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Abstract

INTRODUCTION: We sought to examine the genetic overlap between vascular pathologies and 

Alzheimer’s disease (AD) dementia, and the potential mediating role of vascular pathologies 

between AD-related genetic variants and late-life cognition.

METHODS: For 2,907 stroke-free older individuals, we examined the association of polygenic 

risk scores for AD dementia (ADPRS) with vascular pathologies and with cognition. Mediation 

analyses addressed whether association between ADPRS and cognition was mediated by a 

vascular pathology.

RESULTS: ADPRS was associated with lobar cerebral microbleeds (CMB), white matter lesion 

load (WML) and coronary artery calcification (CAC), mostly explained by SNPs in the 19q13 

region. The effect of ADPRS on cognition was partially but significantly mediated by CMB, 

WML, and CAC.
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DISCUSSION: Our findings provide evidence for genetic overlap, mostly due to APOE, between 

vascular pathologies and AD dementia. The association between AD polygenic risk and late-life 

cognition is mediated in part via effects on vascular pathologies.
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1. BACKGROUND

The etiology of Alzheimer’s disease (AD) dementia is complex and multifactorial. AD 

dementia refers to the clinical diagnosis of dementia considered likely to be due to 

underlying AD pathology, the accumulation of amyloid plaques and neurofibrillary tangles, 

which may lead to neurodegeneration and neuronal cell death. However, it is well-

established that a large fraction of those with a diagnosis of AD dementia also have 

cerebrovascular pathology [1]. Systematically collected cohort-based autopsy data have 

shown that vascular pathology often coexists with AD pathology, adds to the likelihood of 

cognitive impairment, and lowers the threshold of AD pathology for the development of 

clinically diagnosed AD dementia [2].

A variety of cerebral small vessel diseases (SVD) have been associated with AD dementia. 

Cerebral microbleeds (CMB) are more prevalent in individuals with dementia [3–5]. The 

presence of CMB in deep and infratentorial regions is generally ascribed to hypertensive 

vasculopathy, while a lobar distribution of CMB is associated with cerebral amyloid 

angiopathy (CAA) [6], which has been considered a major contributor to the pathogenesis of 

AD dementia [7]. White matter lesions (WML), an imaging marker of cerebral SVD, may 

also play a role in the development of AD dementia [8, 9]. A metaanalysis found that WML 

predicted an increased risk of AD and other dementia [10]. Retinal venular diameter (RVD), 

an indicator to visualize microcirculation in vivo, has been related to WML, brain atrophy, 

and increased risk of dementia [11–13].

Research efforts have also been devoted to the association between large vessel disease 

(LVD) and AD dementia. Possible mechanisms linking large-vessel atherosclerosis to AD 

dementia include shared etiology and brain hypoperfusion [14]. Several longitudinal studies 

suggest that carotid intima-media thickness (CIMT), a marker of atherosclerosis, is 

associated with brain atrophy [15] and a later incidence of AD dementia [16, 17]. 

Atherosclerotic coronary artery calcification (CAC) is another marker of LVD. Although 

there have been few reports on the relation between CAC and AD , current evidence 

suggests that larger volume of CAC is associated with brain atrophy, worse cognitive 

function, and all-cause dementia [18–20].

Genetic studies may provide clues to the biological link of AD dementia with cerebro- and 

cardio-vascular disease (collectively “CVD”). Apolipoprotein E (APOE), the major 

susceptibility gene for AD [21], has been reported to be a risk factor for hyperlipidemia, 

lobar CMB, WML, ischemic stroke, and coronary heart disease [22–25]. In addition to 

APOE, genome-wide association studies (GWAS) of AD dementia have identified single 
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nucleotide polymorphisms (SNPs) with known or hypothesized relationships to lipid 

metabolism, such as CLU, ABCA7, and SORL1 [26]. Recent studies using large-scale 

GWAS data suggest that AD dementia may be genetically correlated with levels of 

biomarkers for CVD risk (plasma lipids and C-reactive protein) [27] and small vessel stroke 

[28]. A gene-based pathway approach to GWAS data has also identified shared genetic 

pathways between CVD and AD dementia [29].

