for applications that require a large
number of simulations or where time is limited. For example, our DEA modeling approach
could be used to generate pre-operative plans, based on an optimization routine to minimize
cartilage contact stress, or for intra-operative feedback systems in the treatment of hip
pathologies such as dysplasia or femoroacetabular impingement.
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Figure 1.
Sagittal view of DEA representation. Bones were rigid and cartilage was represented by an
array of springs (left). 3D FEA model; triangular shell and hexahedral elements defined
cortical bone and cartilage, respectively (right).
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Figure 2.
Schematic of verification problem under 2000 N load. Geometry was concentric: inner rigid
material r = 20 mm, outer rigid material r = 24 mm, 4 mm thick cartilage between rigid
materials. (a) Analytical solution modeled a single cartilage layer. Contact stress was
calculated as a function of theta, the angle from vertical. (b) A single cartilage layer was
represented by springs in DEA. (c) One layer FEA model. (d) Two layer FEA model.
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Figure 3.
Contact stress patterns corresponded well between DEA and FEA for walking (W),
descending stairs (DS), and ascending stairs (AS). The top/middle rows were scaled
differently to show similarities in contact pattern. The bottom row shows the FEA results
scaled the same as the DEA results (top row), indicating that DEA predicted higher contact
stresses than FEA.
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Figure 4.
DEA contact areas were comparable to FEA predictions for walking (W), descending stairs
(DS), and ascending stairs (AS).
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Figure 5.
Box plots of cartilage contact stress (all nodes in contact on the articulating surface) for the
DEA and FEA models under conditions of walking (W), descending stairs (DS), and
ascending stairs (AS), indicating the 25th and 75th percentiles with error bars at the 5th and
95th percentiles. Contact stresses predicted by DEA were elevated and more variable,
especially at higher values. The mean (solid lines) and median contact stresses (dashed
lines) were higher in DEA in all loading conditions.
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Figure 6.
Comparisons of contact stresses predicted by FEA and DEA to an analytical solution.
Contact stress predictions were consistent between analytical, DEA, FEA (1 layer) but
reduced in FEA (2 layer). In the 2 layer FEA model, the difference in contact stresses was
largest at the location of maximum contact stress (θ = 0) where DEA predicted a contact
stress higher than the two layer FEA model.
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