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2 Mergelyan’s approximation theorem with

nonvanishing polynomials and universality of

zeta-functions

Johan Andersson∗

Abstract

We prove a variant of the Mergelyan approximation theorem that
allows us to approximate functions that are analytic and nonvanishing
in the interior of a compact set K with connected complement, and
whose interior is a Jordan domain, with nonvanishing polynomials.
This result was proved earlier by the author in the case of a compact
set K without interior points, and independently by Gauthier for this
case and the case of strictly starlike compact sets. We apply this result
on the Voronin universality theorem for compact sets K, where the
usual condition that the function is nonvanishing on the boundary can
be removed. We conjecture that this version of Mergelyan’s theorem
might be true for a general set K with connected complement and
show that this conjecture is equivalent to a corresponding conjecture
on Voronin Universality.

1 Introduction

1.1 Voronin Universality

Voronin [20, 21] proved the following Theorem:

Theorem 1. (Voronin) Let K = {z ∈ C : |z − 3/4| ≤ r} for some r < 1/4,
and suppose that f is any continuous nonvanishing function on K that is
analytic in the interior of K. Then

lim inf
T→∞

1

T
meas

{

t ∈ [0, T ] : max
z∈K

|ζ(z + it)− f(z)| < ε

}

> 0.
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It is well-known that the fact that f(z) is nonvanishing on K can be
relaxed to assuming that f(z) is nonvanishing in the interior of K and may
allow zeroes on the boundary, see for example [13, p. 251, Theorem 2]. This
follows from Theorem 1 in the following way: Consider

fξ(z) = f

(

3

4
+ (1− ξ)

(

z −
3

4

))

, (0 < ξ < 1).

If f(z) is nonvanishing in the interior of K then fξ(z) is nonvanishing on K
for any ξ > 0. Choose ξ small enough so that

|fξ(z)− f(z)| < ε/2,

for z ∈ K. By Theorem 1 there exist T with positive density so that

|ζ(z + iT )− fξ(z)| < ε/2, (z ∈ K).

The conclusion follows from the triangle inequality. We use a variant of this
proof method to prove stronger results later in this paper.

Bagchi [2] (see also Steuding [19, Theorem 1.9]) generalized Theorem 1
to other compact sets than “little discs”.

Theorem 2. (Bagchi) Theorem 1 is true when K is any compact set with
connected complement lying entirely within 1/2 < Re(s) < 1.

1.2 Mergelyan’s theorem

One important tool needed to prove Theorem 2 is Mergelyan’s theorem.

Theorem 3. (Mergelyan) Assume that K is a compact set with connected
complement and that f(z) is a function analytic in the interior of K and
continuous on K. Then there exists for any ε > 0 some polynomial p(z)
such that

max
z∈K

|f(z)− p(z)| < ε.

This was proved in Mergelyan [14] and is one of the major theorems in
complex approximation theory. For different treatments see Carleson [4] or
Rudin [18, Theorem 20.5].

2



2 Removing nonvanishing on the boundary?

2.1 Two conjectures

One may ask whether we can still remove the condition that f(z) is nonva-
nishing on the boundary of K in Theorem 2. We believe this might be true,
but we have not been able to prove this in full generality, so we state this
as a conjecture.

Conjecture 1. Let K be a compact set with connected complement lying
in the strip 1/2 < Re(s) < 1, and f(z) some continuous function on K that
is analytic and nonvanishing in the interior of K. Then for any ε > 0 we
have that

lim inf
T→∞

1

T
meas

{

t ∈ [0, T ] : max
z∈K

|ζ(z + it)− f(z)| < ε

}

> 0.

Conjecture 1 is related to the following conjectured variant of Mergelyan’s
theorem.

Conjecture 2. Assume thatK is a compact set with connected complement
and that f(z) is a continuous function on K that is analytic and nonvanish-
ing in the interior of K. Then there exists for any ε > 0 some polynomial
p(z) that is nonvanishing on K such that

max
z∈K

|f(z)− p(z)| < ε.

Remark 1. Gauthier informed the author that he had thought about this
problem in the seventies, although the problem itself is not published. It is
related to results in Gauthier-Roth-Walsh [9].