A recent study found that the effect of APOE-e4 on late-life cognition was partially 

mediated by cerebrovascular pathologies [30]. In the present study, we expand to additional 

vascular pathologies beyond the brain and full genome data to more fully understand the 

relationship of AD genes and vascular pathology in the development of cognitive 

impairment. We generated genome-wide polygenic risk scores for AD dementia (GW-

ADPRS) to examine the polygenic overlap between AD dementia and each of the following 

vascular pathologies: lobar CMB, WML, RVD, CIMT, and CAC. We also generated two 

partitioned ADPRS, estimating genetic risk for AD dementia contributed separately by the 

19q13 region that includes APOE and SNPs in linkage disequilibrium (LD) with APOE, and 

all other SNPs outside of the APOE-linkage region. We tested each ADPRS separately for 

association with cognition scores and with each vascular pathology. For vascular markers 

observed to be genetically correlated with AD dementia, we performed mediation analyses 

to explore the causal relationship among ADPRS, vascular pathology, and cognitive 

function.

2. METHODS

2.1. Study Sample

The analyses were performed in data from the Age, Gene/Environment Susceptibility— 

Reykjavik Study (AGES-Reykjavik), a population-based cohort in Iceland [31] (see 

Supplementary Methods). For our phenotypic analyses, from the full AGES-Reykjavik 

sample of 5,764 participants, we excluded those with a history of stroke or vascular 

dementia, leaving 5,161. Of these participants, the 2,907 with clean genotype data available 

constituted the sample for our genetic analyses (see Supplementary Figure S1). Genotyping 

was performed using the Illumina HumanCNV370-Duo (Illumina Inc.; San Diego, CA, 

USA). Rigorous quality control procedures were performed on the genotyped markers and 

individuals. Non-genotyped markers were imputed using the 1000 Genomes-V3-phase I 

reference panel (see Supplementary Methods).

2.2. Vascular Pathology Markers

Markers of vascular pathologies were measured with standard protocols and assessed by 

well-trained raters (see Supplementary Methods). We systematically examined 

cerebrovascular and cardiovascular markers in our analyses, including lobar CMB (binary; 

multiple [>=2] versus non-multiple [0 or 1]), WML load (binary; the highest quartile versus 

the lower three), RVD (continuous), CIMT (continuous; log-transformed), and CAC 

(continuous; log-transformed).
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2.3. Measures of Cognitive Function

Participants received a comprehensive cognitive assessment battery including tests of 

memory, executive function, and processing speed. Based on the scores of domain-specific 

cognitive tests, we calculated the Z-score of the composite memory score and the Z-score of 

the composite global cognition score, as the main cognitive outcomes for our analyses (see 

Supplementary Methods and Supplementary Figure S2).

2.4. Other Covariates

Other covariates used in the analyses included age, sex, education, smoking status, midlife 

physical activity, diet quality, prevalent diabetes, hypertension, high LDL level, and obesity 

(see Supplementary Methods).

2.5. Polygenic Risk Scores for AD Dementia (ADPRS)

2.5.1. Genome-wide ADPRS (GW-ADPRS)—We used the summary statistics from 

the Alzheimer’s Disease Genetics Consortium (ADGC) GWAS (8,309 AD cases and 7,366 

controls of European ancestry) [32] as the discovery dataset to calculate GW-ADPRS in our 

study sample. We applied an LD clumping procedure to the discovery datasets, retaining the 

SNP with smallest P-value in each 250kb window and removed all those in LD (r2> 0.2) 

with this SNP. We used three association P-value thresholds (PTs), 0.0001, 0.001, and 0.01, 

to select index SNPs from the clumped independent SNPs for generating the PRSs. For each 

individual, and each PT, we calculated GW-PRS by summing the risk allele counts of the 

index SNPs, weighted by the log of their association odds ratios estimated from the ADGC 

GWAS results.

2.5.2. 19q13-ADPRS and non-19q13-ADPRS—Because APOE is the strongest risk 

gene for AD dementia, we further partitioned the GW-ADPRS into an APOE region score 

and a non-APOE region score to separately assess the polygenic effects of SNPs in the 

APOE-linkage region 19q13 (ch19:4500000–4580000) and all other SNPs. We followed the 

same steps as for the calculation of the GW-ADPRS to generate a 19q13-ADPRS (the 

summation of log-odds-ratio weighted risk allele counts of the index SNPs in the 19q13 

region) and a non-19q13-ADPRS (the summation of log-odds-ratio weighted risk allele 

counts of the index SNPs across whole genome except 19q13) for each individual.

