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Abstract
Until quite recently, the pathogenesis of atopic dermatitis (AD) has been attributed to primary
abnormalities of the immune system. Intensive study revealed the key roles played by TH1/TH2 cell
dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling in the evolution
of the chronic, pruritic, inflammatory dermatosis that characterizes AD. Accordingly, current therapy
has been largely directed toward ameliorating TH2-mediated inflammation and pruritus. In this
review we will assess emerging evidence that inflammation in AD results from inherited and acquired
insults to the barrier and the therapeutic implications of this paradigm.
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Until recently, atopic dermatitis (AD) has been viewed largely as a disease of immunologic
etiology.1–5 Yet, the epidermis generates a set of protective/defensive functions (Table I)
mediated by its unique differentiation end product, the stratum corneum (SC).6,7 These
functions include the permeability barrier, which retards transcutaneous evaporative water loss,
allowing survival in a potentially desiccating external environment, and an antimicrobial
barrier, which simultaneously encourages colonization by nonpathogenic ‘‘normal’’ flora
while resisting growth of microbial pathogens.8 Although both a defective epidermal
permeability9–13 and a propensity to secondary infection14,15 are well-recognized features
of AD, these abnormalities have been widely assumed to reflect downstream consequences of
a primary immunologic abnormality (the historical inside-outside view of AD pathogenesis).
We and others have long proposed that the permeability barrier abnormality inADis not merely
an epiphenomenon but rather the ‘‘driver’’ of disease activity (ie, the reverse outside-inside
view of disease pathogenesis)16–19 for the following reasons: (1) the extent of the permeability
barrier abnormality parallels the severity of the disease phenotype in AD9,10,12; (2) both
clinically uninvolved skin sites and skin cleared of inflammation for as long as 5 years continue
to display significant barrier abnormalities 10,13; (3) emollient therapy comprises effective
ancillary therapy 20; and most importantly, (4) specific replacement therapy, which targets the
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prominent lipid abnormalities that account for the barrier abnormality in AD (see below),
corrects both the permeability barrier abnormality and comprises effective anti-inflammatory
therapy for AD (see the Therapeutic implications section below).

BROAD BARRIER FAILURE IN AD
Like permeability barrier dysfunction, the antimicrobial barrier is also compromised in patients
with AD. Colonization by Staphylococcus aureus is a common feature of AD,21 and although
colonization is highest on lesional skin, colony counts often are high on the clinically normal
skin of patients with AD.14,15 Moreover, overt secondary infections, manifesting commonly
as impetiginization, widespread folliculitis, or, less frequently, cutaneous abscesses or
cellulitis, are well-recognized complications in the management of AD. Furthermore,
colonization by superantigen-producing S aureus strains further exacerbates disease in patients
with severe AD through generalized augmentation of IgE production, as well as through
development of specific IgE directed toward staphylococcal exotoxins (see the “Impaired
antimicrobial defense further compromises barrier function in AD” section below).19 In
addition, patients with AD are also susceptible to widespread cutaneous viral infections,
including molluscum contagiosum, herpes simplex (Kaposi’s varicelliform eruption), and life-
threatening vaccinia.22 Widespread dermatophytosis (tinea corporis) and Malassezia species
infections also occur in AD, and the latter, such as S aureus, can stimulate specific IgE
production.22,23 Taken together, these observations point to loss of a competent antimicrobial
barrier in AD. Although failure of both permeability and antimicrobial function is well
recognized in patients with AD, only recently has it become clear that these 2 functions are
both coregulated and interdependent.24 Thus failure of the permeability barrier in itself favors
secondary infection, and conversely, pathogen colonization/infection further aggravates the
permeability barrier abnormality.

Finally, several other critical defensive functions of the SC are also compromised in patients
with AD, including (1) SC integrity (cohesion), as reflected by excess scale (abnormal
desquamation), and (2) diminished SC hydration, as reflected by lifelong cutaneous xerosis in
these patients, even after overt inflammation recedes (Table I).9,10,13 Like the defective
permeability and antimicrobial barriers, SC hydration decreases in both the lesional and
nonlesional skin of patients with AD, with its severity paralleling disease activity.9,12
Decreased SC hydration is not merely of cosmetic concern because it alone suffices to stimulate
epidermal hyperplasia and early evidence of inflammation, such as mast cell degranulation,
even in normal skin.25 Whether additional defensive functions of the SC, such as antioxidant
or UV defense, also fail in patients with AD remain unknown. Nevertheless, AD can be viewed
as a disease of broad barrier failure.