2.2 Relating Mergelyan’s theorem and Voronin universality

Theorem 4. Conjecture 1 and Conjecture 2 are equivalent.

Proof. i) Conjecture 2 implies Conjecture 1. We employ the same argument
as in the proof of Theorem 2 in [1]. By Conjecture 2 we can approximate
f(z) by a polynomial p(z) such that

|p(z)− f(z)| < ε/2, (z ∈ K), (1)

where p(z) is nonvanishing on K. By Theorem 2 we have that

lim inf
T→∞

1

T
meas

{

t ∈ [0, T ] : max
z∈K

|ζ(z + it)− p(z)| < ε/2

}

= δ > 0.
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From the inequality

max
z∈K

|ζ(z + it)− p(z)| < ε/2,

it follows by the triangle inequality and (1) that

max
z∈K

|ζ(z + it)− f(z)| < ε.

Hence

lim inf
T→∞

1

T
meas

{

t ∈ [0, T ] : max
z∈K

|ζ(z + it)− f(z)| < ε

}

≥ δ > 0.

ii) Conjecture 1 implies Conjecture 2. Since K is compact we can choose
ε sufficiently small so we have that

K0 = 3/4 + εK ⊂ {z : |z − 3/4| ≤ 1/8}.

Let

g(z) = f

(

z − 3/4

ε

)

.

It is clear that g(z) is analytic and nonvanishing in the interior of K0 by the
fact that f(z) is analytic and nonvanishing in the interior of K. Since K0

lies strictly in 5/8 ≤ Re(s) ≤ 7/8 we have that

σ = inf
z∈K0

Re(z) ≥ 5/8.

Standard zero-density estimates for the Riemann zeta-function, for example
the estimate of Ingham [10] (see also Ivić [11, Chapter 11])

N(σ, T ) ≪ T 3(1−σ)/(2−σ) log5 T,

where
N(σ, T ) = ♯{s : ζ(s) = 0,Re(s) ≥ σ, | Im(s)| ≤ T},

denote the number of zeroes1 of the Riemann zeta function in a rectangle
implies that N(5/8, T ) ≪ε T

9/11+ε for any ε > 0 and in particular that

lim
T→∞

1

T
meas {t ∈ [0, T ] : ∃z ∈ K0 : ζ(z + it) = 0} = 0.

1The Riemann hypothesis says that N(σ, T ) = 0 for σ > 1/2
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In contrast, we have positive density in Conjecture 1. This means that for
any ε > 0 we can find some T ≥ 2 such that the Riemann zeta-function
ζ(z + iT ) has no zeroes on K0, i.e.

min
z∈K0

|ζ(z + iT )| = δ > 0, (2)

and that

max
z∈K0

|g(z)− ζ(z + iT )| <
ε

2
. (3)

We have that ζ(z + iT ) is an analytic function for |z| ≤ 1 and it can thus
be approximated by a polynomial q(z) such that

|q(z)− ζ(z + iT )| < min(ε/2, δ/2), (|z| ≤ 1). (4)

In particular this is true for z ∈ K0 and by combining equations (3) and (4)
we find that

|g(z) − q(z)| < ε, (z ∈ K0). (5)

where q(z) is a polynomial that by (2) and (4) fulfils

|q(z)| ≥
δ

2
> 0, (z ∈ K0),

and is thus nonvanishing on K0. Let

p(z) = q(3/4 + εz).

By the construction of the set K0, the function g(z), Eq. (5) and the fact
that q(z) is nonvanishing on K0 it is clear that the polynomial p(z) is non-
vanishing on K and that

sup
z∈K

|f(z)− p(z)| < ε.

Remark 2. Universality theorems are known for many different Dirichlet
series, including the Selberg class, see Steuding [19]. Conjecture 1 can be
formulated for any element of this class as well and we still have equiva-
lence between Conjecture 1 and Conjecture 2 by the same proof method.
Kaczorowski-Perelli [12] have proven a suitable zero-density-estimate replac-
ing Ingham’s and together with Steuding’s universality results the same
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proof holds. The only complication is that we might need to move the set
K0 closer to the line Re(s) = 1 than being centered at 3/4, since the univer-
sality results holds in a more narrow strip. One interesting consequence of
this is that a universality result of the same type as Conjecture 1 (possible
for a more narrow strip) for one function in the Selberg class implies the
same type of result for any other element in the Selberg class.