2.6. Data Analysis

2.6.1. Phenotypic associations of vascular markers with cognition—We used 

univariate and multivariate linear regressions to assess the associations of each vascular 

marker with the cognitive outcomes. Multivariate models adjusted for age, sex, education, 

diabetes, hypertension, high LDL level, obesity, physical activity, diet quality, and smoking 

status.

2.6.2. Association of ADPRS with vascular and cognitive phenotypes—We 

examined if any of the PTs generates an ADPRS significantly associated with each of the 

cognitive outcomes and vascular pathologies. We used linear (for continuous phenotypes) or 

logistic (for binary phenotypes) regression models to test the association of each phenotype 
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with each of GW-ADPRS, 19q13-ADPRS, and non-19q13-ADPRS, adjusting for age and 

sex. The Wald test P-value for each association test was reported, and squared semi-partial 

correlations (R2) were calculated to estimate the proportion of variance explained by the 

PRSs. We used Bonferroni correction to adjust for multiple testing (see Supplementary 

Methods).

2.6.3. Causal Mediation Analyses—We performed mediation regression analyses 

[33], based on the counterfactual framework for causal inference [34], to examine how much 

of the effect of an ADPRS on cognition score was mediated by a vascular pathology 

observed to be genetically correlated with AD dementia.

For each ADPRS (GW-ADPRS, 19q13-ADPRS, or non-19q13-ADPRS) as the predictor, we 

estimated the direct and indirect (mediated) effects of each vascular pathology as the 

mediator, and Z-score of the composite memory or global cognition score as the outcome. In 

order to gain more statistical power, the ADPRS predictors used in the mediation analyses 

were those with the PT that showed the highest association with each cognitive outcome. We 

adjusted for potential mediator-outcome confounders, including age, sex, smoking status, 

midlife physical activity, diet quality, and other genetic risk scores if necessary. A 

counterfactual outcome variable denotes the outcome that would have been observed had a 

predictor been set to a particular value. In order to compare high and low values of each 

ADPRS in our estimates of the direct and the indirect effects, we chose to compare the 75th 

percentile and the 25th percentile of each.

Finally, we conducted sensitivity analyses of unmeasured confounding and the choice of 

75th versus 25th percentile comparison (see Supplementary Methods).

All the mediation analyses were performed by using the PARAMED module in STATA [35]. 

We used bootstrap procedures with 200 replications to compute a 95% bias-corrected 

bootstrap confidence interval (95% BCCI) for the direct and indirect effects.

3. RESULTS

3.1. Sample Characteristics

Table 1 presents descriptive statistics for the AGES sample used here. The mean age of all 

subjects without stroke or vascular dementia (n=5,161) was 76.7 (5.8) years. Vascular 

pathologies were relatively rare: for example, only 2% had multiple lobar CMB. Subjects 

with genotype data available (n=2,907) were similar to the full sample but had somewhat 

lower coronary calcification score (with vs. without genotypes; Mann Whitney U test, 

P=0.01).

3.2. Phenotypic Associations

Table 2 presents phenotypic associations between each vascular pathology and cognitive 

outcomes. All unadjusted associations were significant. After adjusting for potential 

confounders, CMB, CAC, and WML were significantly associated with memory score, 

whereas the former two were significantly associated with global cognition score.
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3.3. Associations of GW-ADPRS with Cognitive or Vascular Phenotypes

Results are shown in Figure 1 and Table 3. Lower memory score was significantly associated 

with higher GW-ADPRS with a P-value threshold of 0.0001 (GW-ADPRSPT = 0.0001; P = 

0.006, R2 = 0.22%) and higher GW-ADPRS with a P-value threshold of 0.01 (GW-

ADPRSPT = 0.01; P = 0.001, R2 = 0.29%), after the Bonferroni correction. We also found 

nominal associations of lower global cognition score with higher GW-ADPRSPT = 0.0001 and 

higher GW-ADPRSPT = 001. In terms of the association between the GW-ADPRSs and 

vascular pathologies, we found that higher GW-ADPRS at all three PT were nominally 

associated with multiple lobar CMB. There were also nominal associations between higher 

GW-ADPRSPT = 0.01 and greater WML and between higher GW-ADPRSPT = 0.0001 and 

higher CAC.