BASIS FOR THE PERMEABILITY BARRIER IN NORMAL SKIN
The permeability barrier resides in the SC, a multilayered tissue composed of flattened
anucleate corneocytes surrounded by multiple planer lamellae sheets enriched in ceramides,
cholesterol, and free fatty acids (FFAs).26 It is the localization of these highly hydrophobic
lipids within the extracellular domains of the SC that inhibits the outward movement of water.
These lipids are delivered to the SC as their precursors through secretion of a unique organelle,
the epidermal lamellar body (LB).26 As the SC forms, this organelle delivers not only lipid
constituents (eg, cholesterol) and lipid precursors (eg, glucosylceramides and phospholipids)
but also the enzymes (β-glucocerebrosidase, acidic sphingomyelinase, and secretory
phospholipase A2) required to generate ceramides and FFAs, which are required for their
organization into mature membrane structures.26 In parallel, LB-derived proteases and their
inhibitors orchestrate the orderly digestion of corneodesmosomes, transient intercellular
junctions that are progressively degraded, allowing corneocytes to shed invisibly at the skin
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surface.27,28 Finally, antimicrobial peptides also are delivered to the SC intercellular domains
through secretion of LB contents.29–31

INHERITED BARRIER ABNORMALITIES IN ATOPIC DERMATITIS
Based on inherited abnormalities either in serine protease (SP)/antiprotease expression or
filaggrin (FLG) production, the development of AD is now increasingly linked to primary
defects in the structure and function of the SC. The most compelling case for the role of excess
SP activity in the pathogenesis of AD comes from Netherton syndrome (NS), an autosomal
recessive disorder caused by loss-of-function mutations in SPINK5, the gene encoding the SP
inhibitor lymphoepithelial Kazal-type trypsin inhibitor. 32 NS is characterized by severe AD,
mucosal atopy, and anaphylactic reactions to food antigens.25,26 Residual lymphoepithelial
Kazal-type trypsin inhibitor expression in NS correlates inversely with excess SP activity
within the outer epidermis,33 resulting in a severe permeability barrier defect and dramatic
thinning of the SC because of unrestricted, SP-dependent degradation of lipid-processing
enzymes and corneodesmosome-constituent proteins, respectively.33,34 Pertinently, several
European, American, and Japanese case-control studies of patients with AD or mucosal atopy
have found an increased frequency of single nucleotide polymorphisms (Glu420Lys) in
SPINK5.32 Conversely, a British case-control study described putative gain-of-function
polymorphisms (AACCAACC vs AACC) in the 3′ region of KLK7,which encodes the SP SC
chymotryptic enzyme or KLK7.35 Moreover, transgenic mice forced to express human
KLK7 display a severe AD-like dermatosis.36 Yet the incidence of both these polymorphisms
is quite high in unaffected healthy patients,37–39 and it is not yet known whether either of
these single nucleotide polymorphisms alters expression of its respective protein product or
products. Nevertheless, in experimental animals a net increase in SP activity, achieved by a
variety of means, has been shown to compromise barrier function through accelerated
degradation of both corneodesmosomes (accounting for flawed SC integrity) and degradation
of extracellular lipid-processing enzymes (ie, β-glucocerebrosidase and acidic
sphingomyelinase; Fig 1).40 SP-mediated degradation of the extracellular hydrolytic enzymes
would, in turn, result in a failure to generate ceramides, a characteristic lipid abnormality in
AD.41,42

Increased SP activity likely provokes the barrier abnormality through a second and unrelated
mechanism by signaling of the plasminogen activator type 2 receptor, which in turn down-
regulates LB secretion,43 entombing these organelles in nascent corneocytes.44 Failure of LB
secretion accounts, in turn, for another characteristic abnormality in AD, a global decrease in
SC lipids,11,45 which correlates with the observed decrease in extracellular lamellar
bilayers12 in patients with AD (Fig 1). Thus increased SP activity alone induces abnormalities
that parallel those in AD, providing a mechanistic basis for the global reduction in extracellular
lipids and further decrease in ceramide levels that occur in patients with AD.