Remark 3. In case we know the Riemann hypothesis for an L-function we
do not need positive density in Conjecture 1 and we still have equivalence
between Conjectures 1 and 2. While we do not know the Riemann hypothesis
for any element in the Selberg class, recent important results of Drungilas-
Garunkštis-Kačenas [5] proves the Voronin universality theorem in the strip
0.848 . . . < Re(s) < 1 of the Selberg zeta-function for the full modular
group. In this case the Riemann hypothesis is known to hold. We can then
formulate a weaker version of Conjecture 1 and still prove that it implies
Conjecture 2.

3 Proof of our conjectures for special cases

In [1] we managed to show Conjecture 1 and 2 for the case of compact sets
without interior points2. When applied on the Voronin theorem it simplifies
the statement, since not only the assumption that f(z) is nonvanishing on
K can be removed completely, but also the assumption that f(z) is analytic
on the interior of K can be removed since the interior of K is empty. This
allowed us to prove a criterion of Bagchi in this special case. In contrast,
even if we manage to prove Conjecture 2 for a general compact set K it will
not imply anything similar. This is because while the condition that f(z) is
nonzero on the boundary of K might be removed (if conjectures 1 and 2 are
true) it is easy to see that the condition that f(z) is nonzero in the interior
of K cannot be removed.

While we can not treat the general case of Conjectures 1 and 2, we have
managed to show some partial results.

Theorem 5. Conjecture 1 and 2 are true if the interior of K is a Jordan
domain.

We remark that a Jordan domain is an open connected set that is
bounded by a Jordan curve, see e.g. Palka [17, p. 34].

2This special case of Mergelyan’s theorem is called Lavrent′ev’s theorem. For a different
proof of this result see Gauthier [8, Proposition 32].
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Proof. It is sufficient to prove Conjecture 2 for these compact sets K since
Conjecture 1 will follow from Conjecture 2 in this special case, in the same
way as in the general case, see the first part of the proof of Theorem 4.

Let O = Ko be a Jordan domain. By the Carathéodory-Osgood-Taylor
theorem3, the Riemann mapping theorem that there exists a holomorphic
bijection φ : D → O between the disc D = {z ∈ C : |z| < 1} and O, can be
extended to a continuous map φ : D → O. It is clear that

f(z) = f(φ(φ−1(z))

on O. Choose
H(z) = f(φ((1 − ξ)φ−1(z))),

for a sufficiently small ξ such that

|H(z) − f(z)| ≤ ε/3, (z ∈ O). (6)

Tietze’s extension theorem [18, Theorem 20.4] allows H to be extended to
a continuous function on K such that

|H(z)− f(z)| ≤ ε/3, (z ∈ K). (7)

By the construction it is clear that H(z) is continuous on K, nonvanishing
on O and analytic on O. Thus

sup
z∈O

|H(z)| = δ > 0,

and by Theorem 3 we can choose a polynomial P (z) such that

|P (z) −H(z)| < (ε/3, δ/2), (z ∈ K). (8)

By the triangle inequality it is clear that

|P (z)| > δ/2, (z ∈ O).

We now use the same proof method as in the proof of Theorem 1 in [1]. Let

P (z) = c0

m
∏

k=1

(z − zk),

3Problem suggested by Osgood and proved independently by Carathéodory [3] and
Osgood-Taylor [16]. For text book references, see Palka [17, Theorem 4.9] or Rudin [18,
Theorem 14.19].
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where zk denote the zeros of P (z). Since the polynomial P (z) has no zeros
in the interior of K, each zero zk must lie in the boundary of K or outside K
and there exist sequences zk,n of points in C\K such that limn→∞ zk,n = zk.
Define

pn(z) = c0

m
∏

k=1

(z − zk,n).