3.4. Associations of 19q13-ADPRS and non-19q13-ADPRS with Cognitive or Vascular 
Phenotypes

Our data showed that higher 19q13-ADPRS at all three PTs were significantly associated 

with having lobar CMB. We also found nominal associations of higher 19q13-ADPRS with 

greater WML, higher CAC, and poorer performance on both cognitive outcomes (Table 3). 

For non-19q13-ADPRS, the only association was that between higher non-19q13-

ADPRSPT = 0.01 and lower memory score (Table 3).

3.5. Mediation Analyses

The PRS that most associated with each cognitive outcome was selected as the predictor 

(GW-ADPRSPT = 0.01, 19q13-ADPRSPT = 0.001, and non-19q13-ADPRSPT = 0.01 for 

memory; GW-ADPRSPT = 0.0001, 19q13-ADPRSPT = 0.001, non-19q13-ADPRSPT = 0.01 for 

global cognition). Vascular pathologies with a p-value lower than 0.05 for PRS associations 

with AD dementia were tested as potential mediators (CMB, WML, and CAC).

Results are shown in Table 4. The proportion mediated (PM) was obtained by dividing the 

estimated indirect effect by the estimated total effect, as an index of the degree of mediation. 

The total effect of GW-ADPRS on memory score was significantly mediated by multiple 

lobar CMB and WML load. CMB, WML, and CAC were all identified as significant 

mediators of the effects of GW-ADPRS on global cognition score. The total effect of 19q13-

ADPRS on memory score was significantly mediated by CMB and WML, and its effect on 

global cognition was mediated by CMB, WML, and CAC. The total effect of non-19q13-

ADPRS on both memory and global cognition was mediated by CMB.

When an interaction between the PRS and the vascular mediator was included in each 

mediation model, there was very little change in the estimated direct and indirect effects, so 

we decided not to include the interaction in the mediation models, as suggested by 

Vanderweele [33].

3.6. Sensitivity Analyses

Sensitivity analyses of unmeasured confounding suggest that under the seemingly more 

likely scenarios of unmeasured confounders associated with better cognition and less severe 

vascular pathology, or unmeasured confounders associated with poorer cognition and more 
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severe vascular pathology, our estimated PMs would underestimate the true mediation 

effects of vascular pathologies (see Figure 2, Supplementary Results, Table S1, and Figure 

S3). Sensitivity analyses for selection of predictor levels for comparison found that 

mediation analyses comparing the effects of the 90th percentile and the 10th percentile of 

each ADPRS yielded very similar PMs as those shown in Table 4 (see Supplementary Table 

S2).

4. DISCUSSION

In a community-based sample of 5,161 stroke-free older individuals, we found that multiple 

lobar CMB, higher WML load, and greater CAC --but not RVD nor CIMT--were associated 

with poorer late-life memory and global cognition. In the 2,907 genotyped individuals, we 

found that a higher genetic risk score for AD dementia, driven primarily by APOE, was 

associated with these three vascular pathologies and two cognition outcomes. In mediation 

analyses, we found that the effects of APOE and SNPs near APOE on memory may be 

partially mediated by CMB and WML, and their effects on global cognition may be partially 

mediated by CMB, WML, and CAC. With the possible exception of CMB, there was little 

evidence of an effect of non-APOE AD dementia-associated alleles on either memory or 

global cognition.