The strongest evidence for a primary structural abnormality of SC underlying the pathogenesis
of AD derives from the recent link between loss-of-function mutations in the gene encoding
FLG and AD.46–51 Up to 50% of European kindreds with AD reveal single- or double-allele
or compound mutations in FLG on chromosome 1q21. Although 15 different mutations have
been reported, the 2 most common (R501X and 2282del4) account for the majority of cases,
52 and because of their proximal location on the FLG gene, they also predict more severe loss
of function.53–55 Yet although the logic for the link between excess SP activity and the barrier
abnormality in AD seems clear, how loss of FLG (an intracellular protein) provokes a
permeability barrier abnormality (almost always an extracellular defect) is not known. Loss of
this quantitatively important protein could alter corneocyte shape (eg, flattening) sufficiently
to disrupt the organization of the extracellular lamellar bilayers. Alternatively, or in addition,
FLG is generated during cornification as its precursor protein, profilaggrin, which is then
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proteolytically processed into FLG during the abrupt transition from the granular cell layer to
corneocyte.56 Whereas FLG initially aggregates keratin filaments into keratin fibrils,
subsequently, it is itself proteolytically degraded into amino acids, which are further deiminated
into polycarboxylic acids, such as pyrrolidine carboxylic acid and trans-urocanic acid.57 These
metabolites, in turn, act as osmolytes, drawing water into corneocytes, thereby accounting in
large part for corneocyte hydration (Fig 2). Hence the most immediate result of FLG deficiency
in patients with AD is decreased SC hydration, leading in turn to a steeper water gradient across
the SC, which likely drives increased transcutaneous water loss. Thus decreased SC hydration,
leading to increased water loss, is the first and most obvious cause of barrier dysfunction in
AD. However, neither corneocyte flattening nor decreased SC hydration alone would suffice
to enhance antigen penetration, which is best explained by another consequence of FLG
deficiency (ie, decreased downstream production of acidic metabolites resulting from FLG
proteolysis). Indeed, trans-urocanic acid, in particular, is a purported, endogenous acidifier of
the SC.58 Thus decreased generation of FLG products could result in an initial increase in the
pH of SC in patients with AD sufficient to increase the activities of the multiple SPs in SC (Fig
1), which all exhibit neutral-to-alkaline pH optima.28 Such a pH-induced increase in SP
activity, if prolonged, could precipitate downstream structural and functional alterations that
would converge with those that result from inherited abnormalities in SP/antiprotease
expression (Fig 1).

One important downstream consequence of increased SP activity is generation of the primary
cytokines IL-1α and IL-1β59,60 from their 33-kd proforms, which are stored in large quantities
in the cytosol of corneocytes (Fig 1). The putative pH-induced increase in SP activity would
generate 17-kd active forms of these cytokines,60 the first step in the cytokin e cascade that
we propose is a primary contributor to inflammation in AD (Fig 3). Sustained antigen ingress
through a defective barrier leading to a TH2-dominant infiltrate is a second cause of
inflammation in AD.50 Accordingly, correction of the barrier abnormality alone should
ameliorate both causes of inflammation in AD.

EXOGENOUS AND ENDOGENOUS STRESSORS FURTHER AGGRAVATE
BARRIER FUNCTION IN AD

Acquired pH-dependent increases in SP activity could also contribute to AD pathogenesis.
That FLG mutations alone do not suffice is shown in ichthyosis vulgaris, where the same single-
or double-allele FLG mutations reduce FLG content, but inflammation (ie, AD) does not
always occur.61,62 Certain stressors could elicit disease by aggravating the barrier abnormality
by provoking an incremental increase in the pH of the SC, leading to a further amplification
of SP activity. Such a barrier-dependent increase in pH (and SP activity) likely accounts for
the precipitation of AD after the use of neutral-to-alkaline soaps (Fig 1), a well-known
exogenous stressor of clinical AD.63

Prolonged exposure to reduced environmental humidity, as occurs in radiant-heated homes in
temperate climates during the winter, is also a well-known risk factor for AD. Under these
conditions, transcutaneous water loss would accelerate across a defective SC, aggravating the
underlying permeability barrier abnormality and amplifying cytokine signaling of
inflammation. Because FLG proteolysis is regulated by changes in external humidity,57
sustained reductions in environmental relative humidity could further deplete residual FLG in
single-allele FLG-deficient patients. Finally, sustained psychologic stress (PS) aggravates
permeability barrier function in human subjects,64,65 and PS is both a well-known precipitant
of AD and a cause of resistance to therapy. In the case of PS, however, the likely mechanism
differs from either surfactant use or decreased environmental humidity. In experimental
animals psychologic stress induces an increase in endogenous glucocorticoids (GCs), which
in turn alter permeability barrier homeostasis, SC integrity, and epidermal antimicrobial
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defense.31,66,67 The putative mechanism for the negative effects of psychologic stress is GC-
mediated inhibition of synthesis of the 3 key epidermal lipids that mediate barrier function (ie,
ceramides, cholesterol, and FFAs).68 Accordingly, a topical mixture of these 3 lipids largely
normalizes all of these functions, even in the face of ongoing PS or GC therapy.31,68