Since all the coefficients of the polynomials pn(z) will converge to the coef-
ficients of P (z), it is clear that pn(z) will converge to P (z) uniformly on the
compact set K. Hence there exists an n such that

|pn(z)− P (z)| < ε/3. (9)

Since zk,n denote points in C \ K, the polynomial pn(z) will have all its
zeroes outside of K and the polynomial will be nonvanishing on K. We can
therefore choose p(z) = pn(z). By the triangle inequality and the inequalities
(7), (8) and (9) we obtain the inequality |p(z)−f(z)| < ε for every z ∈ K.

We will also be able to treat the case of finitely many interior components
in some special cases.

Theorem 6. Conjectures 1 and 2 are true if K has finitely many maxi-
mally connected open subsets O, each such subset is a Jordan domain, and
furthermore if O1 6= O2 are two such subsets then f(z) is nonvanishing on
O1 ∩O2.

Proof. As in the proof of Theorem 5 it is sufficient to prove Conjecture 2
for these sets, since Conjecture 1 is a consequence. Also, it is sufficient to
construct a continuous function H(z) that is analytic in the interior of K,
which is denoted by Ko and nonzero on its closure Ko, such that

|f(z)−H(z)| < ε/3, (z ∈ Ko), (10)

since the rest of the proof follows in the same way as from equation (6) in
the proof of Theorem 5. Since K has finitely many maximal connected open
sets, we have the decomposition

Ko =
L
⋃

l=1

Kl,
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as a disjoint union of connected compact sets Kl. For each such set M = Kl

we have that

Mo =
N
⋃

n=1

On, (11)

where On are disjoint Jordan domains. Now form the graph with vertices
{On : n = 1, . . . , N} and an edge between n and k if and only if On∩Ok 6= ∅
and n 6= k. It is clear that the graph is connected from the fact that M
is connected. Furthermore it is clear that the graph is a tree, since if we
have a cycle in the graph we can construct a Jordan curve J ⊂ M ⊂ K
such that there exist points both on the inside and the outside of the curve
that are not in the set K. This Jordan curve can be chosen as the union of
half4 of the boundary for each Jordan domain in the cycle. By the Jordan
curve theorem, this violates our assumption that the complement of K is
connected.

Since the graph is a tree, we can choose some root Oα1
of the tree to

obtain a rooted tree. Any rooted tree induces a partial ordering, the tree-
order where u ≤ v if and only if the unique path from the root to v passes
through u. Furthermore by topological sorting any partial order admits a
total order

Oα1
< Oα2

< · · · < OαN
.

With this ordering we will always have

Oαn
∩Oαk

6= ∅,

for exactly one k < n, in fact the vertex Oαk
in the rooted tree will be the

parent of the vertex Oαn
. Again, Oαn

∩Oαk
cannot contain more than one

point, since then we can construct a Jordan curve violating the fact that we
know that the complement of K is connected. Thus the intersection consists
of exactly one point. Let

{zn} = Oαn
∩Oαk

,

for this k. We see that

δ = min
2≤n≤N

|f(zn)| = min
z∈Oαn∩Oαk

,n 6=k
|f(z)| > 0. (12)

4half here means that the two intersection points (one intersection point with the closure
of each neighbour in the cycle) on the Jordan curve that bounds the Jordan domain will
divide it into two curves and we choose either one of them.
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Also let

C = max
z∈K

|f(z)|+ 1. (13)

By Theorem 5 we now choose for each Oαn
a function fn so that

max
z∈Oαn

|fn(z)− f(z)| < ξ = min
(

1, δ/2, (δ/(3C))Nε/3
)

, (14)

where fn(z) is analytic on Oαn
, and nonzero and continuous on Oαn

. We
will now glue the functions together. Define recursively

H1(z) = f1(z), for z ∈ Oα1
,

Hn(z) =

{

Hk(z), for z ∈ Oαk
, 1 ≤ k ≤ n− 1,

Hn−1(zn)fn(z)
fn(zn)

, for z ∈ Oαn
, 2 ≤ n ≤ N.

(15)

It is clear that H(z) = HN(z) is continuous on M since we have ensured
continuity at the points zn. By (15) we have that

Hn(z)− f(z) =
((Hn−1(zn)− f(zn)) + (f(zn)− fn(zn)))fn(z)

fn(zn)
+ fn(z) − f(z),

when z ∈ Oαn
. By (12), (13), (14) and the triangle inequality it is clear that

|fn(z)| < C and |fn(zn)| > δ/2, and if we define

ξn = max
z∈On

|Hn(z)− f(z)|,

another application of the triangle inequality and (14) gives us that

ξn <

(

max
1≤k≤n−1

ξk + ξ

)

2C

δ
+ ξ, (2 ≤ n ≤ N).