In a relatively large sample of older adults, our phenotypic analyses replicated previously 

reported phenotypic associations of cerebral SVD [36, 37] and atherosclerosis [18]with 

cognitive function. We further examined if shared genetic factors contribute to these 

associations, and found genetic overlap between AD dementia, vascular pathologies, and 

late-life cognition (Table 3 and Figure 1). Our data showed that lobar CMB, WML load, and 

CAC score were associated with GW-ADPRS, and were even more strongly associated with 

19q13-ADPRS. Our findings of the strongest genetic overlap between AD dementia and 

CMB are consistent with recently reported genetic correlation between AD and cerebral 

SVD but not LVD [28]. Lobar CMB may be caused by CAA [38, 39], which is highly 

prevalent in post-mortem analyses of brains of persons with clinical diagnosis of AD 

dementia [40]. In addition, the APOE-e4 allele has been associated with the presence of 

CAA [41, 42]. These previous findings support the possible genetic overlap between lobar 

CMB and AD dementia observed in our data. Since WML [43] and CAC [44] may share 

some common risk factors with CMB, and both have been related to dementia (although the 

evidence is not as strong as that for CMB), a genetic overlap of AD dementia with WML 

and CAC makes sense. On the other hand, we found no association between ADPRS and 

RVD, which has been reported as an indicator of cerebral small-vessel pathology [12] and a 

predictor of dementia [11]. One possible explanation is that the central retinal venular 

equivalent is observer-dependent and may not accurately reflect the degree of retinal venular 

dilatation, but there is no indication of even an attenuated signal.

Our results suggest that the APOE gene explains most of the SNP-based genetic overlap of 

AD dementia with the vascular pathologies (see Supplementary Methods and Results on 

‘Conditional Regression Analyses’ and Supplementary Table S6). APOE has been related to 

cerebrovascular dysfunction by affecting cerebral blood flow, blood-brain-barrier integrity, 

and neuronal-vascular coupling [45]. As mentioned above, the APOE-e4 allele is a risk 
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factor for CAA [41, 42]. In terms of peripheral vascular disease, APOE has been shown to 

be an important factor in the development of hyperlipoproteinemia and atherosclerosis [45, 

46]. Our data also showed no association between the non-19q13-ADPRS and any of the 

examined vascular pathologies, despite previously reported associations of non-APOE AD 

risk genes with inflammation and abnormal lipid metabolism, which are both risk factors for 

vascular disease [47]. Future research with larger samples are needed to test for association 

between vascular pathologies and AD dementia-associated alleles outside of the APOE-

linkage region.

In our sample, we observed associations of the APOE-ADPRS with both memory and global 

cognition, whereas the non-APOE-ADPRS was associated with memory, but not global 

cognition. A previous meta-analysis including 77 studies of the association between APOE 
and cognitive function suggested that carriers of APOE-e4 performed worse on multiple 

domains of cognitive tests, including memory, executive functioning, perceptual speed, and 

overall global cognition [48]. On the other hand, non-APOE-ADPRS calculated by using 

summary statistics from the International Genomics of Alzheimer’s Project (IGAP) was 

found to be associated with memory impairment but not executive function in non-demented 

subjects, with mean age of 75.3 years, in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [49]. It is possible that impaired memory was more likely to be detected than 

deficits in other cognitive domains for individuals in the early stage of cognitive decline. 

However, more research is needed on the relationship between specific genes and different 

domains of cognitive function.

Having established a SNP-based genetic overlap between AD dementia, vascular 

pathologies, and late-life cognition, we then sought to identify the causal relationships 

between ADPRS, vascular pathologies, and cognition scores. Our findings indicate that AD 

dementia-associated SNPs affect late-life cognition partially through pathways involving 

vascular pathologies, providing insight into potential pathogenic mechanisms in clinical AD 

dementia. The results also may lend further support to interventions to reduce vascular 

pathologies may be of value in the prevention of AD dementia. It is worth noting that we 

separately examined the mediation effects of CMB, WML, and CAC. Although measures of 

these vascular pathologies were correlated with each other, their correlations were relatively 

weak in our sample (Kendall’s tau-b=0.07 for CMB-WML, Point-Biserial correlation 

coefficient=0.08 for CMB-CAC and 0.12 for WML-CAC). Thus, it is reasonable to believe 

that a certain proportion of AD dementia-associated SNP effects on cognitive function were 

mediated by vascular pathologies when considering all vascular mediators together.