OUTSIDE-INSIDE AND THEN BACK TO OUTSIDE PATHOGENIC MECHANISM
IN AD

Despite accumulating evidence in support of a barrier-initiated pathogenesis of AD, recent
studies suggest specific mechanisms whereby TH2-generated cytokines could also further
aggravate AD. Exogenous applications of the TH2 cytokine IL-4 impede permeability barrier
recovery after acute perturbations.69 The basis for the negative effects of IL-4 could include
(1) the observation that exogenous IL-4 also inhibits ceramide synthesis,70 providing yet
another mechanism accounting for decreased ceramide levels; (2) the observation that IL-4
also was shown recently to inhibit expression of keratinocyte differentiation-linked proteins,
most notably FLG71; and (3) the observation that desmoglein 3 expression is also inhibited
by exogenous IL-4.72 Together, these observations provide acquired mechanisms that could
further compromise barrier function in patients with AD.71,72 Thus primary inherited barrier
abnormalities in AD ultimately stimulate downstream paracrine mechanisms that could further
compromise permeability barrier function, completing a potential outside-inside-outside
pathogenic loop in AD (Fig 3).

IMPAIRED ANTIMICROBIAL DEFENSE FURTHER COMPROMISES BARRIER
FUNCTION IN AD

In the prior sections, we discussed first how genetic and acquired factors can converge to
provoke or amplify AD and second how inflammation can be attributed both to an epidermis-
derived cytokine cascade, as well as to stimulation of a TH2-dominant inflammatory infiltrate
because of sustained antigen ingress. Increased colonization with S aureus2,14,73 occurs as a
result of the barrier abnormality (a structurally competent, lipid-replete, acidic SC itself
comprises a formidable barrier to pathogen colonization8), and it can further aggravate barrier
function in AD through several mechanisms (Fig 4). The antimicrobial barrier is intimately
linked to the permeability barrier,24 and as with water egress, pathogen ingress occurs through
the extracellular domains. 74 Moreover, an impaired permeability barrier alone predisposes to
pathogen colonization, not only because of the increase in surface pH75 but also because levels
of FFAs and the ceramide metabolite sphingosine, which exhibit potent antimicrobial activity,
74,76 are reduced in AD.8 Surface proteins on S aureus can downregulate epidermal FFA
production,77 thereby aggravating both permeability and antimicrobial function in parallel, a
strategy that could also facilitate microbial invasion. In addition, members of 2 key families
of antimicrobial peptides, the human cathelicidin product LL-37 and human β-defensins 2 and
3, are downregulated in a TH2-dependent fashion in AD (Fig 4).73,78 Notably, both the human
cathelicidin aminoterminal fragment cathelin79 and human β-defensin 380,81 display robust
activity against S aureus. LL-37 is required for normal epidermal permeability barrier function
(notably, LL-37 is also important for the integrity of extracutaneous epithelia).22 Thus it is
likely that decreased LL-37 levels amplify the barrier defect in AD (Fig 4).

Over time, nontoxigenic strains of S aureus that colonize patients with AD can be replaced by
enterotoxin-generating strains,82 which in turn could aggravate AD through at least 3
mechanisms (Fig 4): (1) toxigenic strains are more likely to produce clinical infections than
are nontoxigenic strains82; (2) some toxins stimulate pruritus83 and production of specific
IgE15,84–86; and (3) some toxins serve as “superantigens” that stimulate T- and B-cell
proliferation, as well as immunoglobulin class-switching to allergen specific or

Elias et al. Page 5

J Allergy Clin Immunol. Author manuscript; available in PMC 2009 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“superallergens” that stimulate IgE production.15,87 Activated T cells produce IL-31, which
also induces pruritus.88 Finally, clinical infections, particularly folliculitis, are notoriously
pruritic, even in nonatopic subjects, eliciting an itch-scratch vicious cycle that creates
additional portals of entry for pathogens (Fig 4). It is self-evident that excoriations create further
defects in the permeability barrier, representing yet another potentially important vicious cycle
in AD pathogenesis (Fig 4).