By (14) and (15) we have ξ1 < ξ and by a simple induction argument using
the fact that C/δ ≥ 1 it follows that ξn < (3C/δ)nξ for 1 ≤ n ≤ N . By the
choice of ξ in (14) we see that ξn < ε/3 for 1 ≤ n ≤ N and by defining H(z)
on each M = Kl for 1 ≤ l ≤ L as above we obtain the inequality (10).

Remark 4. I started to think about this problem in August 2009, and most
of the results in this paper are from that month. I did initially choose to
publish just the empty interior case [1], since it allowed an especially nice
formulation of the Voronin universality theorem. The decision to proceed
with the publication of these results was partly inspired by seeing a copy of
the paper [8] of Paul M. Gauthier, where he treats the strictly starlike and
empty interior case (independently from the present author).
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4 Open problems and further research

While we believe Conjectures 1 and 2 might be true, we do not have very
strong reasons to believe in it. In fact, some quite strange sets can be
constructed. If we consider a simply connected open set that is not bounded
by a Jordan curve, the situation is more complicated, see the literature on
the Carathéodory’s theory of prime ends (see e.g. [3] or [6]).

A nontrivial example suggested by Anthony G. O’Farrell is the Cornu-
copia set5: Let us have a compact set with two interior components. One
open disc and one strip. Let the strip go around the disc indefinitely and
successively approach the disc at the same time as it thins out. Then the
strip will not be a Jordan domain, because we have that the boundary of
the disc is in fact a subset of the boundary of the strip. Since interior points
in the disc will not belong to the closure of the strip, this means that the
closure of the strip will not be simply connected. In contrast the closure of
any Jordan domain is simply connected.

Also the case when we have infinitely many maximal connected interior
sets seems difficult, even when all the sets are Jordan domains. Difficult
configurations can be found, when they touch each other, are close to each
other and when they look like snakes, i.e. even if the area tends to zero,
their length stays the same.

Of course if the conjectures are false, it would be interesting to have a
counterexample. In any case it would be interesting to have more cases where
the conjectures are known to be true. Some cases seems easier. Certain cases
with an infinite number of open components can certainly be considered.
Also it seems likely that the condition that f(z) is nonzero on the intersection
between closures of disjoint maximal connected interior sets can be removed.

Acknowledgements . The author is grateful to Lawrence Zalcman, An-
thony G. O’Farrell, Maria Roginskaya and Paul M. Gauthier for expressing
interest in this problem, and giving me motivation to finish this paper. The
author is also grateful to the referee for pointing out problems with previous
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tion by polynomials. Math. Proc. Cambridge Philos. Soc., 112(1):147–
155, 1992.

[16] W. F. Osgood and E. H. Taylor. Conformal transformations on the
boundaries of their regions of definition. Amer. Math. Soc. Trans.,
14:277–298, 1913.

[17] B. P. Palka. An introduction to complex function theory. Undergraduate
Texts in Mathematics. Springer-Verlag, New York, 1991.

[18] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New
York, second edition, 1974. McGraw-Hill Series in Higher Mathematics.

[19] J. Steuding. Value-distribution of L-functions, volume 1877 of Lecture
Notes in Mathematics. Springer, Berlin, 2007.

[20] S. M. Voronin. A theorem on the distribution of values of the Riemann
zeta-function. Dokl. Akad. Nauk SSSR, 221(4):771, 1975.

[21] S. M. Voronin. A theorem on the “universality” of the Riemann zeta-
function. Izv. Akad. Nauk SSSR Ser. Mat., 39(3):475–486, 703, 1975.

13


	1 Introduction
	1.1 Voronin Universality
	1.2 Mergelyan's theorem

	2 Removing nonvanishing on the boundary?
	2.1 Two conjectures
	2.2 Relating Mergelyan's theorem and Voronin universality

	3 Proof of our conjectures for special cases
	4 Open problems and further research