The only previous study investigating the mediation role of cerebrovascular imaging markers 

between genetic variants and cognitive function, which used an overlapping sample from the 

same cohort (the AGES-Reykjavik), reported that about 9% of the total effect of APOE4 
carriership on global cognition was mediated by CMB and WML volume together [30]. Our 

analyses revealed similar but stronger mediation effect of vascular pathologies on the 

relationship between SNPs and cognition. The major strength of the present study is that we 

assessed the effects of PRS, aggregating multiple possible risk alleles for AD across the 

whole genome, within or beyond the APOE-linkage region, weighted by their estimated 

effect sizes. Moreover, we considered both cerebral small-vessel and systemic large-vessel 
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imaging markers, which have been previously associated with dementia or poor cognition, 

as potential mediators.

Several limitations in the present study should be noted. In the population-based sample, in 

which most subjects were cognitively normal or mildly impaired, mean scores of cognitive 

tests reflect both lifelong cognitive variability and recent pathological changes, and the 

former may overwhelm the latter. However, with our relatively large sample size, we were 

able to detect small signals and parse these signals into what appear to be meaningful 

mediation relationships. Nonetheless, the sample may have only been large enough to detect 

^POF-related signals, even if other causal SNPs are present. In any event, in the setting of 

small signals, another major limitation is the possible violation of the no-unmeasured-

confounding assumption necessary for causal mediation analyses. However, our sensitivity 

analyses suggest that given the expected direction of unmeasured confounding, our 

estimated indirect effects may underestimate the true mediated effects. In addition, the 

ADPRS, including only common genetic variants, cannot account for all the genetic effects 

on cognitive performance and AD dementia. Although our SNP-based PRS were strongly 

associated with vascular and cognitive phenotypes, and PRS for AD dementia has been 

reported to be capable of capturing nearly all common genetic risk for AD [50], there are 

still causal genomic variants (e.g., rare variants) that are not well-tagged by GWAS SNPs. 

However, the genetic effects not captured by SNP-based risk scores can also be seen as a 

type of unmeasured mediator-outcome confounding. Therefore, the sensitivity analyses 

mentioned above may help minimize these concerns. Finally, although our use of causal 

mediation analysis appears to imply mechanistic causality, we note that our design is 

ultimately correlational. In future research, an experimental-causal-chain approach may help 

to develop a more fundamental understanding of causal mechanisms.

This is the first study, to our knowledge, that combined polygenic profiling and causal 

mediation methods to identify the causal relationship between two genetically correlated 

phenotypes and their shared genetic factors. Our findings support the hypothesis of a genetic 

overlap, mostly due to APOE, between AD dementia and vascular pathologies, especially 

SVD. Our results also showed that in older individuals, CMB, WML, and CAC may causally 

affect cognitive function and partially mediate the polygenic effects of AD-related genes on 

cognition, underscoring the potential role of vascular factors in cognitive decline, and 

suggesting vascular pathologies as a target for future mechanistic research in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

Systematic review:

A large literature, updated with a recent PubMed search, includes extensive 

epidemiological and neuropathological evidence suggesting shared mechanisms between 

vascular pathologies and Alzheimer’s disease (AD) dementia. However, few studies have 

examined their polygenic overlap, and no published research has focused on whether 

vascular pathologies mediate the relationship between AD-associated genes and late-life 

cognition.

Interpretation:

Our findings support the hypothesis of a genetic overlap, mostly due to APOE, between 

AD dementia and vascular pathologies. The cumulative effect of AD-related genes on 

late-life cognition was partially but significantly mediated by cerebral microbleeds, white 

matter lesions, and coronary calcification, underscoring the potential role of vascular 

factors in cognitive decline.

Future directions:

These results should be confirmed in larger samples. Research is also needed on the 

relationship of specific genes and pathways with different domains of cognitive function. 

In the meantime, these findings suggest vascular pathologies as a target for future 

mechanistic research on AD.
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Figure 1. Pair-wise polygenic association analyses between GW-ADPRS and (A) cognition scores, 
(B) vascular pathologies
We derived genome-wide PRS for AD dementia using ADGC GWAS as the discovery 

sample with three different P-value thresholds (PT used to select training set SNPs: 0.0001, 

0.001, and 0.01) and apply them to (A) Z-score of the composite memory or global 

cognition score; and (B) each of the markers of vascular pathologies. Age and sex were 

included as covariates in the association analyses.

Each pair is shown on the x-axis and the proportion of variance explained for each 

phenotype (estimated via partial correlation R2) on the y-axis.
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Unadjusted P-values are shown on the top of the bars if < 0.05.