THERAPEUTIC IMPLICATIONS
Together, the converging pathogenic features described above create a strong rationale for the
deployment of specific strategies to restore barrier function in patients with AD. Based on the
mechanisms described above, these approaches could range from a simple reduction in the pH
of SC alone (hyperacidification), applications of SP inhibitors, topical plasminogen activator
type 2 receptor antagonists, general moisturization measures, or specific lipid replacement
therapy. Moisturizers are widely used in AD and, when used under nursing supervision, have
been shown to reduce topical steroid use.20 Of these approaches, the last is well into
development as triple-lipid, ceramide-dominant, barrier repair therapy for AD, provided in an
acidic formulation.* Two clinical studies support the efficacy of targeted, ceramidedominant
lipid replacement therapy in AD. An open-label study demonstrated dramatic improvements
in clinical activity, permeability barrier function, and SC integrity when an over-the-counter
version of this technology (TriCeram; Osmotics Corp, Denver Colo) was substituted for
standard moisturizers in children with severe recalcitrant AD.12 More recently, a higher-
strength, US Food and Drug Administration–approved prescription formulation (EpiCeram
cream; Ceragenix Corp, Denver, Colo) demonstrated efficacy that was comparable with that
of a midpotency steroid (fluticasone, Cutivate cream) in an investigator-blinded, multicenter
clinical trial of pediatric patients with moderate-to-severe AD.89 These studies, although still
preliminary, suggest that pathogenesis-based therapy, directed at the lipid biochemical
abnormality that is responsible for the barrier defect in AD, could comprise a new paradigm
for the therapy of AD. Yet an important question remains: Will restoration of permeability
barrier function simultaneously improve antimicrobial defense in patients with AD? Because
recent studies have shown that these 2 key functions are both regulated in parallel and
interdependent, 24 there is reason to be optimistic on this score as well.

Abbreviations used
AD, Atopic dermatitis; FFA, Free fatty acid; FLG, Filaggrin; GC, Glucocorticoid; LB,
Lamellar body; NS, Netherton syndrome; SC, Stratum corneum; SP, Serine protease.
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FIG 1.
Inherited and acquired activation of serine proteases converge to affect multiple SC functions
but by divergent mechanisms. SPI, Serine protease inhibitor; DSG1, desmoglein 1; CD,
corneodesmosome; LEKTI, lymphoepithelial Kazal-type trypsin inhibitor; PAR2, plasminogen
activator type 2 receptor;KLK7, kallikrein 7.
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FIG 2.
FLG proteolytic pathway affects multiple SC functions: potential implications for pathogenesis
of AD. R.H., Relative humidity; trans-UCA, trans-urocanic acid.
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FIG 3.
Outside-inside initial provocation of AD eventually can lead to an outside-inside-outside
vicious cycle. hBD2, Human β-defensin; AR, amphiregulin; NGF, nerve growth factor.
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FIG 4.
Role of secondary infections in further aggravation of AD. AMP, Antimicrobial peptides;
FFA, free fatty acids.
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TABLE I
Multiple protective functions of mammalian SC

Function Principal compartment Structural basis Chemical basis Regulatory signals (receptors)

Permeability*† Extracellular matrix Lamellar bilayers Ceramides, cholesterol, nonessential
fatty acids in proper ratio

IL-1α Ca++, pH, liposensors,
serine proteases through PAR2,
TPRV1 and TPRV4

Antimicrobial*† Extracellular matrix Lamellar bilayers Antimicrobial peptides, FFAs, Sph 1,25 (OH)2D3, IL-1α

Antioxidant† Extracellular matrix Lamellar bilayers Cholesterol, FFAs, secreted vitamin E,
redox gradient

?

Cohesion (integrity) →
desquamation*†

Extracellular matrix CD Intercellular DSG1/DSC1 homodimers pH, Ca++ (TPRV)

Mechanical/rheologic† Corneocyte Cornified envelope,
keratin filaments

γ-Glutamyl isopeptide bonds Ca++, CholSO4, liposensors

Chemical (antigen exclusion)*† Extracellular matrix Extracellular lacunae Hydrophilic products of CD Same as for permeability barrier

Psychosensory interface† Extracellular matrix Lamellar bilayers Barrier lipids GCs, heat (TPRV3)

Hydration† Corneocyte Cytosol FLG proteolytic products, glycerol Osmotic changes (TPRV1 and
TPRV4), aquaporin 3

UV light Corneocyte Cytosol Trans-urocanic acid (histidase activity)

Initiation of inflammation (1°
cytokine activation)*†

Corneocyte Cytosol Proteolytic activation of pro-IL-1α/β pH, serine protease activation

TPRV, Transient receptor potential vanilloid; Sph, sphingomyelin; CD, corneodesmosomes; DSG1, desmoglein 1; DSC1, desmocollin 1.

*
Regulated by SC pH.

†
Abnormal in AD.
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