An asterisk indicates Bonferroni-corrected P-value < 0.05.
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Figure 2. Sensitivity analyses of unmeasured confounding for the relationship between 19q13-
ADPRS and memory score mediated by (A) CMB, (B) WML, or (C) CAC
Figure 2 presents how the PM would change if unmeasured confounding of a specified 

direction and magnitude is allowed for in the mediation relationship between 19q13-

ADPRS, vascular markers, and memory score. Detailed results of sensitivity analyses of 

unmeasured confounding for all other mediation analyses are described in Supplementary 

Results, Table S1, and Figure S3.

A: predictor; 19q13-ADPRS

M: mediator; (A) CMB, (B) WML, or (C) CAC
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Y: outcome; memory score

The y-axis is the proportion mediated The x-axis, denoted by rho, is the degree of 

hypothetical unmeasured confounding, estimated by the size of the correlation between the 

residuals in the equation predicting M and the equation predicting Y. The larger the absolute 

value of rho, the stronger the confounding.

The solid curve shows the estimated proportion mediated for different values of the 

correlation between the residuals in equations. The shaded part of the plot represents the 

95% intervals surrounding the mediated effect. The x-intercept represents the value of rho at 

which proportion mediated equals to 0.

The horizontal broken line denotes the proportion mediated without considering unmeasured 

confounding. When rho is equal to zero, the reported proportion mediated is the same as that 

we estimated in the mediation analysis without considering unmeasured confounding. For 

other values of rho, the proportion mediated is calculated under different levels of 

unobserved confounding. When rho<0, which means there is unmeasured confounding 

associated with better cognition and less severe vascular pathology or unmeasured 

confounding associated with poorer cognition and more severe vascular pathology (seemly 

more likely), our estimated PMs would underestimate the true mediation effects of vascular 

pathologies.
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Table 1.

Descriptive statistics of demographic and clinical characteristics

Characteristics All subjects
(N=5161)

Subjects with
genotype data

(N=2907)

Demoaraphic

Age at AGES I (years), mean (SD) 76.73 (5.83) 76.20 (5.43)

Sex

 Female, N (%) 3022 (58.6) 1706 (58.7)

Education

 Secondary, N (%) 2406 (49.9) 1441 (49.7)

 College, N (%) 755 (15.7) 451 (15.6)

 University, N (%) 547 (11.4) 334 (11.5)

Vascular Patholoaies, Baseline
Lobar cerebral microbleeds

 Count>=2, N(%) 110 (2.1) 69 (2.7)

White matter lesion load, median(Q1, Q3) 1.91 (0.51, 5.64) 1.92 (0.50, 5.59)

Central retinal venular equivalent, mean(SD) 202.19 (19.56) 202.14 (19.50)

Carotid intima-media thickness, median(Q1,Q3) 0.97 (0.88, 1.06) 0.97 (0.88, 1.06)

Coronary calcification score, median(Q1, Q3) 271.23 (43.61, 898.78) 253.52 (38.94, 841.53)

Other Covariates, Baseline
Midlife physical activity

 Intermediate, N(%) 2166 (46.6) 1327 (47.5)

 Poor, N(%) 909 (19.5) 524 (18.8)

Diet quality

 Intermediate, N(%) 4011 (84.6) 2418 (84.8)

 Poor, N(%) 354 (7.5) 205 (7.2)

Smoking

 Ever, N(%) 2111 (43.9) 1303 (44.8)

 Current, N(%) 593 (12.3) 372 (12.8)

Diabetes, N(%) 640 (12.4) 324 (11.2)

Hypertension

 Prehypertension, N(%) 758 (14.8) 445 (15.3)

 Hypertension, N(%) 4112 (80.3) 2318 (79.8)

LDL level >=130 mg/dL, N(%) 2830 (54.9) 1643 (56.6)

BMI>=30, N(%) 1139 (22.3) 642 (22.1)

Subjects with GWAS genotype data available (n=2,907) had lower coronary calcification score than those without genotype data (n=2,254) (Mann-
Whitney U test, P=0.01). No significant difference was observed in the distribution of any other characteristic listed in the Table between subjects 
with and without genotype data available.
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